首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Massive historical land cover changes in the Central European lowlands have resulted in a forest distribution that now comprises small remnants of ancient forests and more recently established post-agricultural forests. Here, land-use history is considered a key driver of recent herb-layer community changes, where an extinction debt in ancient forest remnants and/or a colonization credit in post-agricultural forests are being paid over time. On a regional scale, these payments should in theory lead toward a convergence in species richness between ancient and post-agricultural forests over time. In this study, we tested this assumption with a resurvey of 117 semi-permanent plots in the well-studied deciduous forests of the Prignitz region (Brandenburg, NE Germany), where we knew that the plant communities of post-agricultural stands exhibit a colonization credit while the extinction debt in ancient stands has largely been paid. We compared changes in the species richness of all herb layer species, forest specialists and ancient forest indicator species between ancient and post-agricultural stands with linear mixed effect models and determined the influence of patch connectivity on the magnitude of species richness changes. Species richness increased overall, but the richness of forest specialists increased significantly more in post-agricultural stands and was positively influenced by higher patch connectivity, indicating a convergence in species richness between the ancient and post-agricultural stands. Furthermore, the richness of ancient forest indicator species only increased significantly in post-agricultural stands. For the first time, we were able to verify a gradual payment of the colonization credit in post-agricultural forest stands using a comparison of actual changes in temporal species richness.  相似文献   

2.
Question: Does clear‐felling influence forest herb colonization into post‐agricultural forest? Location: A stand of poplar cultivars with a dense understorey of Acer pseudoplatanus in Muizen forest (northern Belgium), planted in 1952 on farmland adjacent to ancient forest and clear‐felled in 1997. Methods: Shade‐tolerant forest herbs were surveyed in 112 grid‐based sample plots: just before clear‐felling, and 5 and 10 yr afterwards. Shade‐tolerant herbs were subdivided into ancient forest species (AFS) and other shade‐tolerant species (OSS). Effects of clear‐felling on species number per plot, total cover per plot and colonization rate of species groups were compared using non‐parametrical tests. Species number per plot was modelled by means of generalized linear mixed models (GLMMs), with inventory time, distance to the nearest parcel edge, and cover of light‐loving species (LS) as explanatory variables. The C‐S‐R signature (competitive, stress‐tolerant and ruderal strategies, respectively) shift of sample plots was calculated on the selected shade‐tolerant species. Results: Frequency of most species increased during the 10‐yr period. Number of OSS increased more and faster than that of AFS. OSS increased to the level of the adjacent forest, but was lower where LS cover remained high. There was a positive correlation between the change of the colonization rate and the competitive plant strategy. Conclusions: We assume that clear‐felling stimulated generative reproduction of shade‐tolerant herbs, whereas quickly emerging woody species controlled competitive exclusion by LS. Succession of dark and light phases, such as provided by an understorey managed as a coppice, could promote colonization of shade‐tolerant herbs into post‐agricultural forest.  相似文献   

3.
1 We studied the migration of forest plant species using their percentage cover and frequency in 197 plots distributed over 26 transects across ecotones between ancient and recent deciduous forests in the Meerdaal forest complex in central Belgium. The recent forest stands varied in age between 36 and 132 years, and all occurred on silty, well-drained soils.
2 The total cover, number and diversity of field layer species did not differ significantly between ancient and recent forest stands.
3 The number and cover of the ancient forest plant species and of ant-dispersed species correlated positively with the age of the recent forest and negatively with both the duration of its former agricultural land use and the distance to the ancient forest. This implies a slow colonization of the recent forest stands by these species; all species were, however, able to migrate across the ecotones.
4 The cover of four species ( Anemone nemorosa , Lamium galeobdolon , Convallaria majalis and Polygonatum multiflorum ) declined along the transect, suggesting that they are limited by seed dispersal. Their colonization rates, calculated from the occurrence of the farthest individual, ranged from < 0.05 to 1.15 m year−1 and for other measures from < 0.05 to 0.65 m year−1. Anemone and Lamium appeared to colonize the recent forest by establishment of isolated individuals, while Polygonatum and Convallaria expanded populations from existing patches on the border between ancient and recent forest.
5 Several forest species were able to colonize the recent forest rapidly, where some of them even reached a higher abundance, due to the increased availability of colonization sites with a higher nutrient content and a thinner organic layer.  相似文献   

4.
B.J. Graae 《植被学杂志》2000,11(6):881-892
Abstract. Forest species composition was recorded in 82 forests in the Himmerland and Hornsherred regions in Denmark and analysed with respect to isolation (distance to other forests and areas of forest), forest continuity (older or younger than 200 yr), soil pH, tree species composition and seed dispersal groups. Continuity and isolation measures were correlated with forest species richness in Hornsherred. Myrmecochorous, autochorous, anemoballistic and endozoochorous species were markedly fewer in recent than in ancient forests. In Himmerland, patterns were much weaker and few significant correlations were found between forest species richness or different seed dispersal groups and continuity or isolation of the forests. Differences between the two regions may result from less intensive land use, a more humid climate and a smaller species pool with less species with short distance dispersal in Himmerland. Landscape fragmentation therefore appears to limit forest species’recolonization more in Hornsherred than in Himmerland.  相似文献   

5.
The expansion of rainforest pioneer trees into long‐unburnt open forests has become increasingly widespread across high rainfall regions of Australia. Increasing tree cover can limit resource availability for understorey plant communities and reduce understorey diversity. However, it remains unclear if sclerophyll and rainforest trees differ in their competitive exclusion of understory plant communities, which contain most of the floristic diversity of open forests. Here, we examine dry open forest across contrasting fire histories (burnt and unburnt) and levels of rainforest invasion (sclerophyll or rainforest midstorey) to hindcast changes in understorey plant density, richness and composition. The influence of these treatments and other site variables (midstorey structure, midstorey composition and soil parameters) on understorey plant communities were all examined. This study is the first to demonstrate significantly greater losses of understorey species richness, particularly of dry open‐forest specialists, under an invading rainforest midstorey compared to a typical sclerophyll midstorey. Rainforest pioneers displaced over half of the understorey plant species, and reduced ground cover and density of dry forest specialists by ~90%. Significant understorey declines also occurred with increased sclerophyll midstorey cover following fire exclusion, although losses were typically less than half that of rainforest‐invaded sites over the same period. Understorey declines were closely related to leaf area index and basal area of rainforest and wattle trees, suggesting competitive exclusion through shading and potentially belowground competition for water. Around 20% of displaced species lacked any capacity for population recovery, while transient seed banks or distance‐limited dispersal may hinder recovery for a further 68%. We conclude that rainforest invasion leads to significant declines in understorey plant diversity and cover in open forests. To avoid elimination of local native plant populations in open forests, fires should occur with sufficient frequency to prevent overstorey cover from reaching a level where shade‐intolerant species fail to thrive.  相似文献   

6.
Predicting forest composition change through time is a key challenge in forest management. While multiple successional pathways are theorized for boreal forests, empirical evidence is lacking, largely because succession has been inferred from chronosequence and dendrochronological methods. We tested the hypotheses that stands of compositionally similar overstory may follow multiple successional pathways depending on time since last stand‐replacing fire (TSF), edaphic conditions, and presence of intermediate disturbances. We used repeated measurements from combining sequential aerial photography and ground surveys for 361 boreal stands in central Canada. Stands were measured in 8–15 yr intervals over a ~ 60 yr period, covering a wide range of initial stand conditions. Multinomial logistic regression was used to analyze stand type transitions. With increasing TSF, stands dominated by shade‐intolerant Pinus banksiana, Populus sp., and Betula papyrifera demonstrated multiple pathways to stands dominated by shade‐tolerant Picea sp., Abies balsamea, and Thuja occidentalis. Their pathways seemed largely explained by neighborhood effects. Succession of stands dominated by shade‐tolerant species, with an exception of stands dominated by Picea sp., was not related to TSF, but rather dependent on edaphic conditions and presence of intermediate disturbances. Varying edaphic conditions caused divergent pathways with resource limited sites being dominated by nutrient‐poor tolerant species, and richer sites permitting invasion of early successional species and promoting species mixtures during succession. Intermediate disturbances promoted deciduous persistence and species diversity in A. balsamea and mixed‐conifer stands, but no evidence was detected to support “disturbance accelerated succession”. Our results demonstrate that in the prolonged absence of stand‐replacing disturbance boreal forest stands undergo multiple succession pathways. These pathways are regulated by neighborhood effects, resource availability, and presence of intermediate disturbance, but the relative importance of these regulators depends on initial stand type. The observed divergence of successional pathways supports the resource‐ratio hypothesis of plant succession.  相似文献   

7.
In boreal spruce forests that rarely experience extensive disturbances, fine-scale vegetation gaps are important for succession dynamics and species diversity. We examined the community implications of fine-scale gap disturbances by selective removal of vegetation layers in a pristine boreal spruce forest in Northern Finland. The aim was to investigate how the speed of recovery depends on the type of disturbance and the species growth form. We also wanted to know if there appeared changes in species composition after disturbance. Five different treatments were applied in the study: Control, removal of the ground layer (bryophytes and lichens), removal of the understorey layer (dwarf shrubs, herbs and graminoids), removal of both the ground and understorey layers, and complete removal of the vegetation and humus layers above the mineral soil. The vegetation recovery was monitored in terms of cover and species numbers over a 5-year period. Understorey layer cover, composed mainly of clonal dwarf shrubs, recovered completely in 4 years in treatments where the humus layer remained intact, whereas ground layer cover did not reach the control level in plots from where bryophytes and lichens were removed. Recovery was faster in terms of species number than species cover. Bryophytes, graminoids and dominant dwarf shrubs appeared in all disturbed plots quickly after disturbance. Seedlings of trees appeared exclusively in disturbed plots. Graminoids dominated after the removal of humus layer. The results indicate that the regeneration of forest floor after small gap disturbance occurs mainly by re-establishment of the dominant species. Although destruction of the humus layer leaves a long-lasting scar to the forest floor, exposing of mineral soil may enhance the sexual reproduction of dominant species and the colonization of weaker competitors.  相似文献   

8.
The riverine forests of the northern city of Edmonton, Alberta, Canada display strong resilience to disturbance and are similar in species composition to southern boreal mixedwood forest types. This study addressed questions such as, how easily do exotic species become established in urban boreal forests (species invasiveness) and do urban boreal forest structural characteristics such as, native species richness, abundance, and vertical vegetation layers, confer resistance to exotic species establishment and spread (community invasibility)? Eighty-four forest stands were sampled and species composition and mean percent cover analyzed using ordination methods. Results showed that exotic tree/shrub types were of the most concern for invasion to urban boreal forests and that exotic species type, native habitat and propagule supply may be good indicators of invasive potential. Native forest structure appeared to confer a level of resistance to exotic species and medium to high disturbance intensity was associated with exotic species growth and spread without a corresponding loss in native species richness. Results provided large-scale evidence that diverse communities are less vulnerable to exotic species invasion, and that intermediate disturbance intensity supports species coexistence. From a management perspective, the retention of native species and native forest structure in urban forests is favored to minimize the impact of exotic species introductions, protect natural succession patterns, and minimize the spread of exotic species.  相似文献   

9.
Abstract. Species composition, detritus, and soil data from 97 boreal forest stands along a transect in central Canada were analysed using Correspondence Analysis to determine the dominant environmental/site variables that differentiate these forest stands. Picea mariana stands were densely clustered together on the understorey DCA plot, suggesting a consistent understorey species composition (feather mosses and Ericaceae), whereas Populus tremuloides stands had the most diverse understorey species composition (ca. 30 species, mostly shrubs and herbs). Pinus banksiana stands had several characteristic species of reindeer lichens (Cladina spp.), but saplings and Pinus seedlings were rare. Although climatic variables showed large variation along the transect, the CCA results indicated that site conditions are more important in determining species composition and differentiating the stand types. Forest floor characteristics (litter and humus layer, woody debris, and drainage) appear to be among the most important site variables. Stands of Picea had significantly higher average carbon (C) densities in the combined litter and humus layer (43530 kg‐C.ha‐1) than either Populus (25 500 kg‐C.ha‐1) or Pinus (19 400 kg‐C.ha‐1). The thick surface organic layer in lowland Picea stands plays an important role in regulating soil temperature and moisture, and organic‐matter decomposition, which in turn affect the ecosystem C‐dynamics. During forest succession after a stand‐replacing disturbance (e.g. fires), tree biomass and surface organic layer thickness increase in all stand types as forests recover; however, woody biomass detritus first decreases and then increases after ca. 80 yr. Soil C densities show slight decrease with ages in Populus stands, but increase in other stand types. These results indicate the complex C‐transfer processes among different components (tree biomass, detritus, forest floor, and soil) of boreal ecosystems at various stages of succession.  相似文献   

10.
Question: How do spatial patterns and associations of canopy and understorey vegetation vary with spatial scale along a gradient of canopy composition in boreal mixed‐wood forests, from younger Aspen stands dominated by Populus tremuloides and P. balsamifera to older Mixed and Conifer stands dominated by Picea glauca? Do canopy evergreen conifers and broad‐leaved deciduous trees differ in their spatial relationships with understorey vegetation? Location: EMEND experimental site, Alberta, Canada. Methods: Canopy and understorey vegetation were sampled in 28 transects of 100 contiguous 0.5 m × 0.5 m quadrats in three forest stand types. Vegetation spatial patterns and relationships were analysed using wavelets. Results: Boreal mixed‐wood canopy and understorey vegetation are patchily distributed at a range of small spatial scales. The scale of canopy and understorey spatial patterns generally increased with increasing conifer presence in the canopy. Associations between canopy and understorey were highly variable among stand types, transects and spatial scales. Understorey vascular plant cover was generally positively associated with canopy deciduous tree cover and negatively associated with canopy conifer tree cover at spatial scales from 5–15 m. Understorey non‐vascular plant cover and community composition were more variable in their relationships with canopy cover, showing both positive and negative associations at a range of spatial scales. Conclusions: The spatial structure and relation of boreal mixed‐wood canopy and understorey vegetation varied with spatial scale. Differences in understorey spatial structure among stand types were consistent with a nucleation model of patch dynamics during succession in boreal mixed‐wood forests.  相似文献   

11.
The colonization rates of understorey plants into forests growing on former agricultural land differ remarkably among species. Different dispersal and recruitment largely account for the contrasting colonization rates, but different effects of the soil legacies of former agricultural land use on plant performance may also play a role. Seven herbaceous forest species were sampled in paired post-agricultural and ancient forest stands to study whether land-use history has an effect on the aboveground nutrient concentrations (N, P and N:P ratios) and biomass of forest herbs and, if so, whether slow and fast colonizing species respond differently. Results showed that P concentrations were significantly affected by former land use with higher concentrations in the post-agricultural stands. N concentrations were unaffected and N:P ratios were significantly higher in the ancient stands. Nutrient concentrations varied considerably among species, but the variation was unrelated to their colonization capacity. Six out of the seven species had higher biomass in the post-agricultural stands relative to the ancient stands, and the degree to which the species increased biomass was positively related to their colonization capacity, i.e., the fast colonizing species showed the strongest increase. Such differential responses to past land use may contribute to the contrasting colonization capacity of forest plants. Land-use history thus affected both the nutrient concentrations and biomass of forest herbs, and only the biomass response was related to colonization capacity.  相似文献   

12.
Abstract. Reclamation of former, degraded forest lands occupied by Imperata cylindrica is one of the crucial environmental and forestry issues in the humid tropics, notably Southeast Asia. We suggest that it is possible to gradually restore the original natural forest cover with the help of a sacrifice fallow crop of fast-growing exotic tree species. Recently, a set of suitable fast-growing plantation tree species has been identified and stand establishment methods developed for this purpose. We assessed the regeneration of natural vegetation in stands of different plantation tree species and evaluated the ecological impact of species composition in the plantation understorey. PCA ordination, regression analysis and analysis of covariance were applied at different stages of the study. We found a marked vegetational resemblance between stands dominated by Acacia mangium: they had the highest number of indigenous trees in their understorey, whereas stands of other plantation trees supported more diverse grass and herb vegetation. A high proportion of evergreen woody vegetation reduces the risk of fire and grass competition and enhances secondary succession towards natural forest.  相似文献   

13.
Plantation forests generally support lower bird diversity than natural forests. However, in some instances the plantations have been found to provide suitable habitat for a number of bird species. In the Eastern Arc Mountains, there is limited knowledge how understorey birds, some of which make seasonal altitudinal movements, use plantations. Using mist netting we assessed seasonal use of the plantation forest by the understorey bird community in Bunduki Forest Reserve in the Uluguru Mountains. Species diversity and capture rates were significantly higher during the cold season than during the hot season possibly due to seasonal altitudinal migration by some species. The use of plantations by those species that make seasonal altitudinal movements shows that plantation forests can enhance indigenous biodiversity by enabling connectivity between two or more natural forest patches. Our findings suggest that in a situation where there is no natural forest, an exotic plantation with suitable indigenous understorey cover can help in protection of birds, including endemic and near-endemic species.  相似文献   

14.
Ancient forests are of considerable interest for strategies for biodiversity conservation. However, in European forest landscapes fragmented and harvested for a long time forest continuity might be no longer a key driver for flying organisms such as saproxylic beetles. In a study based on paired samples (n = 60 stands, p = 180 traps) of ancient and recent forests, we investigated the effects of forest continuity on saproxylic beetle assemblages in two French regions. Mean species richness was significantly related with deadwood volume in ancient forests, but not in recent forests. This loss of relationship between assemblages and their environment suggests that dispersal limitation is at work, at least for some species. Forest continuity had a significant effect on mean species richness and on the mean number of common species, but not on rare species. Forest continuity had a significant effect on assemblage composition in one out of the four cases tested. In both regions, we identified species associated with either recent or ancient forests. Finally, mean body size of species was significantly smaller in recent forests compared with ancient ones, as was their tree diameter preference, despite a higher volume of large deadwood in recent forests. These results lend support to using forest continuity as a criterion to identify sites of conservation importance, even in highly fragmented landscapes.  相似文献   

15.
We studied the effects of wear on the understorey vegetation and the soil microbial community structure (phospholipid fatty acid pattern) in urban forests of medium fertility and of varying size in the capital area of Finland, Helsinki. These forests are important sites of recreation for a large number of residents. Consequently, the cover of understorey vegetation is affected by trampling. In the study, the cover of ground layer plant species (mosses) was found to be lower than in rural reference areas. We found that microbial activity, measured as soil respiration, was lower in the most worn forest patches as compared to less worn sites. Further, the microbial community structure of the humus layer changed due to the effects of wear. By comparing the PLFA pattern in trampled and un-trampled forest patches, we found out that the most important factors affecting the structure of microbial community were the dominant tree species (the proportion of broad-leaved tree species in relation to conifers), and the composition of the understorey vegetation. Thus, we could conclude that wear affects the microbial community structure through changes in vegetation, in the quality of litter shed, and through resultant changes in the humus pH, rather than only through soil compaction.  相似文献   

16.
Particularly in the temperate climate zone many forests have, at some moment in their history, been used as agriculture land. Forest cover is therefore often not as stable as it might look. How forest plant communities recovered after agriculture was abandoned allows us to explore some universal questions on how dispersal and environment limit plant species abundance and distribution. All studies looking at the effects of historical land use rely on adequate land use reconstruction. A variety of tools from maps, archival studies, and interviews to field evidence and soil analyses contribute to that. They allow us to distinguish ancient from recent forests and many studies found pronounced differences in forest plant species composition between them. A considerable percentage of our forest flora is associated with ancient forests. These ancient forest plant species (AFS) all have a low colonization capacity, suggesting that dispersal in space (distance related) and time (seed bank related) limit their distribution and abundance. However recent forests generally are suitable for the recruitment of AFS. There is clear evidence that dispersal limitation is more important than recruitment limitation in the distribution of AFS. Dispersal in time, through persistent seed banks, does not play a significant role. Ancient forests are not necessary more species-rich than recent forest, but if diversity is limited to typical forest plant species then ancient forests do have the highest number of plant species, making them highly important for nature conservation. The use of molecular markers, integrated approaches and modelling are all part of the way forward in this field of historical ecology.  相似文献   

17.
The silvicultural management of coppicing has been very common in deciduous forests in many European countries. After decades of decline of this practice, socio-economic changes might induce a revival valuing the biomass as a resource. New insights in the ecological processes that regulate plant diversity are relevant for a sustainable forest management. While studies on long-term changes are available, the short-term dynamics of the coppice forest understorey has not yet been explored. In this context, it is interesting to evaluate the species compositional changes, including the processes of species turnover and species impoverishment (nestedness) and to investigate the role of plant functional traits. For this purpose, we resampled a chronosequence of complex coppice beech forests of the Central Apennines (Italy) monitoring the short-time species dynamics of five years (i.e. from 2006 to 2011) in three age classes, i.e. post-logged, recovering and old coppice stands (0–16, 17–31 and > 32 years, respectively). In contrast to our expectation, declining species richness appeared only in the recovering stands, while the landscape scale (between-stand) heterogeneity, except for post-logged and recovering stands in 2011, did not change over five years. Significant temporal nestedness was found in each stage of succession. However, the rate of species turnover and species impoverishment do not significantly differ among the three age classes, indicating their constant importance along the forest regeneration after disturbance. Only in the early stage of forest regeneration after coppicing, species compositional changes are reflected by functional changes with surviving understorey species having clonal regeneration traits. Our results suggest an overall landscape-scale stability (and sustainability) of this coppice forest system. We conclude with management indications, highlighting the importance of maintaining the traditional local approach (coppicing with standards in small 0.5–1.0 ha sized management units with a ca 30-year rotation cycle) where active coppice parcels are interspersed by abandoned stands.  相似文献   

18.
Dominant understorey species influence forest dynamics by preventing tree regeneration at the seedling stage. We examined factors driving the spatial distribution of the monocarpic species Isoglossa woodii, a dominant understorey herb in coastal dune forests, and the effect that its cover has on forest regeneration. We used line transects to quantify the area of the forest understorey with I. woodii cover and with gaps in the cover. Paired experimental plots were established in semi-permanent understorey gaps with I. woodii naturally absent and in adjacent areas with I. woodii present to compare plant community composition, soil, and light availability between the two habitats. Isoglossa woodii was widespread, covering 65–95% of the understorey, while gaps covered the remaining 5–35% of the area. The spatial distribution of this species was strongly related to tree canopy structure, with I.␣woodii excluded from sites with dense tree cover. Seedling establishment was inhibited by low light availability (<1% of PAR) beneath I.␣woodii. When present, I. woodii reduced the density and species richness of tree seedlings. The tree seedling community beneath I. woodii represented a subset of the seedling community in gaps. Some species that were found in gaps did not occur beneath I. woodii at all. There were no significant differences between the sapling and canopy tree communities in areas with I. woodii gaps and cover. In the coastal dune forest system, seedling survival under I. woodii is dependent on a species’ shade tolerance, its ability to grow quickly during I. woodii dieback, and/or the capacity to regenerate by re-sprouting and multi-stemming. We propose a general conceptual model of forest regeneration dynamics in which the abundant understorey species, I. woodii, limits local tree seedling establishment and survival but gaps in the understorey maintain tree species diversity on a landscape scale.  相似文献   

19.
Aim Our objectives were to compare understorey plant community structure among forest types, and to test hypotheses relating understorey community structure within lower montane and subalpine forests to fire history, forest structure, fuel loads and topography. Location Forests on the North Rim of Grand Canyon National Park, Arizona, USA. Methods We measured understorey (< 1.4 m) plant community structure in 0.1‐ha plots. We examined differences in univariate response variables among forest types, used permutational manova to assess compositional differences between forest types, and used indicator species analysis to identify species driving the differences between forest types. We then compiled sets of proposed models for predicting plant community structure, and used Akaike's information criterion (AICC) to determine the support for each model. Model averaging was used to make multi‐model inferences if no single model was supported. Results Within the lower montane zone, pine–oak forests had greater understorey plant cover, richness and diversity than pure stands of ponderosa pine (Pinus ponderosa P. & C. Lawson var. scopulorum Engelm.). Plant cover was negatively related to time since fire and to ponderosa pine basal area, and was highest on northern slopes and where Gambel oak (Quercus gambelii Nutt.) was present. Species richness was negatively related to time since fire and to ponderosa pine basal area, and was highest on southern slopes and where Gambel oak was present. Annual forb species richness was negatively related to time since fire. Community composition was related to time since fire, pine and oak basal area, and topography. Within subalpine forests, plant cover was negatively related to subalpine fir basal area and amounts of coarse woody debris (CWD), and positively related to Engelmann spruce basal area. Species richness was negatively related to subalpine fir basal area and amounts of CWD, was positively related to Engelmann spruce basal area, and was highest on southern slopes. Community composition was related to spruce, fir and aspen basal areas, amounts of CWD, and topography. Main conclusions In montane forests, low‐intensity surface fire is an important ecological process that maintains understorey communities within the range of natural variability and appears to promote landscape heterogeneity. The presence of Gambel oak was positively associated with high floristic diversity. Therefore management that encourages lightning‐initiated wildfires and Gambel oak production may promote floristic diversity. In subalpine forests, warm southern slopes and areas with low amounts of subalpine fir and CWD were positively associated with high floristic diversity. Therefore the reduction of CWD and forest densities through managed wildfire may promote floristic diversity, although fire use in subalpine forests is inherently more difficult due to intense fire behaviour in dense spruce–fir forests.  相似文献   

20.
Abstract. We used a forest chronosequence at the Barro Colorado Nature Monument (BCNM) to examine changes in the abundance and species composition of seeds in the soil during forest succession. At each of eight sites varying from 20 yr to 100 yr since abandonment, and at two old-growth (> 500 yr) forest stands, we established two 160-m transects and sampled the surface 0–3 cm of soil in cores collected at each 5 m interval. Seed densities were estimated from the number of seedlings germinated from the soil over a six-week period. Contrary to expectation, neither the density of the soil seed bank, nor species richness or diversity were directly related to age since abandonment, but the density of the soil seed bank was correlated with the abundance of seed-bank-forming species in the standing vegetation. In marked contrast to published studies, herbaceous taxa were rare even in the youngest stands, and the common tree species, which accounted for most seeds in the soil, were present in all stands. The pioneer tree Miconia argentea (Melastomataceae) was the single most common species in the seed bank, accounting for 62% of seeds and present in 92% of soil samples. Rapid recovery of the vegetation of young regrowth stands on BCNM, when compared to sites elsewhere may be partly due to allochthonous seed rain from nearby mature forest stands and the lack of seed inputs of weeds and grasses from agricultural and pasture lands which may inhibit forest succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号