首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Atlantic salmon Salmo salar with amoebic gill disease (AGD) were exposed to a graded hypoxia (135–40 mmHg water P O2) and blood samples analysed for respiratory gases and pH at 119, 79·5 and 40 mmHg water P O2. There were no differences in the rate of oxygen uptake between infected and control fish. However, arterial P O2, and pH were significantly lower in the infected fish whereas P CO2 was significantly higher in infected fish compared with controls prior to hypoxia and at 119 mmHg water P O2. At 79·5 and 40 mmHg water P O2 saturation, there were no significant differences in blood P O2 or pH although blood P CO2 was elevated in AGD affected fish at 50% hypoxia (79·5 mmHg water P O2). The elevated levels of P CO2 in fish affected by AGD resulted in a persistent respiratory acidosis even during hypoxic challenge. These data suggest that even though the fish were severely affected by AGD, the presence of AGD while impairing gas transfer under normoxic conditions, did not contribute to respiratory failure during hypoxia.  相似文献   

3.
Rhinelepis strigosa did not surface for air breathing in normoxic or moderate hypoxic water. This species initiated air breathing when the P io2 in the water reached 22 ± 1 mmHg. Once begun, the air-breathing frequency increased with decreasing P io2. Aquatic oxygen consumption was 21·0 ± 1·9ml O2 kg−1h−1 in normoxic water, and was almost constant during progressive hypoxia until the P io2 reached 23·9 mmHg, considered the critical oxygen tension (Pco2). Gill ventilation increased until close to the P co2 (7·9-fold) as a consequence of a greater increase in ventilatory volume than in breathing frequency. Gill oxygen extraction was 42 ± 5% and decreased with hypoxia, but under severe hypoxia returned to values characteristic of normoxic. The critical threshold for air breathing was coincident with the Pco2 during aquatic respiration. This suggests that the air-breathing response is evoked by the aquatic oxygen tension at which the respiratory mechanisms fail to compensate for environmental hypoxia, and the gill O2 uptake becomes insufficient to meet O2 requirements.  相似文献   

4.
Abstract: Using dissociated carotid body (CB) cultures prepared from neonatal (postnatal days 5–7; P7) or juvenile (postnatal day 19–20; P20) rats, we compared catecholaminergic properties and mechanisms of O2 sensing in glomus cells grown in normoxic (Nox; 20% O2) and chronically hypoxic (CHox; 6% O2) environments for up to 2 weeks. In Nox cultures, basal dopamine (DA) release, determined by HPLC and normalized to the number of tyrosine hydroxylase-positive glomus cells present, was similar for P7 and P20 cultures (∼0.3 pmol/1,000 cells/15 min) and was unaffected by culture duration (2 vs. 12 days). Acute hypoxia (5 and 10% O2) caused a dose-dependent stimulation (6× and 3× basal, respectively) in DA release, that was inhibited by nifedipine (10 µ M ). DA release was also stimulated by high extracellular K+ (30 m M ) and iberiotoxin (200 n M ), a selective blocker of P o 2-regulated, Ca-dependent K+ channel in glomus cells. The stimulatory effect of iberiotoxin was similar to 5% O2 in P20 cultures, but substantially less (about one-half) in P7 cultures. In contrast, in CHox cultures, basal DA release was substantially elevated, ∼8× Nox levels, although this did not correlate with significant differences in stores. Further, whereas acute hypoxia (5% O2) and high K+ also stimulated DA release in CHox cultures (∼2× and ∼3× basal), iberiotoxin (200 n M ) did not. Thus, after chronic hypoxia in vitro, there is an enhanced basal catecholamine release and an apparent down-regulation of functional Ca-dependent K+ channels in CB chemoreceptors. These cellular adaptations may relate to changes in CB chemosensitivity during chronic hypoxemia.  相似文献   

5.
6.
Abstract. The rate of O2 consumption was measured in five coprophilous beetle species (common in Denmark) at O2 concentrations from 1–21%. With the exception of the mainly soil-living Geotrupes spiniger (Marsham) (Geotrupidae), these beetles are probably exposed to severe hypoxia in fresh cattle pats. Aphodius fossor (Linnaeus), A. contaminatus (Herbst) (Aphodiidae) and Sphaeridium lunatum Fabricius (Hydrophilidae) maintained normal movements and a normal rate of 02 uptake (for at least 30 min) at only 1% O2. There is no evidence, therefore, that the beetles switch to anaerobic metabolism under these conditions. This ability to regulate respiration, and hence to extract 02 at very low concentrations, is exceptional even among terrestrial arthropods living in soil or other potentially hypoxic substrates. In A. rufipes (Linnaeus), respiration declined at ambient concentrations below 2% O2, and in G. spiniger the ability to regulate respiration seemed to fail at even higher concentrations. In four of the species (G. spiniger was not tested), about 11% CO2 (the level in a dung pat at 2% O2) did not affect the O2 uptake at 2% O2.  相似文献   

7.
The oxygen uptake ( V O2), breathing frequency ( f R), breath volume ( V S.R), gill ventilation ( V G) and oxygen extraction (%) from the ventilatory current of four groups of Oreochromis niloticus during graded hypoxia were measured under the following acclimation temperatures: 20. 25. 30 and 35°C. The critical oxygen tensions ( P O2), determined from V O2 v. P O2 of inspired water at each experimental temperature were, respectively. 19±1±3±1. 18±0±4±9, 29±7± 4±1 and 30±2± 0.6 mmHg. The f R remained nearly constant during the reductions of O2 at all the temperatures studied. V G increased discretely from normoxic levels until the P O2 was reached, below which it assumed extremely high values (17-fold higher or more). The increases observed in V G resulted, at all the acclimation temperatures, in an elevation in V S.R rather than in f R. The extraction of O2 decreased gradually from normoxia until the P O2 was reached, below which an abrupt reduction of extraction was recorded, except at 35°C when fish showed a gradual reduction in extraction just below the tension of 80 mmHg.  相似文献   

8.
To better understand the response of a plant to O3 stress, an integrated microarray analysis was performed on Arabidopsis plants exposed during 2 days to purified air or 150 nl l−1 O3, 8 h day−1. Agilent Arabidopsis 2 Oligo Microarrays were used of which the reliability was confirmed by quantitative real-time PCR of nine randomly selected genes. We confirmed the O3 responsiveness of heat shock proteins (HSPs), glutathione- S -tranferases and genes involved in cell wall stiffening and microbial defence. Whereas, a previous study revealed that during an early stage of the O3 stress response, gene expression was strongly dependent on jasmonic acid and ethylene, we report that at a later stage (48 h) synthesis of jasmonic acid and ethylene was downregulated. In addition, we observed the simultaneous induction of salicylic acid synthesis and genes involved in programmed cell death and senescence. Also typically, the later stage of the response to O3 appeared to be the induction of the complete pathway leading to the biosynthesis of anthocyanin diglucosides and the induction of thioredoxin-based redox control. Surprisingly absent in the list of induced genes were genes involved in ASC-dependent antioxidation, few of which were found to be induced after 12 h of O3 exposure in another study. We discuss these and other particular results of the microarray analysis and provide a map depicting significantly affected genes and their pathways highlighting their interrelationships and subcellular localization.  相似文献   

9.
In terms of gene expression and carbohydrate metabolism, the response of wheat seedlings to hypoxia is dramatically different from the anoxic response. Total carbohydrate content of roots increased 4-fold during 6 days of hypoxia, with a 17-fold increase in fructans. In contrast, anoxically treated roots depleted all soluble carbohydrates and died within 72 h. Gas exchange measurements (CO2 release vs. O2 uptake) demonstrate that hypoxia establishes a new balance between fermentation and aerobic respiration in the roots without altering the flux of carbon through glycolysis. Furthermore, the respiratory component of this new balance is 55% higher in roots that have been hypoxically pretreated compared to non-hypoxically pretreated roots. The establishment of this new homeostasis under hypoxia involves the induction of glycolytic (aldolase and enolase) and fermentative enzymes (pyruvate decarboxylase, alcohol dehydrogenase, and lactate dehydrogenase). Enzyme induction is generally complete within 24 h with mRNA induction occurring primarily during Period I (0–6 h of hypoxia), and maximal enzymes activities attained during Period II (6–24 h of hypoxia). Accumulation rates of Suc, hexoses, and fructans also change during Periods I and II. By the start of Period III (24–144 h of hypoxia), the metabolic adjustments are complete and fructans are the major carbohydrate accumulated. In anoxia, the pattern of enzyme induction was dramatically different: aldolase was not induced and declined throughout the treatment. Alcohol dehydrogenase, pyruvate decarboxylase, and lactate dehydrogenase were induced as in hypoxia, but rapidly declined within 72 h of anoxia. Only enolase exhibited a similar expression pattern in both anoxia and hypoxia.  相似文献   

10.
Nitric oxide (NO) is involved together with reactive oxygen species (ROS) in the activation of various stress responses in plants. We have used ozone (O3) as a tool to elicit ROS-activated stress responses, and to activate cell death in plant leaves. Here, we have investigated the roles and interactions of ROS and NO in the induction and regulation of O3-induced cell death. Treatment with O3 induced a rapid accumulation of NO, which started from guard cells, spread to adjacent epidermal cells and eventually moved to mesophyll cells. During the later time points, NO production coincided with the formation of hypersensitive response (HR)-like lesions. The NO donor sodium nitroprusside (SNP) and O3 individually induced a large set of defence-related genes; however, in a combined treatment SNP attenuated the O3 induction of salicylic acid (SA) biosynthesis and other defence-related genes. Consistent with this, SNP treatment also decreased O3-induced SA accumulation. The O3-sensitive mutant rcd1 was found to be an NO overproducer; in contrast, Atnoa1/rif1 ( Arabidopsis nitric oxide associated 1/resistant to inhibition by FSM1 ), a mutant with decreased production of NO, was also O3 sensitive. This, together with experiments combining O3 and the NO donor SNP suggested that NO can modify signalling, hormone biosynthesis and gene expression in plants during O3 exposure, and that a functional NO production is needed for a proper O3 response. In summary, NO is an important signalling molecule in the response to O3.  相似文献   

11.
When the Adriatic sturgeon Acipenser naccarii was exposed to progressive hypoxia under static conditions, it exhibited a linear decline in O2 uptake, behaving as an 'oxyconformer'. When, however, it was allowed to swim at a low sustained speed, it could regulate O2 uptake down to a mean ± s . e . critical ( P crit) of 4·9 ± 0·5 kPa ( n = 6). At moderate levels of hypoxia, static fish exhibited significant reductions in arterial blood O2 content, and increases in plasma lactate, which were not observed in swimming animals.  相似文献   

12.
The effect of O2 concentration on energy metabolism and senescence has been studied in cut flowers of Dianthus caryophyllus L. cv. Scania. As compared to the control (21% O2), 5% O2 delays flower senescence as well as decay of nucleotide level and AEC (adenylate energy charge). An atmosphere of 100% O2 accelerates senescence as well as the decrease of nucleotide level and AEC. While anoxia brings about a faster decrease of ATP and AEC than of total nucleotides, hyperoxia brings about a faster decrease in adenyl nucleotides than in ATP and AEC values. Petal oxygen uptake is over 90% of the maximal value under 4% O2 and saturates at 10% O2. The development of senescence is dicussed as a two phase process (first phase-progressive and second phase-catastrophic) triggered by the action of hyperoxia, first on the system for energy utilization and later on the system for energy production, the degradation of which seems to be linked with increase in membrane permeability and withering.  相似文献   

13.
14.
Abstract. The initiation of DNA synthesis and further cell cycle progression in cells during and following exposure to extremely hypoxic conditions in either G1 or G2+M has been studied in human NHIK 3025 cells. Populations of cells, synchronized by mitotic selection, were rendered extremely hypoxic (< 4 p.p.m. O2) for up to 24n h. Cell cycle progression was studied from flow cytometric DNA recordings. No accumulation of DNA was found to take place during extreme hypoxia. Cells initially in G1 at the onset of treatment did not enter S during up to 24 h exposure to extreme hypoxia, but started DNA synthesis in a highly synchronous manner within 1.5 to 2.25 h after reoxygenation. The duration of S phase was only slightly affected (increased by ≅10%) by the hypoxic treatment. This suggests that the DNA synthesizing machinery either remains intact during hypoxia or is rapidly restored after reoxygenation. Cells initially in G2 at the onset of hypoxia were able to complete mitosis, but further cell cycle progression was blocked in the subsequent G^ Following reoxygenation, these cells progressed into S phase, but the initiation of DNA synthesis was delayed for a period corresponding to at least the duration of normal G1 and did not appear in a synchronous manner. In fact, cell cycle variability was found to be increased rather than decreased as a result of exposure to hypoxia starting in G2. We interpret these findings as an indication that important steps in the preparation for initiation of DNA synthesis take place before mitosis. Furthermore, the change in cell cycle duration induced by hypoxia commencing in G1 is of a nature other than that induced by hypoxia commencing in other parts of the cell cycle.  相似文献   

15.
Abstract: Hypoxia is known to disturb neuronal signal transmission at the synapse. Presynaptically, hypoxia is reported to suppress the release of neurotransmitters, but its postsynaptic effects, especially on the function of neurotransmitter receptors, have not yet been elucidated. To clarify the postsynaptic effects, we used cultured bovine adrenal chromaffin cells as a model of postsynaptic neurons and examined specific binding of l -[3H]nicotine (an agonist for nicotinic acetylcholine receptors: nAChRs) and 22Na+ flux under control and hypoxic conditions. Experiments were performed in media preequilibrated with a gas mixture of either 21% O2/79% N2 (control) or 100% N2 (hypoxia). Scatchard analysis of the specific binding to the cells revealed that the KD under hypoxic conditions was twice as large as that under control conditions, whereas the B max was unchanged. When the specific [3H]nicotine binding was kinetically analyzed, the association constant ( k 1) but not the dissociation constant ( k −1) was decreased to 40% of the control value by hypoxia. When the binding assay was performed using the membrane fraction, these changes were not observed. Nicotine-evoked 22Na+ flux into the cells was suppressed by hypoxia. In contrast, specific [3H]quinuclidinyl benzilate binding to the intact cells was unaffected by hypoxia. These results demonstrate that hypoxia specifically suppresses the function of nAChRs (and hence, neuronal signal transmission through nAChRs), primarily by acting intracellularly.  相似文献   

16.
Hypoxic pretreatment is known to induce anoxia tolerance in plant species sensitive to oxygen deprivation. However, we still do not have detailed information on changes in cytoplasmic and vacuolar pH (pHcyt and pHvac) in plants under low-oxygen availability (hypoxia) and under anoxia. To investigate this, we have studied the influence of hypoxia and anoxia on pHcyt and pHvac, glucose-6-phosphate (Glc-6-P) and nucleotide triphosphate (NTP) contents in rice ( Oryza sativa L.) root tips in comparison with those of wheat ( Triticum aestivum L.) with in vivo 31P-nuclear magnetic resonance. Both cereals responded to hypoxia similarly, by rapid cytoplasmic acidification (from pH 7.6–7.7 to 7.1), which was followed by slow partial recovery (0.3 units after 6 h). Anoxia led to a dramatic pHcyt drop in tissues of both species (from pH 7.6–7.7 to less than 7.0) and partial recovery took place in rice only. In wheat, the acidification continued to pH 6.8 after 6 h of exposure. In both plants, NTP content followed the dynamics of pHcyt. There was a strong correlation between NTP content and cytoplasmic H+ activity ([H+]cyt= 10−pHcyt) for both hypoxic and anoxic conditions. Glc-6-P content increased in rice under anoxia and hypoxia. In wheat, Glc-6-P was not detectable under anoxia but increased under hypoxia. In this study, rice root tips were shown to behave as anoxia tolerant tissues. Our results suggest that the initial cytoplasmic acidification and subsequent pHcyt are differently regulated in anoxia tolerant and intolerant plants and depend on the external oxygen concentration.  相似文献   

17.
A comparative study of blood oxygen binding and carrying capacities of turbot Scophthalmus maximus and sea bass Dicentrarchus labrax , two fish species differing in their demand for oxygen, was carried out under three levels of chronic hypoxia ( P o 2 = 93, 65 and 40 mmHg) for 40 days. Blood O2 affinity in normoxia was moderately high in both species ( P 50 was c . 12–13 mmHg at pH 7·7). The Bohr factor was significantly lower in turbot (−0·52) than in sea bass (−0·85). In both species, blood O2 affinity was not significantly affected by oxygen depletion whatever its level and duration. In turbot, however, P 50 appeared to slightly decrease at the two more severe levels of hypoxia. In both species, blood O2 carrying capacity was not affected by hypoxia and remained twice as high in sea bass than in turbot.  相似文献   

18.
ABSTRACT. The influence of hypoxia and hypercapnia on the ventilatory rhythm of the hellgrammite Corydalus cornutus L. (Megaloptera) was studied. In intact animals the frequency of rhythmic retractions and protractions of abdominal gills is increased by hypoxia (10% O2, 90% N2) but no ventilatory response is elicited by hypercapnia (1–5% CO2, 20% O2, 75–79% N2).
The ventilatory motor pattern was examined by recording extracellularly from the gill retractor muscle or its efferent nerve. In response to hypoxia (8% 02, 92% N2), there are decreases in the cycle-time, the interspike interval, and the burst length of the gill retractor motorneuron. In addition, previously quiescent motorneurons associated with gill protraction are recruited.
Individual ganglia or small groups of abdominal ganglia can be isolated both from the central ganglionic chain and from the periphery by selective cutting of roots and connectives. When exposed to hypoxia, preparations that include the first abdominal ganglion show characteristic changes in the ventilatory motor pattern similar to those in intact animals. Thus sensitivity to oxygen appears to be located centrally and not peripherally. In small animals (head width < 7 mm), abdominal ganglia 2–3 and 2–7 respond characteristically to hypoxia, but in larger animals (head width > 9 mm), chains of ganglia lacking abdominal ganglion 1 fail to respond. In larger animals oxygen sensitivity may thus be concentrated in abdominal ganglion 1, whereas in smaller animals the ability to initiate a ventilatory response to hypoxia is distributed among the abdominal ganglia.  相似文献   

19.
Oxygen consumption (o2) and respiratory variables were measured in the Prochilodontid fish, Prochilodus scrofa exposed to graded hypoxia after changes in temperature. The measurements were performed on fish acclimated to 25°C and in four further groups also acclimated to 25°C and then changed to 15, 20, 30 and 35°C. An increase in o2 occurred with rising temperature, but at each temperature o2 was kept constant over a wide range of O2 tensions of inspired water ( Pi o2). The critical oxygen tensions ( Pc o2) were Pi o2= 22 mmHg for 25°C acclimated specimens and after transfer from 25°C to 15, 20, 30 and 35°C the Pc o2 changed to Pi o2= 28, 22, 24 and 45 mmHg, respectively. Gill ventilation ( G ) increased or decreased following the changes in o2 as the temperature changed and was the result of an accentuated increase in breath frequency. During hypoxia the increases in G were characterized by larger increases in breath volume. Oxygen extraction was kept almost constant at about 63% regardless of temperature and ambient oxygen tensions in normoxia and moderate hypoxia ( P o2∼70 mmHg). P. scrofa showed high tolerance to hypoxia after abrupt changes in temperature although its survival upon transfer to 35°C could become limited by the capacity of ventilatory mechanisms to alleviate hypoxic stress.  相似文献   

20.
Reduced growth of Atlantic cod in non-lethal hypoxic conditions   总被引:4,自引:0,他引:4  
Growth in length and mass, improvements in condition, as well as final condition of c. 700 g Atlantic cod Gadus morhua were significantly less at 45% and 56% O2 saturation than at 65%, 75%, 84% and 93% O2 saturation. Hypoxia decreased food consumption. In turn, food consumption explained 97% of the variation in growth. Conversion efficiency varied slightly, but significantly, with level of dissolved O2, except that the group reared at 93% O2 had a lower than expected conversion efficiency. Slow growth in low O2 was not due to increased activity, because activity decreased in hypoxia. In the Gulf of St Lawrence, waters deeper than 200 m usually are <65% saturated in O2, and thus should impact negatively on cod growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号