首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NF-kappaB as a therapeutic target in cancer   总被引:21,自引:0,他引:21  
  相似文献   

2.
3.
The proteasome plays a pivotal role in the turnover of regulatory transduction proteins induced by activated cell membrane growth factor receptors. The epidermal growth factor receptor (EGFR) pathway is crucial in the development and progression of human epithelial cancers. Proteasome inhibition may sensitize human cancer cell lines to EGFR inhibitors. We investigated the growth inhibitory and pro-apoptotic effects of the proteasome inhibitor bortezomib in combination with anti-EGFR drugs, such as gefitinib, vandetanib, and cetuximab in EGFR-expressing human cancer cell lines. Bortezomib determined dose-dependent growth inhibition in a nine cancer cell line panel (IC(50) values, range 6-42 nM). A significant synergistic growth inhibitory effect was observed with the combination of bortezomib and each EGFR inhibitor in all cell lines (combination index, CI, range 0.10-0.55), which was accompanied by a significant induction in apoptosis by the combined treatment with bortezomib, cetuximab and vandetanib. In HCT-116 colon cancer and A549 lung adenocarcinoma cells, bortezomib plus EGFR inhibitor treatment induced a more effective inhibition of EGFR-activated down-stream signals, including a marked suppression in activated, phosphorylated Akt (P-Akt). In contrast, overexpression of a constitutively active P-Akt protected A549 cells by cell growth inhibition and apoptosis following treatment with bortezomib and EGFR inhibitors. The combined treatment with bortezomib and EGFR inhibitors has a synergistic growth inhibitory and pro-apoptotic activity in different human cancer cells which possess a functional EGFR-dependent autocrine growth pathway through to a more efficient and sustained inhibition of Akt.  相似文献   

4.
5.
Survivin is a member of the family of apoptosis inhibitory proteins with increased expression level in most cancerous tissues. Evidence shows that survivin plays regulatory roles in proliferation or survival of normal adult cells, principally vascular endothelial cells, T lymphocytes, primitive hematopoietic cells, and polymorphonuclear neutrophils. Survivin antiapoptotic role is, directly and indirectly, related to caspase proteins and shows its role in cell division through the chromosomal passenger complex. Survivin contains many genetic polymorphisms that the role of some variations has been proven in several cancers. The −31G/C polymorphism is one of the most important survivin mutations which is located in the promoter region on a CDE/CHR motif. This polymorphism can upregulate the survivin messenger RNA. In addition, its allele C can increase the risk of cancers in 1.27-fold than allele G. Considering the fundamental role of survivin in different cancers, this protein could be considered as a new therapeutic target in cancer treatment. For this purpose, various strategies have been designed including the prevention of survivin expression through inhibition of mRNA translation using antagonistic molecules, inhibition of survivin gene function through small inhibitory molecules, gene therapy, and immunotherapy. In this study, we describe the structure, played roles in physiological and pathological states and genetic polymorphisms of survivin. Finally, the role of survivin as a potential target in cancer therapy given challenges ahead has been discussed.  相似文献   

6.
药物治疗浓度的雌激素对卵巢癌3AO细胞生长的影响   总被引:1,自引:0,他引:1  
在过去的20年里,人们对于雌激素在不同组织、器官中发挥不同功能的分子机制进行了深入的研究,并取得了非常快的进展。最近的研究表明,雌激素能够抑制包括卵巢癌在内的多种肿瘤细胞的生长。卵巢是女性雌激素的主要来源,多种卵巢细胞表达雌激素受体,其中包括90%以上的卵巢癌起源的卵巢表面上皮细胞。雌激素诱导卵巢癌细胞凋亡的研究非常有实验及临床价值,雌激素调控的凋亡相关的特异性基因的发现对于揭示卵巢癌的发生发展以及针对卵巢癌特异性治疗的研究将会提供巨大的帮助。以人卵巢癌3AO细胞为模型,探讨了药物治疗浓度的雌激素对卵巢癌细胞的凋亡诱导作用以及其可能机制。首先用MTT检测方法观察了雌二醇及其受体拮抗剂ICI 182780对3AO细胞生长的影响。研究发现,高于0.1pmol/L浓度的雌二醇能够抑制3AO细胞的生长,其中5pmol/L浓度的雌二醇处理3AO细胞72h后,对3AO细胞的抑制率达到70%。雌激素受体的拮抗剂ICI 182780不但不能阻断雌激素的效应,它本身也能抑制3AO细胞的生长,并且与雌激素有协同效应,并且经流式细胞术证实雌激素及其受体拮抗剂引起的3AO细胞的死亡为凋亡。雌激素对生长的调控是细胞类型特异性的,其机制可能与细胞内雌激素受体不同亚型的表达有关。细胞内雌激素受体β亚型的表达利于细胞凋亡的发生,细胞内雌激素受体α亚型的表达则会保护细胞免于凋亡的发生。在对雌激素诱导的凋亡发生机制的探讨过程中,我们发现3AO细胞只表达雌激素受体β亚型,而不表达雌激素受体α亚型,并且与α亚型相比,β亚型的表达明显降低,这可以解释为何需要高浓度的雌激素才能够诱导3AO细胞凋亡。我们又观察了大分子BSA标记的雌激素对3AO细胞生长的影响,结果发现这种不能通过细胞膜的雌激素失去了对3AO细胞生长的抑制作用,从而排除了雌激素的膜效应。近来的研究表明,MAPK信号通路在调控细胞的生长过程中发挥了重要的作用,并且参与了雌激素调控细胞生长的过程。接下来我们观察了MAPK信号通路在雌激素诱导3AO细胞生长中的作用。研究发现,p38/MAPK激酶的抑制剂SB203580部分的阻断了雌激素的生长抑制效应,而JNK/MAPK激酶的抑制剂SP600125则能促进雌激素的效应,提示MAPK信号通路参与了雌激素的这种效应。  相似文献   

7.
During the past two decades, the knowledge of the molecular mechanism by which estrogens exert various functions in different tissues and organs has evolved rapidly. Recent reports demonstrated that estrogen could decrease the cell growth in several types of cancer cells, including ovarian cancer cells. Though experiments explored the possible mechanism of the inhibitory effect, the exact mechanism is responsible for the effect, which remains unclear. The ovary is the main source of the estrogen, estrogen receptor is expressed in several ovarian cell types, including ovarian surface epithelium, the tissue of origin of approximately 90% of the ovarian cancers. It was of great interest to analyze the effects of 17β-estradiol (E2) on apoptosis of ovarian cancer cells, and the identification of E2-regulated specific genes involved in epithelial proliferation apoptosis, thus may be a clue for understanding the progression of ovarian cancer and for the design of new target therapies. To elucidate the mechanism involved, effects of pharmacological concentrations of estrogen were studied in human ovarian cancer cell line 3AO cells. Inhibition of cellular growth of 3AO cells was seen with E2 at concentrations higher than 0.1 μmol/L. The estrogen receptor inhibitor ICI 182780 cannot block the inhibitory effect of E2. It was surprising to find that ICI 182780 itself can inhibit the growth of 3AO cells, and had a collaborative effect with E2. The decreased cell growth induced by E2 was shown to be apoptosis as analyzed by flow cytometry. ERβ was detected in the 3AO ovarian cancer cell line but not ERα. The expression of ERβ was weak, which may partially explain why high but not low dose of E2 needed to induce the apoptosis of 3AO cells. We also observed that membrane impermeable E2, E2-BSA have lost growth inhibitory on 3AO cells, which excluded the membrane effect of E2 as previously reported by many investigators. The p38 kinase inhibitor, SB203580 were partially protected 3AO cells against growth inhibition by E2, while inhibitor of JNK, SP600125 enhanced cell death induced by E2. These results showed that MAPK is implicated in cellular processes involving apoptosis.  相似文献   

8.
Growth regulatory peptide production by human breast carcinoma cells   总被引:2,自引:0,他引:2  
The mechanisms by which human breast cancers regulate their own growth have been studied by us in an in vitro model system. We showed that specific growth factors (IGF-I, TGF alpha, PDGF) are secreted by human breast cancer cells. A variety of experiments suggest that they are involved in tumor growth and progression. These activities are induced by estradiol in hormone-dependent breast cancer cells and secreted constitutively by estrogen-independent cells. Concentrates of conditioned medium derived from breast cancer cells can induce the growth of hormone-dependent cells in vivo in athymic nude mice. Hormone-dependent breast cancer cells also secrete TGF beta. TGF beta is growth inhibitory. Growth inhibitors such as antiestrogens or glucocorticoids increase TGF beta secretion. An antiestrogen-resistant mutant of MCF-7 cells does not secrete TGF beta when treated with antiestrogen, but is growth inhibited when treated with exogenous TGF beta. Thus, TGF beta functions as a negative autocrine growth regulator and is probably responsible for some of the growth inhibitory effects of antiestrogens.  相似文献   

9.
We have examined specific genes whose expression is altered during apoptosis induced by prostaglandin (PG)A2 and Delta12-PGJ2 in human hepatocellular carcinoma Hep3B cells. Using mRNA differential display, we have identified two genes: one is specifically up-regulated and encodes for human Sox-4 (Sry-HMG box gene) and the other is significantly down-regulated and is the human homolog of yeast Ssf-1, a novel splicing factor. Northern blot analysis confirmed their differential expressions. Interestingly, Sox-4 was highly expressed in subcutaneous tumors grown in nude mice as a xenograft from Hep3B cells. These results suggest that the expression of Sox-4 may be related to the apoptosis pathway leading to cell death as well as to tumorigenesis, and that Ssf-1 gene may serve as a negative regulator of PGA2/Delta12-PGJ2-mediated Hep3B cell apoptosis.  相似文献   

10.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent that can selectively kill cancer cells. Nonetheless, many cancers are resistant to TRAIL, and the molecular mechanisms of TRAIL resistance in cancer, particularly pancreatic cancer, are still unclear. In this study, we tested the hypothesis that quercetin, a flavonoid, induces apoptosis in TRAIL-resistant pancreatic cancer cells. Although quercetin alone had no significant cytotoxic effect, when combined with TRAIL, it promoted TRAIL-induced apoptosis that required mitochondrial outer membrane permeabilization. A BH3-only protein BID knockdown dramatically attenuated TRAIL/quercetin-induced apoptosis. The expression levels of cellular FLICE-like inhibitory protein (cFLIP) decreased in a dose-dependent manner in the presence of quercetin, and overexpression of cFLIP was able to robustly rescue pancreatic cancer cells from TRAIL/quercetin-induced apoptosis. Additionally, quercetin activated c-Jun N-terminal kinase (JNK) in a dose-dependent manner, which in turn induced the proteasomal degradation of cFLIP, and JNK activation also sensitized pancreatic cancer cells to TRAIL-induced apoptosis. Thus, our results suggest that quercetin induces TRAIL-induced apoptosis via JNK activation-mediated cFLIP turnover.  相似文献   

11.
Breast cancer remains the major cause of cancer-related deaths in women world-wide. The heterogeneity of breast cancer has further complicated the progress of target-based therapies. Triple negative breast cancers, lacking estrogen receptor, progesterone receptor and the Her-2/neu (ErbB2), represent a highly aggressive breast cancer subtype, that are difficult to treat. Pleiotropic agents, such as those found in nature, can target receptor-positive as well as receptor-negative cancer cells, suggesting that such agents could have significant impact in breast cancer prevention and/or therapy. Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) is one such agent which has anti-tumor activity against several cancers. However, its mechanism of action against breast cancer is not clearly understood. We hypothesized that plumbagin may act as an effective agent against breast cancer especially triple negative breast cancer. We tested our hypothesis using ER-positive MCF-7 and ER-negative MDA-MB-231 (triple negative) breast cancer cells, and we found that plumbagin significantly inhibits the growth of breast cancer cells with no effect on normal breast epithelial cells. We also found that plumbagin induces apoptosis with concomitant inactivation of Bcl-2 and the DNA binding activity of NF-kappaB. Bcl-2 over-expression resulted in attenuation of plumbagin-induced effects, suggesting that the inhibition of cell growth and induction of apoptosis by plumbagin is in part due to inactivation of NF-kappaB/Bcl-2 pathway. To our knowledge, this is the first report, showing mechanistic and cancer cell specific apoptosis-inducing effects of plumbagin in breast cancer cells, suggesting the potential role of plumbagin in the prevention and/or treatment of breast cancer.  相似文献   

12.
Lung cancer is a leading cause of cancer-related deaths worldwide, with less than a 5-year survival rate for both men and women. Epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma oncogene (KRAS) signaling pathways play a critical role in the proliferation and progression of various cancers, including lung cancer. Genetic studies have shown that amplification, over-expression, or mutation of EGFR is an early and major molecular event in many human tumors. KRAS mutation is a negative factor in various cancer, including non-small-cell lung cancer, and complicates therapeutic approaches with adjuvant chemotherapy and anti-EGFR directed therapies. This article is dedicated to evaluating the synergistic effect of a novel EGFR inhibitor AZD8931 and KRAS small interfering RNA (siRNA) on the proliferation and apoptosis of lung adenocarcinoma cancer cells. A549 lung cancer cells were treated with KRAS siRNA and the EGFR inhibitor alone or in combination. The cytotoxic effects of KRAS siRNA and te EGFR inhibitor were determined usingMTT assay, and induction of apoptosis was determined by FACS analysis. Suppression of KRAS, Her-2, and EGFR expression by treatments was measured by qRT-PCR and western blotting. KRAS siRNA and the EGFR inhibitor significantly reduced the proliferation of A549 cells as well as KRAS and EGFR mRNA levels 24 hr after treatment. The results also indicated that the silencing of KRAS and EGFR has synergistic effects on the induction of apoptosis on the A549 cells. These results indicated that KRAS and EGFR might play important roles in the progression of lung cancer and could be potential therapeutic targets for treatment of lung cancer.  相似文献   

13.
Developing drugs that can effectively block STAT3 activation may serve as one of the most promising strategy for cancer treatment. Currently, there is no putative STAT3 inhibitor that can be safely and effectively used in clinic. In the present study, we investigated the potential of dihydroartemisinin (DHA) as a putative STAT3 inhibitor and its antitumor activities in head and neck squamous cell carcinoma (HNSCC). The inhibitory effects of DHA on STAT3 activation along with its underlying mechanisms were studied in HNSCC cells. The antitumor effects of DHA against HNSCC cells were explored both in vitro and in vivo. An investigation on cooperative effects of DHA with cisplatin in killing HNSCC cells was also implemented. DHA exhibited remarkable and specific inhibitory effects on STAT3 activation via selectively blocking Jak2/STAT3 signaling. Besides, DHA significantly inhibited HNSCC growth both in vitro and in vivo possibly through induction of apoptosis and attenuation of cell migration. DHA also synergized with cisplatin in tumor inhibition in HNSCC cells. Our findings demonstrate that DHA is a putative STAT3 inhibitor that may represent a new and effective drug for cancer treatment and therapeutic sensitization in HNSCC patients.  相似文献   

14.
Breast cancer is a heterogeneous disease that varies in its biology and response to therapy. A foremost threat to patients is tumor invasion and metastasis, with the greatest risk among patients diagnosed with triple‐negative and/or basal‐like breast cancers. A greater understanding of the molecular mechanisms underlying cancer cell spreading is needed as 90% of cancer‐associated deaths result from metastasis. We previously demonstrated that the Tamoxifen‐selected, MCF‐7 derivative, TMX2‐28, lacks expression of estrogen receptor α (ERα) and is highly invasive, yet maintains an epithelial morphology. The present study was designed to further characterize TMX2‐28 cells and elucidate their invasion mechanism. We found that TMX2‐28 cells do not express human epidermal growth factor receptor 2 (HER2) and progesterone receptor (PR), in addition to lacking ERα, making the cells triple‐negative. We then determined that TMX2‐28 cells lack expression of active matrix metalloproteinases (MMPs)‐1, MMP‐2, MMP‐9, and other genes involved in epithelial–mesenchymal transition (EMT) suggesting that TMX2‐28 may not utilize mesenchymal invasion. In contrast, TMX2‐28 cells have high expression of Ras Homolog Gene Family Member, A (RhoA), a protein known to play a critical role in amoeboid invasion. Blocking RhoA activity with the RhoA pathway specific inhibitor H‐1152, or a RhoA specific siRNA, resulted in inhibition of invasive behavior. Collectively, these results suggest that TMX2‐28 breast cancer cells exploit a RhoA‐dependent, proteolytic‐independent invasion mechanism. Targeting the RhoA pathway in triple‐negative, basal‐like breast cancers that have a proteolytic‐independent invasion mechanism may provide therapeutic strategies for the treatment of patients with increased risk of metastasis. J. Cell. Biochem. 114: 1385–1394, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
16.
17.

Background

Tumour cells show greater dependency on glycolysis so providing a sufficient and rapid energy supply for fast growth. In many breast cancers, estrogen, progesterone and epidermal growth factor receptor-positive cells proliferate in response to growth factors and growth factor antagonists are a mainstay of treatment. However, triple negative breast cancer (TNBC) cells lack receptor expression, are frequently more aggressive and are resistant to growth factor inhibition. Downstream of growth factor receptors, signal transduction proceeds via phosphatidylinositol 3-kinase (PI3k), Akt and FOXO3a inhibition, the latter being partly responsible for coordinated increases in glycolysis and apoptosis resistance. FOXO3a may be an attractive therapeutic target for TNBC. Therefore we have undertaken a systematic review of FOXO3a as a target for breast cancer therapeutics.

Methods

Articles from NCBI were retrieved systematically when reporting primary data about FOXO3a expression in breast cancer cells after cytotoxic drug treatment.

Results

Increased FOXO3a expression is common following cytotoxic drug treatment and is associated with apoptosis and cell cycle arrest. There is some evidence that metabolic enzyme expression is also altered and that this effect is also elicited in TNBC cells. FOXO3a expression serves as a positive prognostic marker, especially in estrogen (ER) receptor positive cells.

Discussion

FOXO3a is upregulated by a number of receptor-dependent and -independent anti-cancer drugs and associates with apoptosis. The identification of microRNA that regulate FOXO3a directly suggest that it offers a tangible therapeutic target that merits wider evaluation.  相似文献   

18.
G-protein gamma subunit 2 (GNG2) is involved in several cell signaling pathways, and is essential for cell proliferation and angiogenesis. However, the role of GNG2 in tumorigenesis and development remains unclear. In this study, 1321 differentially expressed genes (DEGs) in breast cancer (BC) tissues were screened using the GEO and TCGA databases. KEGG enrichment analysis showed that most of the enriched genes were part of the PI3K-Akt signaling pathway. We identified GNG2 from the first five DEGs, its expression was markedly reduced in all BC subtype tissues. Cox regression analysis showed that GNG2 was independently associated with overall survival in patients with luminal A and triple-negative breast cancers (TNBC). GNG2 over-expression could significantly block the cell cycle, inhibit proliferation, and promote apoptosis in BC cells in vitro. In animal studies, GNG2 over-expression inhibited the growth of BC cells. Further, we found that GNG2 significantly inhibited the activity of ERK and Akt in an MRAS-dependent manner. Importantly, GNG2 and muscle RAS oncogene homolog (MRAS) were co-localized in the cell membrane, and the fluorescence resonance energy transfer (FRET) experiment revealed that they had direct interaction. In conclusion, the interaction between GNG2 and MRAS likely inhibits Akt and ERK activity, promoting apoptosis and suppressing proliferation in BC cells. Increasing GNG2 expression or disrupting the GNG2–MRAS interaction in vivo could therefore be a potential therapeutic strategy to treat BC.Subject terms: Breast cancer, Breast cancer  相似文献   

19.
Hepatocyte growth factor (HGF) and Met/HGF receptor tyrosine kinase play a role in the progression to invasive and metastatic cancers. A variety of cancer cells secrete molecules that enhance HGF expression in stromal fibroblasts, while fibroblast-derived HGF, in turn, is a potent stimulator of the invasion of cancer cells. In addition to the ligand-dependent activation, Met receptor activation is negatively regulated by cell-cell contact and Ser985 phosphorylation in the juxtamembrane of Met. The loss of intercellular junctions may facilitate an escape from the cell-cell contact-dependent suppression of Met-signaling. Significance of juxtamembrane mutations found in human cancers is assumed to be a loss-of-function in the negative regulation of Met. In attempts to block the malignant behavior of cancers, NK4 was isolated as a competitive antagonist against HGF-Met signaling. Independently on its HGF-antagonist action, NK4 inhibited angiogenesis induced by vascular endothelial cell growth factor and basic fibroblast growth factor, as well as HGF. In experimental models of distinct types of cancers, NK4 inhibited Met activation and this was associated with inhibition of tumor invasion and metastasis. NK4 inhibited tumor angiogenesis, thereby suppressing angiogenesis-dependent tumor growth. Cancer treatment with NK4 suppresses malignant tumors to be "static" in both tumor growth and spreading.  相似文献   

20.
Apoptosis is also known as programmed cell death. Apoptosis plays an essential role in maintaining normal tissue and cell physiology in multicellular organisms. Clearance of aberrant or pre-cancerous cells occurs through the induction of apoptosis. It has been reported that many tumors and tumor cell lines have dysfunctional apoptosis signaling, causing these tumors to escape immune monitoring and internal cellular control mechanisms. One potential cause of this dysfunctional apoptosis is the tumor suppressor p53, an important regulator of growth arrest and apoptosis that is mutated in over 50% of all cancers. Retinoids have great potential in the areas of cancer therapy and chemoprevention. While some tumor cells are sensitive to the growth inhibitory effects of natural retinoids such as all-trans-retinoic acid (ATRA), many ovarian tumor cells are not. 6-[3-(1-Admantyl)]-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) and fenretinide N-[4-hydroxyphenyl] retinamide (4-HPR) are conformationally restricted synthetic retinoids that induce growth arrest and apoptosis in both ATRA-sensitive and ATRA-resistant ovarian tumor cell lines. Recently, we have identified the molecular pathways of apoptosis induced by treatment of ovarian carcinoma cells with mutated p53 by CD437 and 4-HPR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号