首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: In the same landscape context — at a desert grassland‐shrubland transition zone, how does subdominant plant abundance vary in microsites around dominant grasses and shrubs? Location: Sevilleta LTER, New Mexico, USA (34°21’N; 106°53’W; 1650 m a.s.l.). Methods: We compared the distribution of subdominant plants in canopy, canopy edge and interspace microsites around individual shrubs (Larrea tridentata) and grasses (Bouteloua eriopoda) at a transition zone that has been encroached by shrubs within the past 50 ‐ 100 a. Plots of variable size according to microsite type and dominant plant size were sampled. Results: Subdominant abundance was higher in microsites around L. tridentata shrubs than in microsites around B. eriopoda. Furthermore, differences in species abundance and composition were higher among microsites around grasses than among microsites around shrubs. The distribution of subdominants was mostly explained by their phenological characteristics, which indicates the importance of temporal variation in resources to their persistence. Conclusions: This study of coexistence patterns around dominants revealed ecological contrasts between two dominant life forms, but other factors (such as disturbances) have to be taken into consideration to evaluate landscape‐scale diversity.  相似文献   

2.
Abstract The survival of Aspidosperma quebracho‐blanco juveniles in the Arid Chaco is facilitated under the canopy of nurse plants. The possible effects of nurse plants were studied at intra‐ and interspecific levels by analysing the spatial distribution of juveniles and adults of A. quebracho‐blanco, of the main shrubs Larrea divaricata and Mimozyganthus carinatus, and of the group of deciduous and evergreen shrub species, and their pair associations. Data were analysed using the SADIE (Spatial Analysis by Distance Indices) software. A. quebracho‐blanco seedling abundance followed the distribution pattern of the main shade‐providing species: an aggregated spatial distribution pattern in most of the categories studied. The seedling bank of A. quebracho‐blanco also showed an aggregated pattern and was spatially associated with shrubs and adults of its own species. The intensity of the association depended on the functional types: deciduous Fabaceae, deciduous non‐Fabaceae, evergreen and conspecific adults, each of which provides a different canopy structure and therefore different amounts of shade. The spatial association was significant with the evergreen group, and less significant with the deciduous Fabaceae group. There was no positive association with deciduous non‐Fabaceae, or with gaps (open sky). The differences generated by canopy cover may influence the nurse effect, as observed in the intensity of association of A. quebracho‐blanco with shrubs and conspecific adults.  相似文献   

3.
Eryngium cuneifolium Small. (Apiaceae) is a narrowly distributed endemic found only in Ceratiola ericoides (Florida rosemary)-dominated Florida scrub, a periodically burned, shrub-dominated habitat. Multivariate analyses using 22 ∗∗∗microhabitat characteristics indicated significant microhabitat and time-since-fire effects on survival, growth, and fecundity of 1287 individuals over a 4-yr period. Survival increased with distance to the nearest shrub, and plants in larger open patches had greater survival rates. Neighboring shrubs of Ceratiola ericoides and Calamintha ashei were associated with a higher mortality of E. cuneifolium than other neighboring shrub species. Survival was reduced by two-thirds over 4 yr (14% vs. 42%) for E. cuneifolium near C. ericoides. Sand accretion increased growth and fecundity. With greater time since fire, woody shrubs increasingly dominate and open patches shrink, significantly reducing survival, growth, and fecundity of E. cuneifolium. Effects were particularly dramatic between 2 and 7 yr postfire, when annual mortality increased from <10% to >30% (r = 0.74). This herbaceous species is dependent on an open habitat maintained by periodic fire. Belowground competition or allelopathy from shrubs probably restricts E. cuneifolium to recently burned, open patches within the most xeric parts of Florida scrub.  相似文献   

4.
Questions: How does the time interval between subsequent stand‐replacing fire events affect post‐fire understorey cover and composition following the recent event? How important is fire interval relative to broad‐ or local‐scale environmental variability in structuring post‐fire understorey communities? Location: Subalpine plateaus of Yellowstone National Park (USA) that burned in 1988. Methods: In 2000, we sampled understorey cover and Pinus contorta density in pairs of 12–yr old stands at 25 locations. In each pair, the previous fire interval was either short (7–100 yr) or long (100–395 yr). We analysed variation in understorey species richness, total cover, and cover of functional groups both between site pairs (using paired t‐tests) and across sites that experienced the short fire intervals (using regression and ordination). We regressed three principal components to assess the relative importance of disturbance and broad or local environmental variability on post‐fire understorey cover and richness. Results: Between paired plots, annuals were less abundant and fire‐intolerant species (mostly slow‐growing shrubs) were more abundant following long intervals between prior fires. However, mean total cover and richness did not vary between paired interval classes. Across a gradient of fire intervals ranging from 7–100 yr, total cover, species richness, and the cover of annuals and nitrogen‐fixing species all declined while the abundance of shrubs and fire‐intolerant species increased. The few exotics showed no response to fire interval. Across all sites, broad‐scale variability related to elevation influenced total cover and richness more than fire interval. Conclusions: Significant variation in fire intervals had only minor effects on post‐fire understorey communities following the 1988 fires in Yellowstone National Park.  相似文献   

5.
Abstract Three experiments were conducted to verify if an increase in environmental stress level would affect the interactions between two species of nurse shrubs and seedlings of Aspidosperma quebracho‐blanco. This is a mesic species with a generalist distribution over an extensive environments gradient. The relationship between Larrea divaricata and seedlings of A. quebracho‐blanco was studied in two contrasting soils, a silty loam soil with higher surface clay content and a sandy loam soil. The effect of seasonal variability of rainfall on the initial establishment of seedlings under the shade of L. divaricata was evaluated in three consecutive years. The effect of nurse plant shade was tested comparing two shrub species with different types of leaf life span (sclerophyllous‐evergreen and leguminous‐deciduous). The natural establishment of A. quebracho‐blanco depended on shaded microsites, but not on the type of shade provided by different nurse shrubs. Emergence and initial establishment depended on interactions of soil type and seasonal rainfall variation with nurse plants. The importance of facilitation increased with clay soil (CS). Sandy soil was ‘less humid’ than CS under shrub shade. However, establishment success depends on opportune even rainfall distribution in interaction with nurse plant presence.  相似文献   

6.
S. J. Wright  H. F. Howe 《Oecologia》1987,73(4):543-552
Summary We tested for intraspecific interference among Colorado Desert shrubs using an integrated analysis of spatial pattern and juvenile mortality. The data set included 7,000 woody perennials of 24 species in a mapped hectare of Joshua Tree National Monument, California. The site is dominated by Ambrosia dumosa (62.0% of the stems), with Larre tridentata a conspicuous secondary species (2.3% of the stems). Analyses of static pattern for common species showed: (1) aggregated adults and juveniles for Ambrosia dumosa, Erigonum fasciculatum, Mirabilis bigelovii, and Sphaeralcea ambigua, with more aggregation among juveniles than adults; (2) randomly distributed adults and juveniles for Krameria grayi, Opuntia rasmosissima, Simondsia chinensis, and Yucca schidigera. The summed volumes and distances between nearest conspecific neighbors were positively correlated for Ambrosia dumosa and Larrea tridentata, but not significantly correlated for eight remaining species with 100 individuals. Static pattern suggests only weak evidence for negative interactions in Ambrosia and Larrea, and little evidence for other species. Alternative mechanisms other than negative interaction that could give rise to these static patterns are discussed. Juvenile mortality was documented for four common species (Ambrosia dumosa, Eriogonum fasciculatum, Mirabilis bigelovii, and Sphaeralcea ambigua) that experienced substantial mortality. Analyses show: (1) the proportion of individuals that died was independent of the initial density of conspecifics; (2) distance to conspecific adults did not differ for juveniles that died versus those that survived; and (3) death was no more likely for juveniles that contacted other plants than for those that were isolated. The exception was a vine, Mirabilis bigelovii, whose juveniles survived better in contact with other plants. In sum, neither spatial pattern nor patterns of mortality showed clear evidence of negative intraspecific interference.  相似文献   

7.
Seedling recruitment is an important determinant of community structure in desert ecosystems. Positive photosynthetic growth and water balance responses to increasing atmospheric carbon dioxide (CO2) concentrations ([CO2]) are predicted to be substantial in desert plants, suggesting that recruitment could be stimulated. However, to date no studies have addressed the response of perennial plant recruitment in natural populations of desert shrubs exposed to elevated [CO2]. In April 1997, we employed Free‐Air Carbon Dioxide Enrichment (FACE) in order to increase atmospheric [CO2] in an undisturbed Mojave Desert ecosystem from ambient (~~ 370 µmol mol?1) to elevated CO2 (~~ 550 µmol mol?1). From 1997 to 2001 we seasonally examined survival, growth, gas exchange and water potential responses of Larrea tridentata and Ambrosia dumosa seedlings that germinated in Fall, 1997. Recruitment densities were not influenced by [CO2] in either species, although a two‐fold higher adult Ambrosia density under elevated [CO2] resulted in two‐fold higher seedling density (0.87 vs 0.40 seedlings m?2). Mortality was greatest for both species during the first summer (1998), despite above‐average rainfall during the previous Winter–Spring. A significant [CO2] × time interaction revealed that early survival was greater under elevated CO2, whereas a significant species time interaction revealed that overall survival was greater for Ambrosia (28%) than for Larrea (15%), regardless of [CO2]. Microsite (understorey or interspace) alone had no significant influence on survival. Significant species, microsite and species × microsite effects on growth (seedling height, stem diameter and canopy size) were found, but elevated CO2 had minimal impact on these parameters. Photosynthetic rates (Asat) for both species were higher at elevated [CO2] during certain seasons, but not consistently so. These results suggest that increased atmospheric [CO2] may enhance carbon (C) assimilation and survival of aridland perennial shrubs during favourable growing conditions, but that it may not counteract the effects of prolonged drought on mortality.  相似文献   

8.
9.
Drought and freezing are both known to limit desert plant distributions, but the interaction of these stressors is poorly understood. Drought may increase freezing tolerance in leaves while decreasing it in the xylem, potentially creating a mismatch between water supply and demand. To test this hypothesis, we subjected Larrea tridentata juveniles grown in a greenhouse under well‐watered or drought conditions to minimum temperatures ranging from ?8 to ?24 °C. We measured survival, leaf retention, gas exchange, cell death, freezing point depression and leaf‐specific xylem hydraulic conductance (kl). Drought‐exposed plants exhibited smaller decreases in gas exchange after exposure to ?8 °C compared to well‐watered plants. Drought also conferred a significant positive effect on leaf, xylem and whole‐plant function following exposure to ?15 °C; drought‐exposed plants exhibited less cell death, greater leaf retention, higher kl and higher rates of gas exchange than well‐watered plants. Both drought‐exposed and well‐watered plants experienced 100% mortality following exposure to ?24 °C. By documenting the combined effects of drought and freezing stress, our data provide insight into the mechanisms determining plant survival and performance following freezing and the potential for shifts in L. tridentata abundance and range in the face of changing temperature and precipitation regimes.  相似文献   

10.
Abstract. The demography of woody desert plants along the Colorado River in Grand Canyon, Arizona, USA, was analyzed using 355 pairs of replicated photographs taken as long ago as 1872. Longevity, recruitment, and mortality were determined for 38 species characteristic of ungrazed desert scrub. Individual plants that survived 100 yr or more included Acacia greggii, Ambrosia dumosa, Atriplex canescens, A. confertifolia, Echinocactus polycephalus, Ephedra spp., Fouquieria splendens, Larrea tridentata, Lycium andersonii, Opuntia acanthocarpa, O. basilaris, O. erinacea, Pleuraphis rigida, and Yucca angustissima. This is the first evidence of long lifespan for most of these species, particularly the succulents. Most of the long-lived species registered overall increases in population during the past century. Only four species with lifespans ≥ 100 yr had a net loss of individuals between 1889 and the present, and only two decreased between 1923 and the present. It seems likely that climatic fluctuations over the past century are largely responsible for these recruitment and mortality patterns; however, nurse plants, predation refuges and other biotic factors may also play a role.  相似文献   

11.
Bats live substantially longer than any other similar‐sized mammal despite high metabolic rates during flight. The underlying causes for the longevity of bats and the question whether bats exhibit signs of senescence – a progressive deterioration in performance – are still unclear. Here, we describe rates of senescence in individual annual fitness, survival and reproduction using survival and recruitment data collected over an 18‐yr period from 77 males and 81 females in a wild population of Saccopteryx bilineata (greater sac‐winged bat), a polygynous species inhabiting colonies where female groups are defended each by a territorial male. In individuals older than 4 yr of age, individual fitness contribution, survival and recruitment declined with increasing age in males but not in females. Rates of senescence in annual individual fitness and in reproduction of males were at least an order of magnitude higher than those of females. This finding might be explained by the ‘disposable soma theory’ that attributes senescence to an optimal allocation of resources to somatic maintenance and competing traits such as reproduction. The rate of senescence in the survival of males was also significant but of the same order of magnitude as the (non‐significant) rate of females. Unlike many other polygynous mammals, greater sac‐winged bats show little overt male–male competition. As senescence in survival was only weak in males, our results are consistent with the theories for polygynous mammals, which view the trade‐off between male investment in physical traits for intense male–male competition against survival as a major source of the decline of male survival with age. This is the first study to demonstrate sex‐specific senescence rates in a wild population of a small, long‐lived mammalian species.  相似文献   

12.
Hurricanes have dramatic effects on forest vegetation, but their effects on shrublands have rarely been studied. We analyzed the effects of three 2004 hurricanes—among the strongest on record in Florida—on vital rates of 12 rare plant species of pyrogenic interior Florida scrub and sandhill. Tree damage varied by vegetation type (being highest in areas with Pinus clausa) and was associated with debris deposition. Most rare species were minimally impacted by hurricanes. The two most frequently damaged species were the shrubs Prunus geniculata (11% of individuals) and Asimina obovata (7%); both were resilient to damage. Prunus geniculata had little mortality during the hurricane year but damaged plants had a temporary (1‐yr) reduction in relative growth rate. Prunus geniculata flowering was unaffected by hurricane damage. Hurricane damage had no effects on vital rates of A. obovata, Eriogonum longifolium var. gnaphalifolium, or Chrysopsis highlandsensis. Other species suffered little or no observable hurricane damage. Of 12 species analyzed, nine had similar annual survival in hurricane and nonhurricane years. Relatively low survival in the hurricane year (compared with other years) was linked to prehurricane drought or prescribed fire in two of three species. Thus, the 2004 hurricanes did not have important effects on populations of interior Florida scrub and sandhill plants, especially herbaceous species. This is in marked contrast to dramatic demographic responses to fire in central Florida and strong effects of hurricanes in coastal Florida, highlighting that these different disturbances may have divergent effects on vegetation and populations over short distances.  相似文献   

13.
Christof Bigler  Thomas T. Veblen 《Oikos》2009,118(8):1130-1138
For trees, fast growth rates and large size seem to be a fitness benefit because of increased competitiveness, attainment of reproductive size earlier, reduction of generation times, and increased short‐term survival chances. However, fast growth rates and large size entail reduced investment in defenses, lower wood density and mechanical strength, increased hydraulic resistance as well as problems with down‐regulation of growth during periods of stress, all of which may decrease tree longevity. In this study, we investigated the relationship between longevity and growth rates of trees and quantified effects of spatial environmental variation (elevation, slope steepness, aspect, soil depth) on tree longevity. Radial growth rates and longevities were determined from tree‐ring samples of 161 dead trees from three conifer species in subalpine forests of the Colorado Rocky Mountains (Abies lasiocarpa, Picea engelmannii) and the Swiss Alps (Picea abies). For all three species, we found an apparent tradeoff between growth rate to the age of 50 years and longevity (i.e. fast early growth is associated with decreased longevity). This association was particularly pronounced for larger P. engelmannii and P. abies, which attained canopy size, however, there were also significant effects for smaller P. engelmannii and P. abies. For the more shade‐tolerant A. lasiocarpa, tree size did not have any effect. Among the abiotic variables tested only northerly aspect significantly favored longevity of A. lasiocarpa and P. engelmannii. Trees growing on south‐facing aspects probably experience greater water deficits leading to premature tree death, and/or shorter life spans may reflect shorter fire intervals on these more xeric aspects. Empirical evidence from other studies has shown that global warming affects growth rates of trees over large spatial and temporal scales. For moist‐cool subalpine forests, we hypothesize that the higher growth rates associated with global warming may in turn result in reduced tree longevity and more rapid turnover rates.  相似文献   

14.
The host specificity, taxonomic composition and feeding guild of rare species were studied in communities of herbivorous insects in New Guinea. Leaf‐chewing and sap‐sucking insects (Orthoptera, Phasmatodea, Coleoptera, Lepidoptera and Hemiptera‐Auchenorrhyncha) were sampled from 30 species of trees and shrubs (15 spp. of Ficus, Moraceae, six spp. of Macaranga and nine species of other Euphorbiaceae) in a lowland rain forest. Feeding trials were performed with all leaf‐chewers in order to exclude transient species. Overall, the sampling produced 80 062 individuals of 1050 species. The species accumulation curve did not attain an asymptote, despite 950 person‐days of sampling. Rare species, defined as those found as single individuals, remained numerous even in large samples and after the exclusion of transient, non‐feeding species. There was no difference among plant species in the proportion of rare species in their herbivore communities, which was, on average, 45%. Likewise, various herbivore guilds and taxa had all very similar proportions of rare and common species. There was also no difference between rare and common species in their host specificity. Both highly specialised species and generalists, feeding on numerous plants, contributed to the singleton records on particular plant species. Predominantly, a species was rare on a particular host whilst more common on other, often related, host species, or relatively rare on numerous other host plants, so that its aggregate population was high. Both cases are an example of the “mass effect”, since it is probable that such rare species were dependent on a constant influx of immigrants from the other host plants. These other plants were found particularly often among congeneric plants, less so among confamilial plants from different genera and least frequently among plants from different families. There were also 278 very rare species, found as one individual on a single plant species only. Their host specificity could not be assessed; they might have been either very rare specialists, or species feeding also on other plants, those that were not studied. The former possibility is unlikely since monophagous species, collected as singletons at the present sampling effort, would have existed at an extremely low population density, less than 1 individual per 10 ha of the forest.  相似文献   

15.
Abstract. The dynamics of tillers in natural populations of three cohabiting perennial grass species, Agrostis stolonifera, Festuca rubra and Poa irrigata (= Poa pratensis ssp. irrigata) were studied for five years in a Baltic seashore meadow. The process of tiller population maintenance was very dynamic. Both birth and death rates of tillers were high, particularly in A stolonifera, and the turnover rate of the populations was high. Recruitment was mainly by vegetative tillers, produced continuously throughout the growing season. The proportion of flowering tillers was low, but varied between years. Considerable year-to-year variation was also found in birth and death rates. Despite this between-year variation and the differences found between species in flowering frequency, pattern of survivorship and tiller longevity, population sizes of the species remained relatively constant.  相似文献   

16.
Question: What are the qualitative and quantitative long‐term changes in the vascular epiphyte assemblage on a particular host tree species? Location: Lowland rain forest of the San Lorenzo Crane Plot, Republic of Panama. Methods: We followed the fate of the vascular epiphyte assemblage on 99 individuals of the palm Socratea exorrhiza by three censuses over the course of five years. Results: The composition of the epiphyte assemblage changed little during the course of the study. While the similarity of epiphyte vegetation decreased on individual palms through time, the similarity analysed over all palms increased. Even well established epiphyte individuals experienced high mortality with only 46% of the originally mapped individuals surviving the following five years. We found a positive correlation between host tree size and epiphyte richness and detected higher colonization rates of epiphytes per surface area on larger trees. Conclusions Epiphyte assemblages on individual S. exorrhiza trees were highly dynamic while the overall composition of the epiphyte vegetation on the host tree species in the study plot was stable. We suggest that higher recruitment rates, due to localized seed dispersal by already established epiphytes, on larger palms promote the colonization of epiphytes on larger palms. Given the known growth rates and mortality rates of the host tree species, the maximum time available for colonization and reproduction of epiphytes on a given tree is estimated to be ca. 60 years. This time frame will probably be too short to allow assemblages to be ever saturated.  相似文献   

17.
Abstract. In relation to the drought‐prone and nutrient‐poor habitat, vascular epiphytes are routinely referred to as inherently slow‐growing plants, although actual evidence is rare. To test this notion we measured in situ growth of the understorey orchid Aspasia principissa and the tank bromeliad Vriesea sanguinolenta, and, for the latter species, also the growth under favourable conditions in the greenhouse. Using growth analysis we show: (1) that in an intraspecific comparison, small to intermediate individuals yield the highest relative growth rates (RGR) in situ: A. principissa: 1.6 10–3 d‐1; V. sanguinolenta: 3.3 10–3 d‐1; (2) that the bromeliad reaches maximum size after ca. 15 yr, while the orchid needs at least 20 yr; and (3) small V. sanguinolenta plants exhibit a highly plastic growth response to favourable conditions in the greenhouse, reaching an almost 10‐fold increase in RGR. In spite of a substantial increase in growth under more favourable conditions, our results are consistent with the notion that epiphytes are inherently slow growing organisms.  相似文献   

18.
Understanding the mechanisms of species coexistence is a key task for ecology. Recent theory predicts that both competition and predation (which causes apparent competition among prey) can either promote or limit species coexistence. Both mechanisms cause negative interactions between individuals, and each mechanism promotes stable coexistence if it causes negative interactions to be stronger between conspecifics than between heterospecifics. However, the relative importance of competition and predation for coexistence in natural communities is poorly known. Here, we study how competition and apparent competition via pre‐dispersal seed predators affect the long‐term fecundity of Protea shrubs in the fire‐prone Fynbos biome (South Africa). These shrubs store all viable seeds produced since the last fire in fire‐proof cones. Competitive effects on cone number and pre‐dispersal seed predation reduce their fecundity and can thus limit recruitment after the next fire. In 27 communities comprising 49 990 shrubs of 22 Protea species, we measured cone number and per‐cone seed predation rate of 2154 and 1755 focal individuals, respectively. Neighbourhood analyses related these measures to individual‐based community maps. We found that conspecific neighbours had stronger competitive effects on cone number than heterospecific neighbours. In contrast, apparent competition via seed predators was comparable between conspecifics and heterospecifics. This indicates that competition stabilizes coexistence of Protea species, whereas pre‐dispersal seed predation does not. Larger neighbours had stronger competitive effects and neighbours with large seed crops exerted stronger apparent competition. For 97% of the focal plants, competition reduced fecundity more than apparent competition. Our results show that even in communities of closely related and ecologically similar species, intraspecific competition can be stronger than interspecific competition. On the other hand, apparent competition through seed predators need not have such a stabilizing effect. These findings illustrate the potential of ‘community demography’, the demographic study of multiple interacting species, for understanding plant coexistence.  相似文献   

19.
Question: What changes in species composition and cover have occurred in chaparral as a function of fire history across an ecoregion? Location: San Diego County, California, USA. Methods: Stands in which 40 mid‐elevation chaparral vegetation plots (each 400 m2 in area) were located in the 1930s were resurveyed in 2001. We stratified the stands into Infrequently versus Frequently burned (0–1 versus 2 or more fires recorded in the 91‐yr period), and Immature versus Mature (ã31 yr versus >31 yr since last fire), resulting in four groups. Ten stands were randomly selected from each of these groups for survey. Results: There were no major shifts in life form composition, e.g., live oak trees were not invading chaparral that had experienced little or no fire, nor were subshrubs or herbaceous species replacing shrubs in areas that had experienced more frequent fires. However, there was a notable increase in the frequency of the subshrub Eriogonum fasciculatum across all fire history groups. In the mature stands with infrequent fire, average cover of resprouting shrubs increased (from 72 to 91%) and cover of obligate seeding shrubs (species with fire‐cued germination) decreased (from 21 to 6%) significantly. Mature stands with frequent fire showed a significant decrease in resprouter cover (from 87 to 80%) and increase in obligate seeders (from 10 to 16%). Conclusions: While the tremendous changes in land use in southern California have been predicted to cause shifts in chaparral composition, these shifts are difficult to detect because species longevity and fire cycles are on the order of decades to a century. In this study, the expected trends could only be detected in groups that were mature at the time of the second survey.  相似文献   

20.
Ecophysiology of exotic and native shrubs in Southern Wisconsin   总被引:14,自引:0,他引:14  
Summary We compared seasonal trends in photosynthesis of two naturalized exotic shrubs (Rhamnus cathartica and Lonicera X bella) and two native shrubs (Cornus racemosa and Prunus serotina) in open and understory habitats in southern Wisconsin. We examined the relationships between resource availability and leaf photosynthetic performance in these four species. All four species had similar relationships between leaf nitrogen (N) content and photosynthetic rate, but the species differed in absolute leaf N content and therefore in photosynthetic rates. Maximum daily photosynthetic rates of all species were significantly correlated with leaf N content in the open habitat, but not in the understory, where low light availability was the major limitation to photosynthesis. Extended leaf longevity was important in the forest understory because it allowed shrubs to take advantage of high light availability at times when the overstory canopy was leafless. Early leaf emergence was more important than late senescence: from 27% to 35% of the annual carbon gain of P. serotina, R. cathartica, and L. X bella occurred prior to leaf emergence of C. racemosa, the species with the shortest leaf life span. Extended leaf longevity of exotic shrubs may help explain their persistence in the understory habitat, but it contributed relatively less to their annual carbon gain in the open habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号