首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transcriptional regulation of adipogenesis by KLF4   总被引:6,自引:0,他引:6  
  相似文献   

2.
3.
4.
5.
6.
7.
T Tanaka  N Yoshida  T Kishimoto    S Akira 《The EMBO journal》1997,16(24):7432-7443
To investigate the role of C/EBP family members during adipocyte differentiation in vivo, we have generated mice lacking the C/EBPbeta and/or C/EBPdelta by gene targeting. Approximately 85% of C/EBPbeta(-/-).delta(-/-) mice died at the early neonatal stage. By 20 h after birth, brown adipose tissue of the interscapular region in wild-type mice contained many lipid droplets, whereas C/EBPbeta(-/-).delta(-/-) mice did not accumulate droplets. In addition, the epidydimal fat pad weight of surviving adult C/EBPbeta(-/-).delta(-/-) mice was significantly reduced compared with wild-type mice. However, these adipose tissues in C/EBPbeta(-/-).delta(-/-) mice exhibit normal expression of C/EBPalpha and PPARgamma, despite impaired adipogenesis. These results demonstrated that C/EBPbeta and C/EBPdelta have a synergistic role in terminal adipocyte differentiation in vivo. The induction of C/EBPalpha and PPARgamma does not always require C/EBPbeta and C/EBPdelta, but co-expression of C/EBPalpha and PPARgamma is not sufficient for complete adipocyte differentiation in the absence of C/EBPbeta and C/EBPdelta.  相似文献   

8.
9.
10.
Mitogen-activated protein kinase pathways are implicated in the regulation of cell differentiation, although their precise roles in many differentiation programs remain elusive. The Raf/MEK/extracellular signal-regulated kinase (ERK) kinase cascade has been proposed to both promote and inhibit adipogenesis. Here, we titrate expression of the molecular scaffold kinase suppressor of Ras 1 (KSR1) to regulate signaling through the Raf/MEK/ERK/p90 ribosomal S6 kinase (RSK) kinase cascade and show how it determines adipogenic potential. Deletion of KSR1 prevents adipogenesis in vitro, which can be rescued by introduction of low levels of KSR1. Appropriate levels of KSR1 coordinate ERK and RSK activation with C/EBPbeta synthesis leading to the phosphorylation and stabilization of C/EBPbeta at the precise moment it is required within the adipogenic program. Elevated levels of KSR1 expression, previously shown to enhance cell proliferation, promote high, sustained ERK activation that phosphorylates and inhibits peroxisome proliferator-activated receptor gamma, inhibiting adipogenesis. Titration of KSR1 expression reveals how a molecular scaffold can modulate the intensity and duration of signaling emanating from a single pathway to dictate cell fate.  相似文献   

11.
The proximal promoter of the C/EBPbeta gene possesses dual cis regulatory elements (TGA1 and TGA2), both of which contain core CREB binding sites. Comparison of the activities of C/EBPbeta promoter-reporter genes with 5'-truncations or site-directed mutations in the TGA elements showed that both are required for maximal promoter function. Electrophoretic mobility shift and chromatin immunoprecipitation (ChIP) analyses with antibodies specific to CREB and ATF1 showed that these CREB family members associate with the proximal promoter both in vitro and ex vivo. Immunoblotting and ChIP analysis revealed that other CREB family members, CREM and ATF1, are up-regulated and associate with the proximal C/EBPbeta promoter in mouse embryonic fibroblasts (MEFs) from CREB(-/-) mice. ChIP analysis of wild-type MEFs and 3T3-L1 preadipocytes revealed that interaction of phospho-CREB, the active form of CREB, with the C/EBPbeta gene promoter occurs only after induction of differentiation of 3T3-L1 preadipocytes and MEFs. Consistent with the interaction of CREB and ATF1 at the TGA regulatory elements, expression of constitutively active CREB strongly activated C/EBPbeta promoter-reporter genes, induced expression of endogenous C/EBPbeta, and caused adipogenesis in the absence of the hormonal inducers normally required. Conversely, expression of a dominant-negative CREB blocked promoter-reporter activity, expression of C/EBPbeta, and adipogenesis. When subjected to the standard adipocyte differentiation protocol, wild-type MEFs differentiate into adipocytes at high frequency, whereas CREB(-/-) MEFs exhibit greatly reduced expression of C/EBPbeta and differentiation. The low level of expression of C/EBPbeta and differentiation in CREB(-/-) MEFs appears to be due to up-regulation of other CREB protein family members, i.e. ATF1 and CREM.  相似文献   

12.
13.
14.
15.
16.
CCAAT/enhancer-binding protein beta (C/EBPbeta) plays a key role in initiation of adipogenesis in adipose tissue and gluconeogenesis in liver; however, the role of C/EBPbeta in hepatic lipogenesis remains undefined. Here we show that C/EBPbeta inactivation in Lepr(db/db) mice attenuates obesity, fatty liver, and diabetes. In addition to impaired adipogenesis, livers from C/EBPbeta(-/-) x Lepr(db/db) mice had dramatically decreased triglyceride content and reduced lipogenic enzyme activity. C/EBPbeta deletion in Lepr(db/db) mice down-regulated peroxisome proliferator-activated receptor gamma2 (PPARgamma2) and stearoyl-CoA desaturase-1 and up-regulated PPARalpha independent of SREBP1c. Conversely, C/EBPbeta overexpression in wild-type mice increased PPARgamma2 and stearoyl-CoA desaturase-1 mRNA and hepatic triglyceride content. In FAO cells, overexpression of the liver inhibiting form of C/EBPbeta or C/EBPbeta RNA interference attenuated palmitate-induced triglyceride accumulation and reduced PPARgamma2 and triglyceride levels in the liver in vivo. Leptin and the anti-diabetic drug metformin acutely down-regulated C/EBPbeta expression in hepatocytes, whereas fatty acids up-regulate C/EBPbeta expression. These data provide novel evidence linking C/EBPbeta expression to lipogenesis and energy balance with important implications for the treatment of obesity and fatty liver disease.  相似文献   

17.
18.
19.
The differentiation of 3T3 preadipocytes into adipocytes is accompanied by a transient induction of C/EBPbeta and C/EBPdelta expression in response to treatment of the cells with methylisobutylxanthine (MIX) and dexamethasone (DEX), respectively. In this report, we demonstrate that peroxisome proliferator-activated receptor gamma (PPARgamma) expression in 3T3-L1 preadipocytes is induced by MIX and DEX, suggesting that C/EBPbeta and C/EBPdelta may be involved in this process. Using a tetracycline-responsive expression system, we have recently shown that the conditional ectopic expression of C/EBPbeta in NIH 3T3 fibroblasts (beta2 cells) in the presence of DEX activates the synthesis of peroxisome PPARgamma mRNA. Subsequent exposure of these cells to PPAR activators stimulates their conversion into adipocytes; however, neither the expression of C/EBPbeta nor exposure to DEX alone is capable of inducing PPARgamma expression in the beta2 cell line. We find that unlike the case for 3T3 preadipocytes, C/EBPdelta is not induced by DEX in these 3T3 fibroblasts and therefore is not relaying the effect of this glucocorticoid to the PPARgamma gene. To define the role of glucocorticoids in regulating PPARgamma expression and the possible involvement of C/EBPdelta, we have established an additional set of NIH 3T3 cell lines expressing either C/EBPdelta alone (delta23 cells) or C/EBPdelta and C/EBPbeta together (beta/delta39 cells), using the tetracycline-responsive system. Culture of these cells in tetracycline-deficient medium containing DEX, MIX, insulin, and fetal bovine serum shows that the beta/delta39 cells express PPARgamma and aP2 mRNAs at levels that are almost equivalent to those observed in fully differentiated 3T3-L1 adipocytes. These levels are approximately threefold higher than their levels of expression in the beta2 cells. Despite the fact that these beta/delta39 cells produce abundant amounts of C/EBPbeta and C/EBPdelta (in the absence of tetracycline), they still require glucocorticoids to attain maximum expression of PPARgamma mRNA. Furthermore, the induction of PPARgamma mRNA by exposure of these cells to DEX occurs in the absence of ongoing protein synthesis. The delta23 cells, on the other hand, are not capable of activating PPARgamma gene expression when exposed to the same adipogenic inducers. Finally, attenuation of ectopic C/EBPbeta production at various stages during the differentiation process results in a concomitant inhibition of PPARgamma and the adipogenic program. These data strongly suggest that the induction of PPARgamma gene expression in multipotential mesenchymal stem cells (NIH 3T3 fibroblasts) is dependent on elevated levels of C/EBPbeta throughout the differentiation process, as well as an initial exposure to glucocorticoids. C/EBPdelta may function by synergizing with C/EBPbeta to enhance the level of PPARgamma expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号