首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen analyses of sediment cores from two small lakes within the boreal forest in the central Scandes Mountains help to elucidate the Holocene forest dynamics of the region. Analyses of pore/pollen grain diameter ratios of Alnus grains indicate the early Holocene presence of Alnus glutinosa in the study area. The results are discussed in conjunction with available pollen records to evaluate the importance of thermophilous trees during the early Holocene and to deduce the regional spread of Picea abies. Corylus avellana, Alnus glutinosa and Ulmus glabra were probably common constituents of the early Holocene forest. Tilia cordata may have occurred there as a rare tree. Pollen stratigraphies from the region do not indicate the occurrence of Quercus robur. The regional spread of Picea abies can be separated into two phases: a mid-Holocene establishment or first expansion of small outpost populations and a late-Holocene population expansion. The mid-Holocene shift in vegetation composition may have been caused by changes in the westerly airflow.  相似文献   

2.
The effect of UV-B on the photosynthetic apparatus of coniferous trees: Picea abies (L.) Karst., Picea pungens (Engelm.), Pinus sylvestris (L.), Pinus cembra (L.) and Abies alba (Mill.) was investigated. Three and four-year-old plantlets coming from different latitudes, longitudes and altitudes were used. The experiment was carried out in greenhouse. Two doses of ultraviolet-B irradiation were applied: control=0, low dose=11.32 and high dose=22.64 kJ·m−2·d−1 UV-BBE (biologically effective irradiance of UV-B). Measurements of chlorophyll fluorescence, gas exchange, chlorophyll and flavonoids content were carried out. Response of forest trees to an increased UV-B radiation depends on species, location of place of pantalets collecting and UV-B dose. Pinus cembra, Picea abies and Pinus sylvestris from high altitude (1000 m a.s.l.) were less sensitive to UV-B than these from plain location. The altitude determined adaptation of forest coniferous trees to an enhanced UV-B radiation much more than the latitudinal gradient. Permanent discoloration was observed only on the young needles of the fir plantlets that were grown in light limiting conditions. Photosynthetic parameters were affected by the UV-B radiation. Both maximal and the steady state fluorescence of chlorophyll were reduced as a consequence of elevated UV-B in case of some species. The chlorophyll content was enhanced, increased or was not affected according to species and to locations. The flavonoids content in the needles increased with chlorophyll content at both UV-B treatments. An opposite trend was found in the control. The increased content of screening pigments in the needles of all the tested coniferous trees was detected. Picea abies and Picea pungens photosynthesis response curves to the light and to the intercellular CO2 concentration did not change significantly under increased UV-B because of higher concentration in screening pigments in leaves. The increased concentration of flavonoids in forest litter may lead to changes in the biogeochemical cycle in the forest ecosystem.  相似文献   

3.
Abstract. Vegetation data from permanent plots were collected in 1931, 1961 and 1991 in a south boreal forest 20 km north of Oslo in southern Norway. Major changes were found in the vegetation composition during those 60 years. The main changes were a reduction in the frequency of species and the frequency of joint occurrences of vascular species such as Andromeda polifolia, Calluna vulgaris, Cornus suecica, Eriophorum vaginatum, Maianthemum bifolium, Melampyrum pratense, Trientalis europaea, Vaccinium uliginosum and V. oxycoccus, and mosses, e.g. Dicranum fuscescens, Hylocomium splendens, Pleurozium schreberi, Ptilidium ciliare and Ptilium crista-castrensis. The observed changes were interpreted as being induced by internal processes e.g. notably a long-term change from paludified forest to mesic forest. In particular the growth of Picea abies seems to be a main driving force. The dominance of Picea abies and Vaccinium myrtillus appears to have rendered the conditions more unfavourable for other species. A doubling of the living stem biomass of P. abies during the last 67 yr shows that this old-growth forest has not yet reached a steady state. It was demonstrated that species such as Deschampsia flexuosa and Molinia caerulea did not increase in frequency in response to nitrogen deposition, as has occurred elsewhere in northern Europe. pH in the humus layer increased with 0.2 unit from 1961 to 1991. The results of this study indicate that protection from logging has initiated the reduction of species in the field layer and bottom layer. This study questions if monitoring of forest vegetation should be restricted to protected forests as is the practice in Scandinavia today. We recommend that also areas with some kind of selective cutting will be used for monitoring of forest vegetation.  相似文献   

4.
 Mycorrhizas were collected from three Norway spruce (Picea abies) stands in southwest Germany, sorted on the morphotype level and analysed by fluorescein diacetate vital fluorescence staining and the accumulation of elements using inductively coupled plasma-atomic emission spectrometry (ICP-AES) and electron energy-loss spectroscopy (EELS). Xerocomus badius – Picea abies mycorrhizas showed a higher frequency of active hyphal sheaths and a higher potential to store nitrogen, phosphorus, potassium, magnesium, iron and zinc than other mycorrhizal types. Phosphorus and nitrogen were localized by EELS in vacuolar bodies which occurred consistently in the sheath of X. badius mycorrhizas. The results indicate that X. badius is well adapted to acidic stands and that its mycorrhizas are very efficient in uptake and storage of macronutrients. Accepted: 1 December 1997  相似文献   

5.
Open-canopy moss-rich woodlands dominated by Picea abies and Betula pubescens in northern Finland may undergo cyclic development with reciprocal replacement of the tree species due to the positive feedbacks on soil conditions. Although relations to the abiotic environment are well understood, intra- and interspecific interactions during development of sparse boreal forests have received less attention. We studied tree regeneration, growth and survival with respect to size and density of neighboring trees in four stands representing roughly four stages of the Picea–Betula forest cycle. We conducted spatial analysis (Ripley’s K-function) of mapped locations of live and dead stems to reconstruct the distribution of stems prior to mortality, and to infer possible causes of tree population decline. The prevalence of standing dead stems enabled us to test if mortality was associated with density and size of neighboring trees. Logistic regression was used to test for relationships between tree survival and local crowding indices. We also examined spatial autocorrelations of individual size characteristics to determine the mode and spatial extent of tree interactions. Picea abies had reduced recruitment in open areas occupied by mosses and dwarf-shrubs, and preferentially regenerated near B. pubescens, whereas B. pubescens formed small clumps (and occasionally these consisted entirely of stems from a single tree) that showed local repulsion from large P. abies trees. Size of neighboring trees was the primary determinant of individual growth and survival, whereas neighborhood density per se had only a weak effect. Picea abies had negatively correlated sizes among close neighbors (0–4 m radius) indicating that dominant trees suppress their smaller neighbors. Negative autocorrelations prevailed at the transition stages where the patches of smaller trees were concentrated around evenly spaced large trees. Tree sizes became spatially independent at the mature phase. We hypothesize that both low light and soil nutrient availability causes the P. abies population decline. Dominant trees in this high latitude forest have large light depletion zones and shallow root system to promote strong above- and below-ground competition with younger trees. Higher mortality rates within canopy patches were not compensated for by recruitment in gaps, causing P. abies population to decline steadily.  相似文献   

6.
Abstract. Data from three forest stands for the past 2000 yr show how the shade-intolerant species Pinus sylvestris and Betula pubescens maintain significant populations in the Swedish boreal landscape. Age structure data from a northern stand close to the range limits of Picea abies and Pinus complement a local pollen diagram, and reveal cyclic population fluctuations which can be related to periods of climatic stress and fire. Pollen data from two southern stands show that high fire frequencies in the past prevented the expansion of Picea populations. Reduction of the fire frequency during the last 200 yr has favoured Picea. A long time perspective reveals the population dynamics of long-lived species and indicates the controlling factors. Such knowledge permits assessment of the current status and likely future of forest stands.  相似文献   

7.
Manu Minodora 《Biologia》2012,67(2):390-396
Ecological research of gamasid mites was carried out in three natural forest ecosystems with Picea abies (1350 m a.s.l.), Abies alba (950–1000 m a.s.l.) and Fagus sylvatica (1200 m a.s.l.) situated in the Bucegi Massif, Southern Carpathians, Romania during 2001–2003. In the studied forest ecosystems, the taxonomic structure of gamasids was represented by 11 families (Epicriidae, Parasitidae, Veigaiidae, Ameroseiidae, Aceosejidae, Rhodacaridae, Macrochelidae, Pachylaelapidae, Laelapidae, Eviphididae and Zerconidae), with 39 genera and 97 species. The maximum number of species was recorded in the ecosystem with Abies alba (80), followed by the ecosystem with Fagus sylvatica (73), while the minimum in the ecosystem with Picea abies (68). 2,016 samples, 97 species with 23,441 individuals were analysed. In order to show similarities between predator mite populations from these areas, the vegetation and some abiotic parameters of the soil (temperature, humidity, pH) were analysed and described. Similarities between gamasid mite populations from the investigated ecosystems were analysed using the Jaccard index (q). The highest similarity index (q = 0.706) was recorded between gamasids identified in Picea abies and Abies alba forests, at soil level, in comparison with those from Abies alba and Fagus sylvatica forests (q = 0.656). Based on the similarity index, it is discussed that the gamasid population structure was influenced by the type of soil, the specific composition of the herbaceous, shrub and tree layers, the microclimatic factors, all characteristic for each studied ecosystem.  相似文献   

8.
The role of apoplastic invertase (β-d -fructofuranoside — fructohydrolase, EC 3.2.1.26) of the host Picea abies for carbohydrate uptake and growth of two of its natural ectomycorrhiza partners was studied. For that purpose, hyphae of Amanita muscaria (Pers. ex Fries) Hock. and Hebeloma crustuliniforme (Bull. ex Fries) Quell., as well as roots and suspension cultured cells of Picea abies (L.) Karst. were used. Apoplastic invertase activity was demonstrated on roots and suspension cultured cells of spruce (in the latter case with 21.7 nkat (g fresh weight)?1). Inhibition of the root cell wall invertase activity (pH optimum 4.5) by increasing the apoplastic pH allowed determination of the permanent release of sucrose from the root. However, under in vivo conditions at a lower cell wall pH the hydrolysation products glucose and fructose were predominantly found. In contrast to spruce cells and certain fungi, such as Saccharomyces (Novick et al., 1981) or Phycomyces (Ruiz-Herrera et al., 1989) invertase activity of the mycorrhizal fungi Hebeloma and Amanita was negligibly low. Furthermore, sucrose could not be consumed by Amanita and Hebeloma. As a consequence, cultures of these mycorrhizal fungi starved when kept on media with sucrose as sole carbohydrate source. But addition of invertase initiated hyphal growth immediately. Studies on carbohydrate uptake of host and fungal cells confirmed that the monosaccharides glucose and fructose were readily incorporated by spruce and fungal cells, with a clear preference for glucose. From these results it is suggested that apoplastic invertase activity of the host Picea abies is a precondition for the utilization of sucrose by the studied mycorrhizal fungi during the nutritional interaction of the symbiotic partners.  相似文献   

9.
When does dead wood turn into a substrate for spruce replacement?   总被引:1,自引:0,他引:1  
Question: How many years must elapse for freshly fallen Picea abies stems to be transformed into a substrate for P. abies recruitment? Location: Natural sub‐alpine spruce forest, 1200–1300 m a.s.l., western Carpathians, Poland. Methods: Coarse woody debris (CWD) was measured on nine plots with a total area of 4.3 ha. All individuals of P. abies regeneration growing on dead wood were counted and their age was estimated. Decay rate of logs was determined using dendrochronological cross‐dating of samples from logs in different decay stages. Results: Although CWD covered only 4% of the forest floor, 43% of the saplings were growing on decaying logs and stumps. The highest abundance of P. abies recruitment occurs on logs 30–60 years after tree death, when wood is in decay stages no. 4–7 (on an 8 degree decay scale). However, much earlier colonization is possible. The first seedlings may germinate on a log during the second decade after tree death and survive for decades. Their slow growth is possibly due to the gradual progressive decomposition of wood. Conclusions: This study confirms the importance of decaying wood for P. abies recruitment. The decaying logs exhibit continuous and favourable conditions for the germination of P. abies seeds throughout their decay process. Logs, irrespective of their decay stage and age, are colonized by young seedlings. This recruitment bank is constantly renewed.  相似文献   

10.
The frequency of occurrence of the litter-decomposing basidiomycetes ofPicea abies andP. glehnii forest floors in Hokkaido was investigated. In both theP. abies andP. glehnii forest plots (each 10 m×10 m), litter-decomposing basidiomycetes of the generaCollybia andMycena were frequently observed. Species composition, frequency of occurrence, and basidioma numbers of each species were different between the two forest plots, but several species were common to both. Seven species isolated from theP. glehnii forest plot (C. acervata, C. pinastris, Marasmius pallidocephalus, Ma. wettsteinii, My. aurantiidisca, My. clavicularis, Mycena sp. 1) and four species from theP. abies forest plot (C. pinastris, My. alphitophora (=My. osmundicola), Mycena sp. 1,My. vulgaris) were tested for their ability to degrade lignin by a simple plate test for extracellular phenoloxidases and by measuring Klason lignin loss from needle litter of spruce. All the strains of the litter-decomposing fungi tested showed positive reactions on the plate test. Lignin contained in the needle litter was degraded by all strains tested (onlyMy. alphitophora was not tested), and rates varied from 9% to 40% over a two-month period in vitro. Seven species with ligninolytic ability in theP. glehnii forest plot and four such species in theP. abies forest plot were found respectively in 77% and 60% of the 100 subplots in each plot. The results of this study suggest that lignin decomposition of needle litter by litter-decomposing basidiomycetes in the forest floor is a common event in the studiedPicea forests of Hokkaido and that the diversity of the ligninolytic activity among the species or strains may cause spatial heterogeneity of litter decomposition in thePicea forest floor.  相似文献   

11.
A wide range of recent studies have indicated that organic nitrogen may be of great importance to plant nitrogen (N) nutrition. Most of these studies have, however, been conducted in laboratory settings, excluding important factors for actual plant uptake, such as competition, mycorrhizal associations and soil interactions. In order to accurately evaluate the importance of different N compounds to plant N nutrition, field studies are crucial. In this study, we investigated short- as well as long-term plant nitrogen uptake by Deschampsia flexuosa, Picea abies and Vaccinium myrtillus from 15NO3, 15NH4+ and (U-13C, 15N) arginine, glycine or peptides. Root N uptake was analysed after 6 h and 64 days following injections. Our results show that all three species, irrespective of their type of associated mycorrhiza (arbuscular, ecto- or ericoid, respectively) rapidly acquired similar amounts of N from the entire range of added N sources. After 64 days, P. abies and V. myrtillus had acquired similar amounts of N from all N sources, while for D. flexuosa, the uptake from all N sources except ammonium was significantly lower than that from nitrate. Furthermore, soil analyses indicate that glycine was rapidly decarboxylated after injections, while other organic compounds exhibited slower turnover. In all, these results suggest that a wide range of N compounds may be of importance for the N nutrition of these boreal forest plants, and that the type of mycorrhiza may be of great importance for N scavenging, but less important to the N uptake capacity of plants.  相似文献   

12.
High latitude forests will experience large changes in temperature and CO2 concentrations this century. We evaluated the effects of future climate conditions on 2 dominant boreal tree species, Pinus sylvestris L. and Picea abies (L.) H. Karst, exposing seedlings to 3 seasons of ambient (430 ppm) or elevated CO2 (750 ppm) and ambient temperatures, a + 4 °C warming or a + 8 °C warming. Pinus sylvestris responded positively to warming: seedlings developed a larger canopy, maintained high net CO2 assimilation rates (Anet), and acclimated dark respiration (Rdark). In contrast, carbon fluxes in Picea abies were negatively impacted by warming: maximum rates of Anet decreased, electron transport was redirected to alternative electron acceptors, and thermal acclimation of Rdark was weak. Elevated CO2 tended to exacerbate these effects in warm‐grown Picea abies, and by the end of the experiment Picea abies from the +8 °C, high CO2 treatment produced fewer buds than they had 3 years earlier. Treatments had little effect on leaf and wood anatomy. Our results highlight that species within the same plant functional type may show opposite responses to warming and imply that Picea abies may be particularly vulnerable to warming due to low plasticity in photosynthetic and respiratory metabolism.  相似文献   

13.
  • Temperate tree species differ in their physiological sensitivity to declining soil moisture and drought. Although species‐specific responses to drought have often been suggested to be the result of different water uptake depths, empirical evidence for such a mechanism is scarce.
  • Here we test if differences in water uptake depths can explain previously observed species‐specific physiological responses of temperate trees to drought and if the water uptake depth of different species varies in response to declining soil moisture. For this purpose, we employed stable oxygen and hydrogen isotopes of soil and xylem water that we collected over the course of three growing seasons in a mature temperate forest in Switzerland.
  • Our data show that all investigated species utilise water from shallow soil layers during times of sufficient soil water supply. However, Fraxinus excelsior, Fagus sylvatica and Acer pseudoplatanus were able to shift their water uptake to deeper soil layers when soil water availability decreased in the topsoil. In contrast, Picea abies, was not able to shift its water uptake to deeper soil layers.
  • We conclude from our data that more drought‐resistant tree species are able to shift their water uptake to deeper soil layers when water availability in the topsoil is becoming scarce. In addition, we were able to show that water uptake depth of temperate tree species is a trait with high plasticity that needs to be characterised across a range of environmental conditions.
  相似文献   

14.
Abstract. We reconstructed forest development and disturbance events (fire and logging) during the last 1000 yr with tree‐ring data, pollen and charcoal analysis from a semi‐natural Fagus sylvatica‐Picea abies forest (ca. 1 km2) in the hemiboreal zone. According to pollen analysis, Quercus robur together with Pinus sylvestris was abundant in the forest until the turn of the 18th/19th centuries when these species disappeared completely (Quercus) or nearly completely (Pinus) and were replaced by Fagus and Picea. The disappearance of Quercus was corroborated by the remarkable discovery of a single Quercus stump that had been cut in the 18th century and had become overgrown and preserved by a very old Picea. In total 11 fires were dated from 1555 to 1748 from fire scars in several Pinus stumps cut 100 ‐ 200 yr ago. Since the last fire in 1748, no Quercus or Pinus have regenerated in the core of the reserve apart from single pines in neighbouring managed forest (80 yr ago). During the period of documented fires Fagus was protected from fires in a refuge made up of large boulders. Picea colonized the region at the time when the fires ceased 250 yr ago. We hypothesize that most of the fires were probably of human origin because of their patchiness and high frequency compared to the natural background levels of lightning ignitions in the region. On a 300‐yr time scale, logging and fire suppression seem to strongly overshadow the effect of climate change on forest composition and dynamics.  相似文献   

15.
Aim To test the hypothesis that dispersal characteristics alone can explain the past migration patterns of Fagus sylvatica and Picea abies observed in southern Scandinavia. Location Scandinavia, Europe. Methods The spreading dynamics of both species were analysed using a quantitative data–model comparison approach. Pollen data recording the arrival of the two species at 24 small forest‐hollow sites distributed across the study area were compared with simulated arrival times. The simulations were based on diffusive spread combined with long‐distance dispersal events. By systematically applying different parameter combinations yielding the desired colonization speeds we could identify values for the long‐distance dispersal component that minimized deviations from the observed arrival times. Results According to the minimization process, the optimal spreading rates were 100 m year?1 for F. sylvatica and 250 m year?1 for P. abies. Simulated dispersal alone could adequately explain the wave‐like spread of P. abies but failed to explain the scattered establishment pattern observed for F. sylvatica in Scandinavia. At the fine scale of stand establishment, local microclimatic conditions or site disturbance might be more important. The estimated spreading rates are high because the species colonized Scandinavia from different geographic directions and the rates slowed when their ranges overlapped. We present new estimates for the distance and frequency of long‐distance dispersal events for our modelled species. Main conclusions Our analyses suggest that the late Holocene spread of P. abies in Scandinavia was fairly rapid and was limited only by biological processes of dispersal, while that of F. sylvatica was limited by other factors probably controlled by site properties. Picea abies has maintained a rapid and constant rate of spread throughout at least the last 4000 years, despite significant changes in climate. There is uncertainty about the precise relationship between P. abies and climate in Scandinavia, so future distributions are not easy to forecast. For F. sylvatica in Scandinavia, site quality appears to have been a limiting factor, so future land use is likely to dictate its future distribution dynamics in combination with climatic factors.  相似文献   

16.
Summary The purpose of this study was to investigate the genetic variation of susceptibility to Agrobacterium within a Picea abies population. Tumor formation was studied in 16 open-pollinated families belonging to a central Swedish population of Picea abies. Strain A281 of Agrobacterium tumefaciens was used to infect 3-monthold seedlings in a five-block greenhouse experiment. The analysis of variance showed strong significance for the between-family variation of tumor-formation percentages, varying from 28% to 73%. The most susceptible material will be suitable for experiments on the production of transgenic plants in vitro using disarmed Agrobacterium strains.  相似文献   

17.
Palaeoecological data are compared with output from climate-driven forest simulation models to separate human influence as a driver of vegetation dynamics from other drivers such as climatic change. The transition from Tilia cordata to Fagus sylvatica dominance in a small forest hollow in Denmark was not predicted by a climate-driven forest simulation model and could be ascribed to anthropogenic impact. This transition can be upscaled to a large region of north-west Europe and contributes to a data-model mismatch for the European distribution of Fagus 6,000 years ago. A data-model mismatch for Picea abies during the last few centuries in southern Scandinavia can also be attributed to anthropogenic impact. Combining pollen data and vegetation models can help with the important task of upscaling from the scale of the forest stand, where anthropogenic impact is readily detectable, to regions and continents, where it is more challenging to distinguish anthropogenic impact from the impacts of climatic change.  相似文献   

18.
Photoinhibitory processes in the photosynthetic apparatus of the seedlings of Abies alba (Mill.), Picea abies (Karst.), and Pinus mugo (Turra) growing under strong shade (5 % of full solar irradiance) or full irradiance conditions were investigated in winter and spring using chlorophyll a fluorescence techniques. The extent of photoinhibition in needles as indicated by a decrease in maximum quantum yield of PS II photochemistry (Fv/Fm) depended on species, air temperature and acclimation to the light environment. Unexpectedly, shade-tolerant Abies alba was less affected by low-temperature photoinhibition compared to the other species. Fv/Fm recovered with increasing air temperature. During winter, the seedlings of Picea abies growing in shade showed higher Fv/Fm than those from full light. Non-photochemical quenching of fluorescence (NPQ) measured at the same levels of actinic light was higher in needles acclimated to full light except for Abies alba in February. Photosynthetic performance in term of ETR (apparent electron transfer rate) was also higher in full light-acclimated needles. In April, at ambient temperature, recovery of PS II efficiency from the stress induced by illumination with saturating light was faster in the needles of Picea abies than in those of Abies alba. The shade-acclimated needles of Abies alba and Picea abies showed greater down-regulation of PS II induced by high light stress.  相似文献   

19.
Summary Canopy photosynthesis is difficult to measure directly or to predict with complex models demanding knowledge of seasonal variation in environmental and physiological properties of the canopy. Trees in particular offer a challenge with their large, aerodynamically rough and seasonally-changing canopy properties. In this paper we assess the possibility of using specific leaf weight to predict seasonal and annual net photosynthetic rate in deciduous (Larix sp.) and evergreen (Picea abies) conifers.Annual photosynthetic rate and specific leaf weight of different positions of the crown in both species were highly correlated (r 2=0.930). Annual carbon uptake by different segments in a mature P. abies crown was closely related to leaf biomass. The relationship was improved by adjusting the leaf biomass of each segment in regard to its specific leaf weight relative to the maximum found in the canopy. The adjustment accounted for associated differences in photosynthetic activity. This combined structural index (leaf biomassxrelative specific leaf weight) could, when calibrated, predict the total annual carbon uptake by different parts of the crown. If direct measurements of photosynthesis are not available, the combined structural index may still serve as a comparative estimator of annual carbon uptake.  相似文献   

20.
Abstract Seeds of Picea abies were germinated and grown in either darkness or constant light. The chlorophyll content and photosynthetic carbon dioxide uptake of developing seedlings of different ages was determined. Ten-day-old dark grown seedlings showed an instant ability for photosynthetic carbon dioxide uptake and also formed further chlorophyll most rapidly upon subsequent illumination. These activities progressively diminished when the dark growth period was extended. Light grown seedlings reached a maximum chlorophyll level after 15 days growth, and this preceded maximal photosynthetic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号