首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Pentachloronitrosyliridate(III) ([IrCl5(NO)]), the most electrophilic NO+ known to date, can be reduced chemically and/or electrochemically by one or two electrons to produce the NO and HNO/NO forms. The nitroxyl complex can be formed either by hydride attack to the NO+ in organic solvent, or by decomposition of iridium-coordinated nitrosothiols in aqueous solutions, while NO is produced electrochemically or by reduction of [IrCl5(NO)] with H2O2. Both NO and HNO/NO complexes are stable under certain conditions but tend to labilize the trans chloride and even the cis ones after long periods of time. As expected, the NO+ is practically linear, although the IrNO moiety is affected by the counterions due to dramatic changes in the solid state arrangement. The other two nitrosyl redox states comprise bent structures.  相似文献   

2.
NO flowering     
The complex control of flowering time ensures that plants flower in conditions favourable for reproductive success. A recent study adds another dimension to this established complexity by revealing that nitric oxide (NO) represses flowering in Arabidopsis. The analysis of recently identified mutants that either overproduce or are compromised in endogenous NO production has identified NO-sensitive features of the circuitry of flowering time control: NO acts to repress the amplification of gene expression dependent on the circadian clock and promotes the accumulation of mRNA encoding a key repressor of flowering, FLC.  相似文献   

3.
Accurate characterization of the biochemical pathways of nitric oxide (NO) is essential for investigations in the field of NO research. To analyze the different reaction pathways of enzymatic and non-enzymatic NO formation, determination of the source of NO is crucial. Measuring NO-related products in biological samples distinguishing between 14NO and 15NO offers the opportunity to specifically analyze NO signaling in blood and tissue. The aim of this study was to establish a highly sensitive technique for the specific measurement of NO in an isotopologue-selective manner in biological samples.With the cavity leak-out spectroscopy setup (CALOS) a differentiation between 14NO and 15NO is feasible. We describe here the employment of this method for measurements in biological samples. Certified gas mixtures of 14NO/N2 and 15NO/N2 were used to calibrate the system. and of aqueous and biological samples were reduced in a triiodide solution, and the NO released was detected via CALOS. Gas-phase chemiluminescence detection (CLD) was used for evaluation.The correlation received for both methods for the detection of NO in the gas phase was r = 0.999, p < 0.0001. Results obtained using aqueous and biological samples verified that CALOS enables NO measurements with high accuracy (detection limit for 0.3 pmol and 0.5 pmol; correlation 14NO: p < 0.0001, r = 0.975, 15NO: p < 0.0001, r = 0.969).The CALOS assay represents an extension of NO measurements in biological samples, allowing specific investigations of enzymatic and non-enzymatic NO formation and metabolism in a variety of samples.  相似文献   

4.
一氧化氮和动脉粥样硬化   总被引:9,自引:0,他引:9  
动脉粥样硬化是脂蛋白、单核细胞、巨噬细胞、T淋巴细胞与血管壁内皮细胞相互作用而导致的慢性炎症反应。这个炎症的过程由脂质浸润开始,涉及氧化应激反应,最终导致复杂的病理损伤和斑块的形成,斑块突出入血管,破裂形成血栓而导致急性的心肌梗塞或中风。激活内皮源性的一氧化氮合成酶而生成的一氧化氮(NO)能够预防动脉粥样硬化,并对不周发展阶段的动脉粥样硬化的病理形成均有改善和逆转作用。其生成的NO能抗氧化、清除自由基、抑制低密度脂蛋自在血管壁被氧化,防止氧化低密度脂蛋白(oxLDL)的产生,而影响脂质浸润;能抑制NFKB的激活和核内迁移,阻抑激活的内皮细胞表达黏附分子,减少嗜中性粒细胞和单核细胞的黏附和活化,减少血管壁的炎症反应;能抑制血小板黏附、聚集,抑制凝血酶诱导的血小板活性因子的表达以减少血栓形成;能阻止凋亡,保持内皮细胞的完整性;还能有效地抑制血管平滑肌细胞增殖、迁移和细胞外基质的合成,对动脉粥样硬化病理形成和发展具有阻抑作用。  相似文献   

5.
Just say NO     
  相似文献   

6.
Why NO?     
T G Traylor  V S Sharma 《Biochemistry》1992,31(11):2847-2849
  相似文献   

7.
8.
9.
Unlike mammalian NO synthases, bacterial NO synthases do not contain a reductase domain. The only exception from this rule is the NO synthase from myxobacterium Sorangium cellulosum, but its reductase domain has unusual structure and location in the enzyme molecule. Recent achievements in bacterial genome sequencing have revealed the gene coding NO synthase (represented as an oxygenase domain) in some bacteria and have advanced the study of structure and functions of bacterial NO synthases. Important features of structure, sources of reducing equivalents, evolutionary connections, and functions of bacterial NO synthases (i.e. participation in nitration of the indole ring of Trp, in reparation of UV-radiation damage, role in adaptation of bacteria to oxidative stress, participation in the synthesis of cGMP, and resistance of bacteria against antibiotics) are described.  相似文献   

10.
A 3-h exposure to NO donors (spermine-NO, DETA-NO, or SNAP), or to NOS II-expressing cells (activated macrophages or EMT6 cells) reversibly inhibited DNA synthesis in K562 tumor cells. In GSH-depleted K562 cells, cytostasis remained reversible when induced by DETA-NO or NOS II activity, but became irreversible after exposure to spermine-NO or SNAP. Only SNAP and spermine-NO efficiently inhibited GAPDH, an enzyme with a critical thiol, in GSH-depleted cells. Thus, the irreversible cytostasis induced in GSH-depleted cells by spermine-NO or SNAP can be tentatively attributed to S-nitrosating or oxidizing species derived from NO. However, these species did not contribute significantly to the early antiproliferative effects of macrophages. Ribonucleotide reductase, a key enzyme in DNA synthesis. has been shown to be inhibited by NO. Supplementation of the medium with deoxyribonucleosides to bypass RNR inhibition restored DNA synthesis in target cells exposed to DETA-NO and NO-producing cells, but was inefficient for GSH-depleted cells previously submitted to spermine-NO or SNAP. These cells also exhibited a persistent depletion of the dATP pool. In conclusion, GSH depletion reveals striking qualitative differences in the nature of the toxic effectors released by various NO sources, questioning the significance of S-nitrosating or oxidizing nitrogen oxides in NOS II-dependent cytostasis.  相似文献   

11.
Nitric oxide in plants. To NO or not to NO   总被引:27,自引:0,他引:27  
The current knowledge on the occurrence and activity of NO in plants is reviewed. The multiplicity of nitrogen monoxide species and implications for differentiated reactivity are indicated. Possible sources of NO are evaluated, and the evidence for the presence of nitric oxide synthase in plants is summarised. The regulatory role of NO. in plant development and in plant interactions with microorganisms, involving an interplay with other molecules, like ethylene or reactive oxygen species is demonstrated. Finally, some other suggestions on potential functions of NO. in plants are indicated.  相似文献   

12.
Regulation of the endogenous NO pathway by prolonged inhaled NO in rats   总被引:1,自引:0,他引:1  
Nitric oxide(NO) modulates the endogenous NO-cGMP pathway. We determined whetherprolonged inhaled NO downregulates the NO-cGMP pathway, which mayexplain clinically observed rebound pulmonary hypertension. Rats wereplaced in a normoxic (N; 21%O2) or hypoxic (H; 10%O2) environment with and withoutinhaled NO (20 parts/million) for 1 or 3 wk. Subsequently, nitric oxidesynthase (NOS) and soluble guanylate cyclase (GC) activity andendothelial NOS (eNOS) protein levels were measured. Perfusate cGMPlevels and endothelium-dependent and -independent vasodilation weredetermined in isolated lungs. eNOS protein levels and NOS activity werenot altered by inhaled NO in N or H rats. GC activity was decreased by60 ± 10 and 55 ± 11% in N and H rats, respectively, after 1 wkof inhaled NO but was not affected after 3 wk. Inhaled NO had no effecton perfusate cGMP in N lungs. Inhaled NO attenuated the increase incGMP levels caused by 3 wk of H by 57 ± 11%, but there was norebound in cGMP after 24 h of recovery. Endothelium-dependentvasodilation was not altered, and endothelium-independent vasodilationwas not altered (N) or slightly increased (H, 10 ± 3%) byprolonged inhaled NO. In conclusion, inhaled NO did not alter theendogenous NO-cGMP pathway as determined by eNOS protein levels, NOSactivity, or endothelium-dependent vasodilation under N and Hconditions. GC activity was decreased after 1 wk; however, GC activitywas not altered by 3 wk of inhaled NO and endothelium-independentvasodilation was not decreased.

  相似文献   

13.
Exogenous nitric oxide (NO) suppresses endothelium-derived NO production. We were interested in determining whether this is also the case in flow-induced endothelium-derived NO production. If so, then is the mechanism because of intracellular depletion of tetrahydrobiopterin [BH4; a cofactor of NO synthase (NOS)], which results in superoxide production by uncoupled NOS? Isolated canine femoral arteries were perfused with 100 microM S-nitroso-N-acetylpenicillamine (SNAP; an NO donor) and/or 64 microM BH4. Perfusion of SNAP suppressed flow-induced NO production, which was evaluated as a change in the slope of the linear relationship between perfusion rate and NO production rate (P < 0.02 vs. control; n = 7). Subsequent BH4 perfusion returned the slope to the control level. Concomitant perfusion of SNAP and BH4 retained the control-level NO production (n = 7). Concomitant perfusion of SNAP and 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron; 1 mM; a membrane-permeable superoxide scavenger) also retained the control-level NO production (n = 7), whereas perfusion of Tiron after SNAP could not return the NO production to the control level (P < 0.02 vs. control; n = 7). We also found a significant decrease in BH4 concentration in the endothelial cells after SNAP perfusion. In conclusion, these results indicate that exogenous NO suppresses the flow-induced, endothelium-derived NO production by superoxide released from uncoupled NOS because of intracellular BH4 depletion.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号