首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disulfide bonds reportedly stabilize the capsids of several viruses, including papillomavirus, polyomavirus, and simian virus 40, and have been detected in herpes simplex virus (HSV) capsids. In this study, we show that in mature HSV-1 virions, capsid proteins VP5, VP23, VP19C, UL17, and UL25 participate in covalent cross-links, and that these are susceptible to dithiothreitol (DTT). In addition, several tegument proteins were found in high-molecular-weight complexes, including VP22, UL36, and UL37. Cross-linked capsid complexes can be detected in virions isolated in the presence and absence of N-ethylmaleimide (NEM), a chemical that reacts irreversibly with free cysteines to block disulfide formation. Intracellular capsids isolated in the absence of NEM contain disulfide cross-linked species; however, intracellular capsids isolated from cells pretreated with NEM did not. Thus, the free cysteines in intracellular capsids appear to be positioned such that disulfide bond formation can occur readily if they are exposed to an oxidizing environment. These results indicate that disulfide cross-links are normally present in extracellular virions but not in intracellular capsids. Interestingly, intracellular capsids isolated in the presence of NEM are unstable; B and C capsids are converted to a novel form that resembles A capsids, indicating that scaffold and DNA are lost. Furthermore, these capsids also have lost pentons and peripentonal triplexes as visualized by cryoelectron microscopy. These data indicate that capsid stability, and especially the retention of pentons, is regulated by the formation of disulfide bonds in the capsid.  相似文献   

2.
The aim of this study was to produce gene transfer vectors consisting of plasmid DNA packaged into virus-like particles (VLPs) with different cell tropisms. For this purpose, we have fused the N-terminally truncated VP60 capsid protein of the rabbit hemorrhagic disease virus (RHDV) with sequences which are expected to be sufficient to confer DNA packaging and gene transfer properties to the chimeric VLPs. Each of the two putative DNA-binding sequences of major L1 and minor L2 capsid proteins of human papillomavirus type 16 (HPV-16) were fused at the N terminus of the truncated VP60 protein. The two recombinant chimeric proteins expressed in insect cells self-assembled into VLPs similar in size and appearance to authentic RHDV virions. The chimeric proteins had acquired the ability to bind DNA. The two chimeric VLPs were therefore able to package plasmid DNA. However, only the chimeric VLPs containing the DNA packaging signal of the L1 protein were able efficiently to transfer genes into Cos-7 cells at a rate similar to that observed with papillomavirus L1 VLPs. It was possible to transfect only a very limited number of RK13 rabbit cells with the chimeric RHDV capsids containing the L2-binding sequence. The chimeric RHDV capsids containing the L1-binding sequence transfer genes into rabbit and hare cells at a higher rate than do HPV-16 L1 VLPs. However, no gene transfer was observed in human cell lines. The findings of this study demonstrate that the insertion of a DNA packaging sequence into a VLP which is not able to encapsidate DNA transforms this capsid into an artificial virus that could be used as a gene transfer vector. This possibility opens the way to designing new vectors with different cell tropisms by inserting such DNA packaging sequences into the major capsid proteins of other viruses.  相似文献   

3.
DNA-Induced Structural Changes in the Papillomavirus Capsid   总被引:2,自引:0,他引:2       下载免费PDF全文
Human papillomavirus capsid assembly requires intercapsomeric disulfide bonds between molecules of the major capsid protein L1. Virions isolated from naturally occurring lesions have a higher degree of cross-linking than virus-like particles (VLPs), which have been generated in eukaryotic expression systems. Here we show that DNA encapsidation into VLPs leads to increased cross-linking between L1 molecules comparable to that seen in virions. A higher trypsin resistance, indicating a tighter association of capsomeres through DNA interaction, accompanies this structural change.  相似文献   

4.
Hepatitis B virus “e-antigen” (HBeAg) is thought to be a soluble dimeric protein that is associated with chronic infection. It shares 149 residues with the viral capsid protein “core-antigen” (HBcAg), but has an additional 10-residue, hydrophobic, cysteine-containing amino-terminal propeptide whose presence correlates with physical, serological, and immunological differences between the two proteins. In HBcAg dimers, the subunits pair by forming a four-helix bundle stabilized by an intermolecular disulfide bond. The structure of HBeAg is probably similar but, instead, has two intramolecular disulfide bonds involving the propeptide. To compare the proteins directly and thereby clarify the role of the propeptide, we identified mutations and solution conditions that render both proteins as either soluble dimers or assembled capsids. Thermally induced unfolding monitored by circular dichroism, and electrophoresis of oxidized and reduced dimers, showed that the propeptide has a destabilizing effect and that the intramolecular disulfide bond forms preferentially and blocks the formation of the intermolecular disulfide bond that otherwise stabilizes the dimer. The HBeAg capsids are less regular than the HBcAg capsids; nevertheless, cryo-electron microscopy reconstructions confirm that they are constructed of dimers resembling those of HBcAg capsids. In them, a portion of the propeptide is visible near the dimer interface, suggesting that it intercalates there, consistent with the known formation of a disulfide bond between C(− 7) in the propeptide and C61 in the dimer interface. However, this intercalation distorts the dimer into an assembly-reluctant conformation.  相似文献   

5.
Papillomaviruses are a family of nonenveloped DNA tumor viruses. Some sexually transmitted human papillomavirus (HPV) types, including HPV type 16 (HPV16), cause cancer of the uterine cervix. Papillomaviruses encode two capsid proteins, L1 and L2. The major capsid protein, L1, can assemble spontaneously into a 72-pentamer icosahedral structure that closely resembles native virions. Although the minor capsid protein, L2, is not required for capsid formation, it is thought to participate in encapsidation of the viral genome and plays a number of essential roles in the viral infectious entry pathway. The abundance of L2 and its arrangement within the virion remain unclear. To address these questions, we developed methods for serial propagation of infectious HPV16 capsids (pseudoviruses) in cultured human cell lines. Biochemical analysis of capsid preparations produced using various methods showed that up to 72 molecules of L2 can be incorporated per capsid. Cryoelectron microscopy and image reconstruction analysis of purified capsids revealed an icosahedrally ordered L2-specific density beneath the axial lumen of each L1 capsomer. The relatively close proximity of these L2 density buttons to one another raised the possibility of homotypic L2 interactions within assembled virions. The concept that the N and C termini of neighboring L2 molecules can be closely apposed within the capsid was supported using bimolecular fluorescence complementation or "split GFP" technology. This structural information should facilitate investigation of L2 function during the assembly and entry phases of the papillomavirus life cycle.  相似文献   

6.
The human papillomavirus (HPV) capsid is primarily composed of a structural protein denoted L1, which forms both pentameric capsomeres and capsids composed of 72 capsomeres. The L1 protein alone is capable of self-assembly in vivo into capsidlike structures referred to as viruslike particles (VLPs). We have determined conditions for the quantitative disassembly of purified HPV-11 L1 VLPs to the level of capsomeres, demonstrating that disulfide bonds alone are essential to maintaining long-term HPV-11 L1 VLP structure at physiological ionic strength. The ionic strength of the disassembly reaction was also important, as increased NaCl concentrations inhibited disassembly. Conversely, chelation of cations had no effect on disassembly. Quantitative reassembly to a homogeneous population of 55-nm, 150S VLPs was reliably achieved by the re-formation of disulfide linkages following removal of reducing agent at near-neutral pH and moderate NaCl concentration. HPV-11 L1 VLPs could also be dissociated by treatment with carbonate buffer at pH 9.6, but VLPs could not be regenerated following carbonate treatment. When probed with conformationally sensitive and/or neutralizing monoclonal antibodies, both capsomeres generated by disulfide reduction of purified VLPs and reassembled VLPs formed from capsomeres upon removal of reducing agents exhibited epitopes found on the surface of authentic HPV-11 virions. Antisera raised against either purified VLP starting material or reassembled VLPs similarly neutralized infectious HPV-11 virions. The ability to disassemble and reassemble VLPs in vitro and in bulk allows basic features of capsid assembly to be studied and also opens the possibility of packaging selected exogenous compounds within the reassembled VLPs.  相似文献   

7.
Chi JH  Wilson DW 《Journal of virology》2000,74(3):1468-1476
The herpes simplex virus type 1 (HSV-1) capsid shell is composed of four major polypeptides, VP5, VP19c, VP23, and VP26. VP26, a 12-kDa polypeptide, is associated with the tips of the capsid hexons formed by VP5. Mature capsids form upon angularization of the shell of short-lived, fragile spherical precursors termed procapsids. The cold sensitivity and short-lived nature of the procapsid have made its isolation and biochemical analysis difficult, and it remains unclear whether procapsids contain bound VP26 or whether VP26 is recruited following shell angularization. By indirect immunocytochemical analysis of virally expressed VP26 and by direct visualization of a transiently expressed VP26-green fluorescent protein fusion, we show that VP26 fails to specifically localize to intranuclear procapsids accumulated following incubation of the temperature-sensitive HSV mutant tsProt.A under nonpermissive conditions. However, following a downshift to the permissive temperature, which allows procapsid maturation to proceed, VP26 was seen to concentrate at intranuclear sites which also contained epitopes specific to mature, angularized capsids. Like the formation of these epitopes, the association of VP26 with maturing capsids was blocked in a reversible fashion by the depletion of intracellular ATP. We conclude that unlike the other major capsid shell proteins, VP26 is recruited in an ATP-dependent fashion after procapsid maturation begins.  相似文献   

8.
The herpes simplex virus 1 (HSV-1) UL6 portal protein forms a 12-subunit ring structure at a unique capsid vertex which functions as a conduit for the encapsidation of the viral genome. We have demonstrated previously that the leucine zipper region of UL6 is important for intersubunit interactions and stable ring formation (J. K. Nellissery, R. Szczepaniak, C. Lamberti, and S. K. Weller, J. Virol. 81:8868-8877, 2007). We now demonstrate that intersubunit disulfide bonds exist between monomeric subunits and contribute to portal ring formation and/or stability. Intersubunit disulfide bonds were detected in purified portal rings by SDS-PAGE under nonreducing conditions. Furthermore, the treatment of purified portal rings with dithiothreitol (DTT) resulted in the disruption of the rings, suggesting that disulfide bonds confer stability to this complex structure. The UL6 protein contains nine cysteines that were individually mutated to alanine. Two of these mutants, C166A and C254A, failed to complement a UL6 null mutant in a transient complementation assay. Furthermore, viral mutants bearing the C166A and C254A mutations failed to produce infectious progeny and were unable to cleave or package viral DNA. In cells infected with C166A or C254A, B capsids were produced which contained UL6 at reduced levels compared to those seen in wild-type capsids. In addition, C166A and C254A mutant proteins expressed in insect cells infected with recombinant baculovirus failed to form ring structures. Cysteines at positions 166 and 254 thus appear to be required for intersubunit disulfide bond formation. Taken together, these results indicate that disulfide bond formation is required for portal ring formation and/or stability and for the production of procapsids that are capable of encapsidation.  相似文献   

9.
Genetic and biochemical analyses of human papillomavirus type 16 (HPV16) capsids have shown that certain conserved L1 cysteine residues are critical for capsid assembly, integrity, and maturation. Since previous studies utilized HPV capsids produced in monolayer culture-based protein expression systems, the ascribed roles for these cysteine residues were not placed in the temporal context of the natural host environment for HPV, stratifying and differentiating human tissue. Here we extend upon previous observation, that HPV16 capsids mature and become stabilized over time (10-day to 20-day) in a naturally occurring tissue-spanning redox gradient, by identifying temporal roles for individual L1 cysteine residues. Specifically, the C175S substitution severely undermined wild-type titers of the virus within both 10 and 20-day tissue, while C428S, C185S, and C175,185S substitutions severely undermined wild-type titers only within 20-day tissue. All mutations led to 20-day virions that were less stable than wild-type and failed to form L1 multimers via nonreducing SDS-PAGE. Furthermore, Optiprep-fractionated 20-day C428S, C175S, and C175,185S capsids appeared permeable to endonucleases in comparison to wild-type and C185S capsids. Exposure to an oxidizing environment failed to enhance infectious titers of any of the cysteine mutants over time as with wild-type. Introduction of these cys mutants results in failure of the virus to mature.  相似文献   

10.
The crystal structure of the P1/Mahoney poliovirus empty capsid has been determined at 2.9 A resolution. The empty capsids differ from mature virions in that they lack the viral RNA and have yet to undergo a stabilizing maturation cleavage of VP0 to yield the mature capsid proteins VP4 and VP2. The outer surface and the bulk of the protein shell are very similar to those of the mature virion. The major differences between the 2 structures are focused in a network formed by the N-terminal extensions of the capsid proteins on the inner surface of the shell. In the empty capsids, the entire N-terminal extension of VP1, as well as portions corresponding to VP4 and the N-terminal extension of VP2, are disordered, and many stabilizing interactions that are present in the mature virion are missing. In the empty capsid, the VP0 scissile bond is located some 20 A away from the positions in the mature virion of the termini generated by VP0 cleavage. The scissile bond is located on the rim of a trefoil-shaped depression in the inner surface of the shell that is highly reminiscent of an RNA binding site in bean pod mottle virus. The structure suggests plausible (and ultimately testable) models for the initiation of encapsidation, for the RNA-dependent autocatalytic cleavage of VP0, and for the role of the cleavage in establishing the ordered N-terminal network and in generating stable virions.  相似文献   

11.
Vaccinia virus vectors were used to express the major (L1) and minor (L2) capsid proteins of human papillomavirus type 1 (HPV-1) with the vaccinia virus early (p7.5K) or late (pSynth, p11K) promoters. All constructs expressed the appropriate-sized HPV proteins, and both L1 and L2, singly or in combination, localized to the nucleus. Capsids were purified by cesium chloride density gradient centrifugation from nuclei of cells infected with a vaccinia virus-L1 (vac-L1) recombinant or a vac-L1-L2 recombinant but not from vac-L2-infected cells. Electron microscopy showed that the particles were 55 nm in diameter and had icosahedral symmetry. Immunogold-labeled antibodies confirmed the presence of the L1 and L2 proteins in the HPV-1 capsids. Capsids containing L1 alone were fewer and more variable in size and shape than capsids containing the L1 and L2 proteins. The L1-plus-L2 capsids were indistinguishable in appearance from HPV-1 virions obtained from plantar warts. The ability to produce HPV capsids in vitro will be useful in many studies of HPV pathogenicity.  相似文献   

12.
The structural biology of HIV assembly   总被引:6,自引:0,他引:6  
HIV assembly and replication proceed through the formation of morphologically distinct immature and mature viral capsids that are organized by the Gag polyprotein (immature) and by the fully processed CA protein (mature). The Gag polyprotein is composed of three folded polypeptides (MA, CA, and NC) and three smaller peptides (SP1, SP2, and p6) that function together to coordinate membrane binding and Gag-Gag lattice interactions in immature virions. Following budding, HIV maturation is initiated by proteolytic processing of Gag, which induces conformational changes in the CA domain and results in the assembly of the distinctive conical capsid. Retroviral capsids are organized following the principles of fullerene cones, and the hexagonal CA lattice is stabilized by three distinct interfaces. Recently identified inhibitors of viral maturation act by disrupting the final stage of Gag processing, or by inhibiting the formation of a critical intermolecular CA-CA interface in the mature capsid. Following release into a new host cell, the capsid disassembles and host cell factors can potently restrict this stage of retroviral replication. Here, we review the structures of immature and mature HIV virions, focusing on recent studies that have defined the global organization of the immature Gag lattice, identified sites likely to undergo conformational changes during maturation, revealed the molecular structure of the mature capsid lattice, demonstrated that capsid architectures are conserved, identified the first capsid assembly inhibitors, and begun to uncover the remarkable biology of the mature capsid.  相似文献   

13.
A potential barrier to the development of genetically targeted adenovirus (Ad) vectors for cell-specific delivery of gene therapeutics lies in the fact that several types of targeting protein ligands require posttranslational modifications, such as the formation of disulfide bonds, which are not available to Ad capsid proteins due to their nuclear localization during assembly of the virion. To overcome this problem, we developed a new targeting strategy, which combines genetic modifications of the Ad capsid with a protein bridge approach, resulting in a vector-ligand targeting complex. The components of the complex associate by virtue of genetic modifications to both the Ad capsid and the targeting ligand. One component of this mechanism of association, the Fc-binding domain of Staphylococcus aureus protein A, is genetically incorporated into the Ad fiber protein. The ligand is comprised of a targeting component fused with the Fc domain of immunoglobulin, which serves as a docking moiety to bind to these genetically modified fibers during the formation of the Ad-ligand complex. The modular design of the ligand solves the problem of structural and biosynthetic compatibility with the Ad and thus facilitates targeting of the vector to a variety of cellular receptors. Our study shows that targeting ligands incorporating the Fc domain and either an anti-CD40 single-chain antibody or CD40L form stable complexes with protein A-modified Ad vectors, resulting in significant augmentation of gene delivery to CD40-positive target cells. Since this gene transfer is independent of the expression of the native Ad5 receptor by the target cells, this strategy results in the derivation of truly targeted Ad vectors suitable for tissue-specific gene therapy.  相似文献   

14.
The capsid proteins of papillomavirus self-assemble to form empty capsids or virus-like particles that appear quite similar to naturally occurring virions by conventional electron microscopy. To characterize such virus-like particles more fully, cryoelectron microscopy and image analysis techniques were used to generate three-dimensional reconstructions of capsids produced by vaccinia virus recombinants (V capsids) that expressed human papillomavirus type 1 L1 protein only or both L1 and L2 proteins. All V capsids had 72 pentameric capsomers arranged on a T = 7 icosahedral lattice. Each particle (approximately 60 nm in diameter) consisted of an approximately 2-nm-thick shell of protein with a radius of 22 nm with capsomers that extend approximately 6 nm from the shell. At a resolution of 3.5 nm, both V capsid structures appear identical to the capsid structure of native human papillomavirus type 1 (T. S. Baker, W. W. Newcomb, N. H. Olson, L. M. Cowsert, C. Olson, and J. C. Brown, Biophys. J. 60:1445-1456, 1991), thus implying that expressed and native capsids are structurally equivalent.  相似文献   

15.
Atomic model of the papillomavirus capsid   总被引:15,自引:0,他引:15  
Modis Y  Trus BL  Harrison SC 《The EMBO journal》2002,21(18):4754-4762
Papillomaviruses propagate in differentiating skin cells, and certain types are responsible for the onset of cervical cancer. We have combined image reconstructions from electron cryomicroscopy (cryoEM) of bovine papillomavirus at 9 A resolution with coordinates from the crystal structure of small virus-like particles of the human papillomavirus type 16 L1 protein to generate an atomic model of the virion. The overall fit of the L1 model into the cryoEM map is excellent, but residues 402-446 in the 'C-terminal arm' must be rebuilt. We propose a detailed model for the structure of this arm, based on two constraints: the presence of an intermolecular disulfide bond linking residues 175 and 428, and the clear identification of a feature in the image reconstruction corresponding to an alpha-helix near the C-terminus of L1. We have confirmed the presence of the disulfide bond by mass spectrometry. Our 'invading arm' model shows that papilloma- and polyomaviruses have a conserved capsid architecture. Most of the rebuilt C-terminal arm is exposed on the viral surface; it is likely to have a role in infection and in immunogenicity.  相似文献   

16.
Viral nucleocapsids compartmentalize and protect viral genomes during assembly while they mediate targeted genome release during viral infection. This dual role of the capsid in the viral life cycle must be tightly regulated to ensure efficient virus spread. Here, we used the duck hepatitis B virus (DHBV) infection model to analyze the effects of capsid phosphorylation and hydrogen bond formation. The potential key phosphorylation site at serine 245 within the core protein, the building block of DHBV capsids, was substituted by alanine (S245A), aspartic acid (S245D) and asparagine (S245N), respectively. Mutant capsids were analyzed for replication competence, stability, nuclear transport, and infectivity. All mutants formed DHBV DNA-containing nucleocapsids. Wild-type and S245N but not S245A and S245D fully protected capsid-associated mature viral DNA from nuclease action. A negative ionic charge as contributed by phosphorylated serine or aspartic acid-supported nuclear localization of the viral capsid and generation of nuclear superhelical DNA. Finally, wild-type and S245D but not S245N virions were infectious in primary duck hepatocytes. These results suggest that hydrogen bonds formed by non-phosphorylated serine 245 stabilize the quarterny structure of DHBV nucleocapsids during viral assembly, while serine phosphorylation plays an important role in nuclear targeting and DNA release from capsids during viral infection.  相似文献   

17.
Elastase of Pseudomonas aeruginosa is synthesized as a preproenzyme. After propeptide-mediated folding in the periplasm, the proenzyme is autoproteolytically processed, prior to translocation of both the mature enzyme and the propeptide across the outer membrane. The formation of the two disulfide bonds present in the mature enzyme was examined by studying the expression of the wild-type enzyme and of alanine for cysteine mutant derivatives in the authentic host and in dsb mutants of Escherichia coli. It appeared that the two disulfide bonds are formed successively. First, DsbA catalyzes the formation of the disulfide bond between Cys-270 and Cys-297 within the proenzyme. This step is essential for the subsequent autoproteolytic processing to occur. The second disulfide bond between Cys-30 and Cys-57 is formed more slowly and appears to be formed after processing of the proenzyme, and its formation is catalyzed by DsbA as well. This second disulfide bond appeared to be required for the full proteolytic activity of the enzyme and contributes to its stability.  相似文献   

18.
Cell-free assembly of the herpes simplex virus capsid.   总被引:18,自引:18,他引:0       下载免费PDF全文
Herpes simplex virus type 1 (HSV-1) capsids were found to assemble spontaneously in a cell-free system consisting of extracts prepared from insect cells that had been infected with recombinant baculoviruses coding for HSV-1 capsid proteins. The capsids formed in this system resembled native HSV-1 capsids in morphology as judged by electron microscopy, in sedimentation rate on sucrose density gradients, in protein composition, and in their ability to react with antibodies specific for the HSV-1 major capsid protein, VP5. Optimal capsid assembly required the presence of extracts containing capsid proteins VP5, VP19, VP23, VP22a, and the maturational protease (product of the UL26 gene). Assembly was more efficient at 27 degrees C than at 4 degrees C. The availability of a cell-free assay for HSV-1 capsid formation will be of help in identifying the morphogenetic steps that occur during capsid assembly in vivo and in evaluating candidate antiherpes therapeutics directed at capsid assembly.  相似文献   

19.
In order to analyze bonding contacts that stabilize the virion or promote capsid assembly, bovine papillomavirus (BPV) virions were subjected to buffer conditions known to disrupt polyomavirus virions. At physiologic ionic strength, incubation with dithiothreitol (DTT), EGTA, or DTT plus EGTA did not disrupt BPV virions as determined by electron microscopy. However, incubation of virions with DTT rendered the BPV L1 protein susceptible to trypsin cleavage at its carboxy terminus and rendered the genome susceptible to digestion with DNase I. When DTT-treated BPV virions were analyzed by analytical ultracentrifugation, they sedimented at 230S compared with 273S for untreated virions, suggesting a capsid shell expansion. Incubation with EGTA had no effect on trypsin or DNase I sensitivity and only a small effect upon the virion S value. A single cysteine residue conserved among BPV and human papillomavirus (HPV) L1 proteins resides within the trypsin-sensitive carboxy terminus of L1, which is required for capsid assembly. A recombinant HPV type 11 L1 protein, which was purified after expression in Escherichia coli and which has a Cys-to-Gly change at this position (Cys424), formed pentamers; however, unlike the wild-type protein, these mutant pentamers could no longer assemble in vitro into capsid-like structures. These results indicate an important role for interpentamer disulfide bonds in papillomavirus capsid assembly and disassembly and suggest a mechanism of virus uncoating in the reducing environment of the cytoplasm.Papovaviruses are small nonenveloped DNA viruses which include murine polyomavirus, simian virus 40 (SV40), and the papillomaviruses. These viruses have a common capsid structure composed of 72 capsomeric subunits arranged in a T=7d icosahedral lattice. For polyomaviruses, the capsomeres are pentamers of the VP1 structural protein, while for the papillomaviruses the capsomeres are pentamers of the L1 protein (1, 15). Although atomic-resolution structures for murine polyomavirus and SV40 (14, 24, 25) and high-resolution cryoelectron microscopic structures for several papillomaviruses (1, 2, 4, 26) are now known, much less is known about the biology of virion assembly and disassembly.For polyomaviruses, virion disruption experiments initially indicated the importance of disulfide bonds and bound calcium in capsid stability (57, 28). In agreement with these observations, the in vitro self-assembly of the recombinant polyomavirus VP1 protein supported the importance of calcium and ionic bonds in the formation of capsids (19, 20). Most recently, crystallographic data have explicitly identified the calcium binding sites, disulfide-bonded residues, and other interactions which link capsomeres in virions (14, 24, 25). A crystallographic structure is not yet available for any papillomavirus. Virus-like particles (VLPs) generated by expressing the L1 protein in insect cells with recombinant baculovirus vectors (12, 17, 27) or in mammalian cells with vaccinia virus vectors (11, 29) have been useful for both cryoelectron microscopic structural analysis and to assess the assembly and disassembly properties for L1-containing capsids. For example, Sapp et al. (21) determined that human papillomavirus type 33 (HPV33) VLPs were disassembled by dithiothreitol (DTT) treatment, suggesting disulfide bonds between a subset of capsomeres in agreement with the observations of Doorbar and Gallimore with native HPV1 virions (8).The recombinant expression of HPV11 L1 in Escherichia coli (13) now permits a similar analysis of capsid assembly for papillomaviruses as previously carried out for polyomaviruses (19, 20, 23). In order to assess their biological significance, in vitro assembly conditions for the recombinant L1 protein require correlation with conditions that affect the stability of native papillomavirus virions. However, although VLP disruption experiments have been performed, a systematic analysis of papillomavirus virion disruption similar to that carried out for polyomavirus has not been described. Therefore, we have used purified bovine papillomavirus type 1 (BPV) virions to test conditions affecting virion stability. Based on these results, disulfide bonds were found to be critical for virion integrity, and their reduction led to a substantial conformational change in the capsid which may be a precursor state for disassembly in vivo.  相似文献   

20.
We previously reported that empty capsids of B19 parvovirus were formed by the major capsid protein (VP2) alone expressed in a baculovirus system, but the minor capsid protein (VP1), longer by 227 amino acids, alone did not form empty capsids. We report here further investigations of the constraints on capsid formation by truncated versions of VP1. Studies were performed with recombinant baculoviruses expressed in Sf9 cells. Severely shortened VP1, extended beyond the VP2 core sequence by about 70 amino acids of the unique region, formed capsids normal in appearance; longer versions of VP1 also formed capsids but did so progressively less efficiently and produced capsids of more markedly dysmorphic appearance as the VP1-unique region was lengthened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号