首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herbivores influence spatial heterogeneity in soil resources and vegetation in ecosystems. Despite increasing recognition that spatial heterogeneity can drive species richness at different spatial scales, few studies have quantified the effect of grazing on spatial heterogeneity and species richness simultaneously. Here we document both these variables in a rabbit-grazed grassland. We measured mean values and spatial patterns of grazing intensity, rabbit droppings, plant height, plant biomass, soil water content, ammonia and nitrate in sites grazed by rabbits and in matched, ungrazed exclosures in a grassland in southern England. Plant species richness was recorded at spatial scales ranging between 0.0001 and 150 m(2). Grazing reduced plant height and plant biomass but increased levels of ammonia and nitrate in the soil. Spatial statistics revealed that rabbit-grazed sites consisted of a mixture of heavily grazed patches with low vegetation and nutrient-rich soils (lawns) surrounded by patches of high vegetation with nutrient-poor soils (tussocks). The mean patch size (range) in the grazed controls was 2.1 +/- 0.3 m for vegetation height, 3.8 +/- 1.8 m for soil water content and 2.8 +/- 0.9 m for ammonia. This is in line with the patch sizes of grazing (2.4 +/- 0.5 m) and dropping deposition (3.7 +/- 0.6 m) by rabbits. In contrast, patchiness in the ungrazed exclosures had a larger patch size and was not present for all variables. Rabbit grazing increased plant species richness at all spatial scales. Species richness was negatively correlated with plant height, but positively correlated to the coefficient of variation of plant height at all plot sizes. Species richness in large plots (<25 m(2)) was also correlated to patch size. This study indicates that the abundance of strong competitors and the nutrient availability in the soil, as well as the heterogeneity and spatial pattern of these factors may influence species richness, but the importance of these factors can differ across spatial scales.  相似文献   

2.
Question: What are the changes in vegetation structure, soil attributes and mesofauna associated with grazing in mesic grasslands? Location: Southern Campos of the Río de la Plata grasslands, in south‐central Uruguay. Methods: We surveyed seven continuously grazed and ungrazed paired plots. Plant and litter cover were recorded on three 5‐m interception lines placed parallel to the fence in each plot. We extracted soil fauna from a 10 cm deep composite sample and analysed the oribatids. Soil attributes included bulk density, water content, organic carbon (in particulate and mineral associated organic matter) and nitrogen content and root biomass at different depths. Changes in floristic, Plant Functional Types and mesofauna composition were analysed by Non‐metric Multidimensional Scaling. Results: Species number was lower in ungrazed than in grazed plots. Of 105 species in grazed plots only three were exotics. Shrub and litter cover were significantly higher inside the exclosures, while the cover of Cyperaceae‐Juncaceae was lower. Grazing treatments differed significantly in plant and oribatid species composition. Grazing exclusion significantly reduced soil bulk density and increased soil water content. Carbon content in particulate organic matter was lower in the upper soil of ungrazed sites, but deeper in the profile, grazing exclosures had 8% more carbon in the mineral associated organic matter. Conclusions Our results generally agree with previous studies but deviate from the results of previous analyses in (1) the increase of shrub cover in ungrazed sites; (2) the redistribution of the soil organic carbon in the profile and (3) the low invasibility of the prairies regardless of grazing regime.  相似文献   

3.
Abstract. In southern France, the natural invasion by Quercus humilis of calcareous grassland takes place in a mosaic of herbaceous and scrubby patches. We hypothesized that the presence of the shrubs Buxus sempervirens and Juniperus communis alter the rate and the pathway of the succession by facilitating the regeneration of Q. humilis. To infer the process of facilitation at a large scale, the spatial distribution of Q. humilis was studied in relation to acorn sources and the type of plant cover in grazed and ungrazed sites. Abundant recruitment up to 80 m from the wood margins and from isolated oak trees in grassland shows that acorns are dispersed effectively. At the three study sites, the density of Q. humilis individuals was higher under shrubs than in grassland, suggesting that facilitation may occur. This density difference was much higher in the grazed sites than in the ungrazed site. Moreover, before grazing by livestock, the distribution of first-year seedlings is independent of vegetation cover. Thus, shrubs improve Q. humilis regeneration by protecting individuals from grazing. The high density of individuals at the northern edge of shrubs suggests that a second facilitation mechanism may exist, probably related to improved germination conditions. Facilitation by shrubs appears to be very important for Q. humilis dynamics.  相似文献   

4.
5.
To arctic breeding geese, the salt marshes of the International Wadden Sea are important spring staging areas. Many of these marshes have always been grazed with livestock (mainly cattle and sheep). To evaluate the influence of livestock grazing on composition and structure of salt-marsh communities and its consequences for habitat use by geese, a total of 17 pairs of grazed and ungrazed marshes were visited both in April and May 1999, and the accumulated grazing pressure by geese was estimated using dropping counts. Observed grazing pressure was related to management status and to relevant vegetation parameters.The intensity of livestock grazing influences the vegetation on the marsh. Salt marshes that are not grazed by livestock are characterised by stands with a taller canopy, a lower cover of grasses preferred by geese, and a higher cover of plants that are not preferred.Overall goose-dropping densities are significantly lower in ungrazed marshes compared to marshes grazed by livestock. Some ungrazed marshes had comparatively high goose grazing pressure, and these were all natural marshes on a sandy soil, or artificial mainland marshes with a recent history of intensive livestock grazing. Goose grazing is associated with a short canopy. The plant communities with short canopy, dominated by Agrostis stolonifera, Festuca rubra and Puccinellia maritima, together account for 85% of all goose droppings in our data.The sites that were not visited by geese differed very little from those that were visited, in the parameters we measured. This might indicate that there was no shortage of available habitat for spring staging geese in the Wadden Sea, in the study period.  相似文献   

6.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

7.
Questions: Does vegetation structure display any stability over the grazing season and in two successive years, and is there any correlation between the stability of these spatial patterns and local sward composition? Location: An upland grassland in the French Massif Central. Method: The mosaic of short and tall vegetation stands considered as grazed and ungrazed patches respectively is modeled as the realization of a Boolean process. This method does not require any arbitrarily set sward‐height thresholds to discriminate between grazed and ungrazed areas, or the use of additional variables such as defoliation indexes. The model was validated by comparing empirical and simulated sward‐height distributions and semi‐variograms. Results: The model discriminated between grazed and ungrazed patches at both a fine (1 m2) and a larger (500 m2) scale. Selective grazing on legumes and forbs and avoidance of reproductive grass could partly explain the stability of fine‐scale grazing patterns in lightly grazed plots. In these plots, the model revealed an inter‐annual stability of large‐scale grazing patterns at the time peak biomass occurred. At the end of the grazing season, lightly grazed plots showed fluctuating patch boundaries while heavily grazed plots showed a certain degree of patch stability. Conclusion: The model presented here reveals that selective grazing at the bite scale could lead to the creation of relatively stable patches within the pasture. Locally maintaining short cover heights would result in divergent within‐plot vegetation dynamics, and thus favor the functional diversity of vegetation.  相似文献   

8.
Abstract ‘Alpine grazing reduces blazing’ is a widely and strongly held view concerning the effects of livestock grazing on fuels, and therefore fire behaviour and impact, in Australia's high country landscapes. As a test of this hypothesis, we examined the patterns of burning across the alpine (treeless) landscapes of the Bogong High Plains in Victoria, following the extensive fires of January 2003. Data were collected from multiple transects, each 3–5 km long, with survey points located randomly at either 50, 200 or 500 m intervals. The transects traversed the major regions of the Bogong High Plains, both grazed and ungrazed. At each point, we recorded whether the point was burnt or unburnt, the vegetation type (closed‐heath, open‐heath, grassland or herbfield), the estimated prefire shrub cover, slope, aspect, and a GPS location. At burnt heathland sites, we recorded the minimum twig diameter (an a posteriori measure of fire severity) in a sample of common shrubs. In total, there were 108 km of transect lines, 419 survey points and 4050 twig measurements, with sample points equally distributed across grazed and ungrazed country. The occurrence of fire (i.e. burnt or unburnt) in grazed and ungrazed areas was analysed by logistic regression; the variation in twig diameters by anova . Approximately half of all points were burnt. There was no statistically significant difference between grazed and ungrazed areas in the proportion of points burnt. Fire occurrence was determined primarily by vegetation type, with the proportion burnt being 0.87 for closed‐heath, 0.59 for open‐heath, and 0.13 for grassland and all snow‐patch herbfield points unburnt. In both closed‐heath and open‐heath, grazing did not significantly lower the severity of fire, as measured by the diameter of burnt twigs. We interpret the lack of a grazing effect in terms of shrub dynamics (little or no grazing effect on long‐term cover of taller shrubs), diet and behaviour of cattle (herbs and dwarf shrubs eaten; tall shrubs not eaten and closed‐heath vegetation generally avoided), and fuel flammability (shrubs more flammable than grass). Whatever effects livestock grazing may have on vegetation cover, and therefore fuels in alpine landscapes, they are likely to be highly localized, with such effects unlikely to translate into landscape‐scale reduction of fire occurrence or severity. The use of livestock grazing in Australian alpine environments as a fire abatement practice is not justified on scientific grounds.  相似文献   

9.
1. Stream and riparian ecosystems in arid montane areas, like the interior western United States, are often just narrow mesic strands, but support diverse and productive habitats. Meadows along many such streams have long been used for rangeland grazing, and, while impacts to riparian areas are relatively well known, the effect of livestock grazing on aquatic life in streams has received less attention. 2. Attempts to link grazing impacts to disturbance have been hindered by the lack of spatial and temporal replication. In this study, we compared channel features and benthic macroinvertebrate communities (i) between 16 stream reaches on two grazed allotments and between 22 reaches on two allotments where livestock had been completely removed for 4 years, (ii) before and after the 4‐year grazing respite at a subset of eight sites and (iii) inside and outside of small‐scale fenced grazing exclosures (eight pairings; 10+ year exclosures) in the meadows of the Golden Trout Wilderness, California (U.S.A.). 3. We evaluated grazing disturbance at the reach scale in terms of the effects of livestock trampling on per cent bank erosion and found that macroinvertebrate richness metrics were negatively correlated with bank erosion, while the percentage of tolerant taxa increased. 4. All macroinvertebrate richness metrics were significantly lower in grazed areas. Bank angle, temperature, fine sediment cover and erosion were higher in grazed areas, while riparian cover was lower. Regression models identified riparian cover, in‐stream substratum, bank conditions and bankfull width‐to‐depth ratios as the most important for explaining variability in macroinvertebrate richness metrics. 5. Small‐scale grazing exclosures showed no improvements for in‐stream communities and only moderate positive effects on riparian vegetation. In contrast, metrics of macroinvertebrate richness increased significantly after a 4‐year period of no grazing. 6. The success of grazing removal reported here suggests that short‐term removal of livestock at the larger, allotment meadow spatial scale is more effective than long‐term, but small‐scale, local riparian area fencing, and yields promising results in achieving stream channel, riparian and aquatic biological recovery.  相似文献   

10.
We examined the effect of native large herbivores on aboveground primary production of nonforested habitat in Yellowstone National Park, Wyoming. Productivity of vegetation grazed by elk (Cervus elaphus) and bison (Bison bison) was compared with that of ungrazed (permanently fenced) vegetation at four sites. Two methods were used that, we believed, would provide the most accurate measurements under the different grazing regimes encountered in the study. Production of ungrazed vegetation in permanent exclosures (10×10 m or 15×15 m, 3 per site) and that of vegetation that was grazed only in the winter was taken as peak standing crop. Production of vegetation grazed during the growing season was the sum of significant increments (P<0.05) in standing crop inside temporary exclosures (1.5×1.5 m, 6 per site) moved every four weeks to account for herbivory.Aboveground productivity of grazed vegetation was .47% higher than that of ungrazed vegetation across sites (P<0.0003). This result could be explained by either a methodological or grazer effect. We believe it was the latter. Results from a computer simulation showed that sequential sampling with temporary exclosures resulted in a slight underestimation of production, suggesting that the reported differences between treatments were conservative. We suggest that stimulation of aboveground production by ungulates may be, in part, due to the migratory behavior of native ungulates that track young, high quality forage as it shifts spatially across the Yellowstone ecosystem.  相似文献   

11.
We explored the net effects of grazing on soil C and N pools in a Patagonian shrub–grass steppe (temperate South America). Net effects result from the combination of direct impacts of grazing on biogeochemical characteristics of microsites with indirect effects on relative cover of vegetated and unvegetated microsites. Within five independent areas, we sampled surface soils in sites subjected to three grazing intensities: (1) ungrazed sites inside grazing exclosures, (2) moderately grazed sites adjacent to them, and (3) intensely grazed sites within the same paddock. Grazing significantly reduced soil C and N pools, although this pattern was clearest in intensely grazed sites. This net effect was due to the combination of a direct reduction of soil N content in bare soil patches, and indirect effects mediated by the increase of the cover of bare soil microsites, with lower C and N content than either grass or shrub microsites. This increase in bare soil cover was accompanied by a reduction in cover of preferred grass species and standing dead material. Finally, stable isotope signatures varied significantly among grazed and ungrazed sites, with δ15N and δ13C significantly depleted in intensely grazed sites, suggesting reduced mineralization with increased grazing intensity. In the Patagonian steppe, grazing appears to exert a negative effect on soil C and N cycles; sound management practices must incorporate the importance of species shifts within life form, and the critical role of standing dead material in maintaining soil C and N stocks and biogeochemical processes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author Contributions  RAG designed study, performed research, analyzed data, wrote the paper; ATA designed study, wrote the paper; CGGM designed study, performed research, analyzed data; MGP performed research; OES designed study; RBJ designed study, contributed new methods.  相似文献   

12.
Question: What are the plant population‐ and community‐level effects of removal of dominant plant species in the shortgrass steppe? Location: The Shortgrass Steppe Long‐Term Ecological Research site in northern Colorado, USA. Methods: We annually measured plant cover and density by species for 10 years after a one‐time aboveground removal of the dominant perennial grass, Bouteloua gracilis. Removal and control plots (3 m × 3 m) were within grazed and ungrazed locations to assess the influence of grazing on recovery dynamics. Our analyses examined plant species, functional type, and community responses to removal, paying special attention to the dynamics of subdominant and rare species. Results: Basal cover of B. gracilis increased by an average of 1% per year, but there was significantly less plant cover in treatment compared to control plots for 5 years following removal. In contrast to the lower cover in treatment plots, the plant density (number of plants m?2) of certain subdominant perennial grasses, herbaceous perennial and annual forbs, a dwarf shrub, and cactus increased after removal of the dominant species, with no major change in species richness (number of species per 1 m × 1 m) or diversity. Subdominant species were more similar between years than rare species, but dominant removal resulted in significantly lower similarity of the subdominant species in the short term and increased the similarity of rare species in the long term. Conclusions: Removal of B. gracilis, the dominant perennial grass in the shortgrass steppe, increased the absolute density of subdominant plants, but caused little compensation of plant cover by other plants in the community and changes in species diversity.  相似文献   

13.
Question: Can wild ungulates efficiently maintain and restore open habitats? Location: Brandenburg, NE Germany. Methods: The effect of wild ungulate grazing and browsing was studied in three successional stages: (1) Corynephorus canescens‐dominated grassland; (2) ruderal tall forb vegetation dominated by Tanacetum vulgare; and (3) Pinus sylvestris‐pioneer forest. The study was conducted over 3 yr. In each successional stage, six paired 4 m2‐monitoring plots of permanently grazed versus ungrazed plots were arranged in three random blocks. Removal of grazing was introduced de novo for the study. In each plot, percentage cover of each plant and lichen species and total cover of woody plants was recorded. Results: Wild ungulates considerably affected successional pathways and species composition in open habitats but this influence became evident in alteration of abundances of only a few species. Grazing effects differed considerably between successional stages: species richness was higher in grazed versus ungrazed ruderal and pioneer forest plots, but not in the Corynephorus sites. Herbivory affected woody plant cover only in the Pioneer forest sites. Although the study period was too short to observe drastic changes in species richness and woody plant cover, notable changes in species composition were still detected in all successional stages. Conclusion: Wild ungulate browsing is a useful tool to inhibit encroachment of woody vegetation and to conserve a species‐rich, open landscape.  相似文献   

14.
In arid environments, grazing by exotic herbivores, including domestic livestock, can greatly influence native, small vertebrate assemblages. Whether the removal of livestock facilitates passive recovery of these assemblages depends on habitat condition and the species present. We explore changes in small mammal and reptile species richness, abundance, and composition in a degraded chenopod shrubland dominated by Acacia victoriae ssp. and open Acacia aneura (mulga) woodland destocked in 1976 and 1984, respectively. Data were obtained between 1997 and 2007, from two grazed and two ungrazed sites in each community. Species richness increased at a faster rate in ungrazed open A. aneura woodland, but did not differ significantly between ungrazed and grazed degraded chenopod shrubland. Subsequent analyses at a finer‐scale detected disparate responses in richness and abundance for microhabitat. At this scale, a greater number of species‐specific responses were also detected, including increased abundance of generalist species and decreased abundance of species requiring low cover. These results reiterate the potential for species‐specific responses to livestock that are more apparent in particular microhabitats. Furthermore, this investigation provides evidence for the gradual passive recovery of small mammal and reptile assemblages in both communities, which is facilitated by the removal of livestock in open A. aneura woodland in fair condition, but not degraded chenopod shrubland in poor condition.  相似文献   

15.
Abstract. Data on floristic composition and environmental variables were collected in floristically homogeneous oligotrophic pine (Pinus sylvestris) forests with heath-like under- storey vegetation in eastern Fennoscandia, and ordinated by non-linear multidimensional scaling (NMDS) in order to study the effect of lichen grazing by reindeer on the understorey vegetation. The study sites included areas with varying grazing pressure, as well as 50-yr old grazing exclosures. Sites rich in respectively bryophytes and lichens were placed at opposite ends of the ordination axes, and heavily grazed sites were placed in between them. Reindeer grazing increased the abundance of bryophytes, especially Dicranum spp. and Pleurozium schreberi. Grazing changed the vegetation to the extent that it resembled more mesotrophic sites, but this did not show any relationship with tree volume or other site productivity indicators. This was observed both in the ordination and, in a more compelling way, when exclosures with adjacent grazed areas were compared. No such signs were evident at ungrazed sites, where especially Cladina spp. spatially replace Cladonia spp. and tiny bryophytes like Barbilophozia spp., Polytrichum spp. and Pohlia nutans during succession. Cladina stellaris had almost disappeared from the most intensively grazed sites. The soil at ungrazed sites was characterized by high Al and Fe concentrations and bryophyte-rich sites by high Mn concentrations. Shannon's diversity index, depth of humus layer and proportion of bare ground also increased in sites getting richer in bryophytes.  相似文献   

16.
This paper reports on changes induced by the introduction of cattle in a grassland that had remained ungrazed for 9 yr, in comparison with two adjacent grasslands: one that remained enclosed and one that has been continuously subject to grazing. Basal cover was measured on 25 interception lines, each 1 m long, three times during one year. The variables studied were: total cover, cover of grasses and dicots, cover of creeping grasses, floristic composition, and dissimilarity among sites. At the first sampling, 2 yr after cattle re-introduction, the newly grazed site was more similar to the ungrazed than to the grazed site. The newly grazed site had very low cover of dicots; the species of dicots present were different from those found in the continuously grazed area. Creeping grasses had higher cover in the newly grazed site than in the other sites, and continued to increase. At the last sampling, one year later, the newly grazed site had become more similar to the contiuously grazed site. Only after 5 yr of cattle grazing the exotic dicots that were dominant in the continuously grazed site, were recorded in the re-opened site. The absence of propagules of these species or the absence of safe sites may account for this delayed invasion.  相似文献   

17.
Questions: Does species richness and abundance accumulate with grazing protection in low productivity ecosystems with a short evolutionary history of grazing, as predicted by emerging theory? How do responses to grazing protection inform degradation history? Location: Mulga (Acacia aneura) dry forest, eastern Australia, generally considered chronically degraded by livestock grazing. Methods: Three paired exclosures (ungrazed, and macropod‐grazed) were compared with open‐grazed areas after 25 years using quadrats located on either side of the fences. Additionally, the regional flora for mulga dry forest was assessed to identify species that may have declined and could be threatened by grazing. Results: Low herbaceous biomass accumulation (<1.3 t ha?1) with full grazing protection confirmed a low productivity environment. For most plant life forms the highest species richness was in macropod‐grazed exclosures, an intermediate grazing disturbance that best approximates the evolutionary history of the environment. This was the net outcome of species that both declined and increased in response to grazing. Regeneration and subsequent self‐thinning of mulga was promoted with grazing protection, but did not confound interpretation of species richness and abundance responses. At the regional scale only 11 native species out of 407 comprising the mulga dry forest flora were identified as rare and potentially threatened by grazing. Conclusions: Significant increases in richness or abundance of native plants with grazing protection, persistence of perennial grasses, regeneration of mulga and scant evidence of a major decline in the regional flora are not consistent with established assertions that long‐grazed mulga dry forest has crossed functional thresholds that limit recovery. Further, a peak in species richness under intermediate (macropod) grazing is counter to the shape of the response predicted by emerging theory for recovery of species richness in a low productivity environment. The finding prompts a more thorough understanding of the distinction between environments with inherently low productivity and those degraded by grazing.  相似文献   

18.
Different disturbances in similar habitats can produce unique successional assemblages of plants. We collected plant species composition and cover data to investigate the effects of three common types of disturbances—fire, anthropogenic clearing (‘cleared’), and clearing followed by goat grazing (‘cleared‐and‐grazed’)—on early‐successional coppice (dry forest) community structure and development on Eleuthera, Bahamas. For each disturbance type, both the ground layer (<0.5 m height) and shrub layer (>0.5 m height) were sampled in eight patches (>1 ha) of varying age (1–28 yr) since large‐scale mature coppice disturbance. Overall, plant communities differed among disturbance types; several common species had significantly higher cover in the shrub layer of fire patches, and cleared‐and‐grazed patches exhibited higher woody ground cover. Total percent cover in the shrub layer increased in a similar linear fashion along the investigated chronosequence of each disturbance type; however, cover of the common tree species, Bursera simaruba, increased at a notably slower rate in cleared‐and‐grazed patches. The pattern of increase and subsequent decrease in cover of Lantana spp. and Zanthoxylum fagara in the shrub layer was characterized by longer persistence and higher covers, respectively, in cleared‐and‐grazed patches, which also exhibited low peak cover and fast decline of nonwoody ground cover. Our results suggest that goats may accelerate some aspects of succession (e.g., quickly removing nonwoody ground cover) and retard other aspects (e.g., inhibiting growth of tree species and maintaining early‐successional shrubs in the shrub layer). These effects may lead to different successional trajectories, and have important conservation implications.  相似文献   

19.
The effects of soil texture and grazing by cattle on the production of seeds of Bouteloua gracilis were evaluated for a semiarid grassland in northeastern Colorado. Ten locations were chosen to represent the range in soil textures and grazing intensities found at the Central Plains Experimental Range research site. Number of flowering culms, inflorescences and seeds, length of each flowering culm, total biomass of reproductive structures (culms, inflorescences, and seeds), and basal area were assessed for 96 B. gracilis plants at each location. Community-level estimates of density of flowering culms and density of viable seeds were made for each location. Both soil texture and grazing by cattle were important to spatial variability in seed production and other indicators of reproductive effort by B. gracilis. Grazing was important in mediating effects of soil texture. On locations protected from grazing, soil texture had significant effects on seed production; the largest number of seeds was produced on the coarsest-textured soil and the fewest number on the finest-textured soil. Relationships between seed production and clay content and between seed production and other indicators of reproductive effort by B. gracilis were different for grazed and ungrazed locations. Spatial variability in seed production of B. gracilis as a result of spatial variability in soil texture and grazing may be important to the continued dominance of this species in the presence of disturbances that vary in time and space.  相似文献   

20.
Soil net N-mineralization rate was measured along a successional gradient in salt-marsh sites that were grazed by vertebrate herbivores, and in 5-year-old exclosures from which the animals were excluded. Mineralization rate was significantly higher at ungrazed than at grazed sites. In the absence of grazing, mineralization rate increased over the course of succession, whereas it remained relatively low when sites were grazed. The largest differences in mineralization rate between grazed and ungrazed sites were found at late successional stages where grazing pressure was lowest. The amount of plant litter was significantly lower at grazed sites. In addition, the amount of litter and potential litter (non-woody, live shoots) was linearly related to net N-mineralization rate. This implies that herbivores reduced mineralization rate by preventing litter accumulation. Bulk density was higher at grazed salt-marsh sites than at ungrazed sites. This factor may also have contributed to the differences in net N-mineralization rate between grazed and ungrazed sites. Received: 30 November 1997 / Accepted: 27 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号