首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Dispersal quality, an important component of seed disperser effectiveness, may strongly affect the rate of plant recruitment. Here we evaluated the quality of Cebus monkey dispersal by comparing the secondary removal fate and germination of fresh and Cebus‐ingested seeds of nine tree species on Barro Colorado Island, Panama. Overall, rates of secondary seed removal by vertebrates were low, with most Cebus defecations remaining undisturbed for extended periods on the forest floor. Only four of 30 feces were completely buried by dung beetles, and we found significantly higher vertebrate removal of defecated seeds than control seeds for only one species, Cordia bicolor. Seed germination varied greatly between plant taxa. Seeds of 3 out of 9 species showed significantly higher percent germination after monkey gut passage than control fresh seeds. Germination times tended to be shorter for defecated than for control seeds but were significantly different only for one of nine species, Cecropia insignis. Low rates of seed removal from Cebus feces, coupled with high germination probabilities, suggest high dispersal effectiveness for Cebus and contrasts strongly with patterns of post‐dispersal seed fate recorded for other primate species.  相似文献   

3.
1 In 1997, we ran two Malaise insect traps in each of four stands of wet forest in Costa Rica (two old‐growth and two 20‐year‐old stands) and four stands of moist forest in Panama (old‐growth, 20, 40 and 120‐year‐old stands). 2 Wet forest traps caught 2.32 times as many ichneumonoids as moist forest traps. The average catch per old‐growth trap was 1.89 times greater than the average catch per second‐growth trap. 3 Parasitoids of lepidopteran larvae were caught in higher proportions in the wet forest, while pupal parasitoids were relatively more active in the moist forest. 4 We hypothesize that moisture availability is of key importance in determining parasitoid activity, community composition and trophic interactions.  相似文献   

4.
Land-use change in the tropics is creating secondary forest at an unprecedented rate. In the tropical Americas, mature dry tropical forest is rapidly being converted to secondary forest during the fallow period of shifting cultivation. We investigated litter phosphorus (P) and nitrogen (N) dynamics in forests recovering from shifting cultivation of maize (corn) in three regions of the Southern Yucatan Peninsula, Mexico. Our goal was to understand how nutrient and water availability affect forest recovery following conversion of mature forest to agricultural land. To investigate such changes at a regional scale, newly fallen litter was collected monthly along a seasonal, a successional, and a precipitation gradient. Reflecting possible P limitation, litter P concentration declined with forest age, while litter N concentration did not differ between age classes. Average litter P concentration from the southern, wettest region was 0.87 mg/g, almost twice the litter P concentration in the drier central and northern regions (0.44 and 0.45 mg/g, respectively). Average N concentrations of litter from the three regions ranged from 1.1% to 1.2%, with no regional differences. However, minima in both P and N concentration from all regions were pronouncedly timed with peak litterfall, suggesting nutrient retranslocation during periods of water stress. Additionally, successional differences in litter P were clearest during wetter months. P nutrient-use efficiency was lowest in the southern region and highest in the central and northern study regions. N nutrient-use efficiency was up to 40 times lower than P nutrient-use efficiency and showed no regional differences. Overall, our results suggest that litter nutrient dynamics in secondary dry tropical forests of the Southern Yucatan are strongly influenced by water and nutrient availability, especially P, as well as land-use history.  相似文献   

5.
We investigated the influence of landscape-level variation in soil fertility and topographic position on leaf litter nutrient dynamics in a tropical rain forest in Costa Rica. We sampled across the three main edaphic conditions (ultisol slope, ultisol plateau, and inceptisol) to determine the effect of soil nutrients on leaf litter nutrient concentrations while controlling for topography, and to examine topographic effects while controlling for soil nutrients. Both leaf litter macronutrient [phosphorus (P), nitrogen (N), sulfur (S), calcium (Ca), potassium (K), magnesium (Mg)] and micronutrient concentrations were quantified throughout a 4-year period. Leaf litter [P], [N] and [K] varied significantly among soil types. The variation in [P], [N], and [K] was explained by soil fertility alone. Leaf litter [S], [Ca], and [Mg] did not vary among the three soil types. Macronutrient (P, K, Mg, S, Ca) concentrations in the leaf litter were much less variable than those of Fe and Al. Lower variability in essential plant nutrients suggests a great deal of plant control over the amount of nutrients resorbed before senescense. Leaf litter macronutrient concentrations varied significantly over the 4-year period, but the temporal variation did not differ among the three edaphic types as anticipated. Hence, although the magnitude of nutrient fluxes may be controlled by local factors such as soil fertility, temporal patterns are likely regulated by a common environmental variable such as precipitation or temperature.  相似文献   

6.
Abstract Climatic conditions should not hinder nutrient release from decomposing leaf‐litter (mineralization) in the humid tropics, even though many tropical forests experience drought lasting from several weeks to months. We used a dry‐season irrigation experiment to examine the effect of seasonal drought on nutrient concentrations in leaf‐fall and in decomposing leaf‐litter. In the experiment, soil in two 2.25‐ha plots of old‐growth lowland moist forest on Barro Colorado Island, Republic of Panama, was watered to maintain soil water potential at or above field capacity throughout the 4‐month dry season. Wet‐season leaf‐fall had greater concentrations of nitrogen (N, 13.5 mg g?1) and calcium (Ca, 15.6 mg g?1) and lower concentrations of sulfur (S, 2.51 mg g?1) and potassium (K, 3.03 mg g?1) than dry‐season leaf‐fall (N = 11.6 mg g?1, Ca = 13.6 mg g?1, S = 2.98 mg g?1, K = 5.70 mg g?1). Irrigation did not affect nutrient concentrations or nutrient return from forest trees to the forest floor annually (N = 18 g m?2, phosphorus (P) = 1.06 g m?2, S = 3.5 g m?2, Ca = 18.9 g m?2, magnesium = 6.5 g m?2, K = 5.7 g m?2). Nutrient mineralization rates were much greater during the wet season than the dry season, except for K, which did not vary seasonally. Nutrient residence times in forest‐floor material were longer in control plots than in irrigated plots, with values approximately equal to that for organic matter (210 in control plots vs 160 in irrigated plots). Calcium had the longest residence time. Forest‐floor material collected at the transition between seasons and incubated with or without leaching in the laboratory did not display large pulses in nutrient availability. Rather, microorganisms immobilized nutrients primarily during the wet season, unlike observations in tropical forests with longer dry seasons. Large amounts of P moved among different pools in forest‐floor material, apparently mediated by microorganisms. Arylsulfatase and phosphatase enzymes, which mineralize organically bound nutrients, had high activity throughout the dry season. Low soil moisture levels do not hinder nutrient cycling in this moist lowland forest.  相似文献   

7.
The epiphyte vegetation of Annona glabra on Barro Colorado Island, Panama   总被引:1,自引:0,他引:1  
Aim Information on the community composition, structure, and dynamics of epiphyte vegetation is scarce. A survey of the epiphytes occurring on all individuals of one particular host tree species in a well-studied neotropical research site allowed us a comparison of the epiphyte flora of this tree with the local epiphyte flora, the analysis of spatial distribution patterns and the use of these patterns as indications for changes in time. In the future, our results can be used as a baseline data-set for the direct observation of the long-term dynamics in epiphyte communities. Location The study was conducted on Barro Colorado Island (BCI), Panama. Methods We recorded all individuals of the vascular epiphytes growing on Annona glabra L., a flood-tolerant, multiple-stemmed tree, which is restricted to the shoreline of BCI. Data on tree biometrics, epiphyte species, and epiphyte abundances were collected for more than 1200 trees. Results In total, we encountered almost 15,000 epiphytic individuals in sixty-eight species, corresponding to more than one third of the entire epiphyte flora of Barro Colorado Island. The component species differed strongly in abundance: the four most important species accounted for >75% of all individuals. In most cases, the same four species were also the first to colonize a tree (=phorophyte). Colonization patterns indicated no replacement of early colonizers by late arrivals. Species richness and epiphyte abundances showed a positive correlation with the size and the density of the host trees. All species showed a highly clumped distribution and the physiognomy of epiphyte communities of individual trees was dominated either by one or several of the four most common species or by a set of frequently co-occurring tank bromeliads. Other species were dominant only in exceptional cases. Most species were always rare. A distance effect on community composition was mostly confined to a local scale with an increased similarity in the species assemblage of stems of a tree v. neighbouring trees. Main conclusions The epiphytes on a single small phorophyte species may encompass a surprisingly large proportion of the local epiphyte flora. The observations that most tree crowns are inhabited by a single or only very few species, and that all epiphyte species show highly clumped distributions suggest a predominance of very local dispersal within a tree crown, which is only infrequently interrupted by successful long-distance dispersal between crowns.  相似文献   

8.
A yearlong arboreal baiting survey of ants was conducted during 1983 on Barro Colorado Island, Panama. Because of a severe El Nino event, the 1983 dry season in Panama was exceptionally long and dry with a distinct boundary between the dry and wet seasons. Baits, located on tree trunks, attracted both terrestrial and arboreal ants, allowing comparisons between the two groups. Species composition at baits changed dramatically with season. Baits were primarily occupied by arboreal species during the dry season, while wet season baits were occupied mostly by terrestrial species. Arboreal and terrestrial ants differed markedly in their preferences for protein‐ or carbohydrate‐based baits; arboreal ants preferred protein‐based baits and terrestrial ants preferred carbohydrate‐based baits. Foraging preference for protein suggests that protein resources were limiting for arboreal ants, particularly during the dry season, and that carbohydrate resources were limiting for terrestrial ants. Fundamental differences in arboreal and terrestrial habitats may promote the differences in foraging strategies observed during an annual cycle in a seasonal tropical forest.  相似文献   

9.
Once the weathering of parent material ceases to supply significant inputs of phosphorus (P), vegetation depends largely on the decomposition of litter and soil organic matter and the associated mineralization of organic P forms to provide an adequate supply of this essential nutrient. At the same time, the decomposition of litter is often characterized by the immobilization of nutrients, suggesting that nutrient availability is a limiting factor for this process. Immobilization temporally decouples nutrient mineralization from decomposition and may play an important role in nutrient retention in low-nutrient ecosystems. In this study, we used a common substrate to study the effects of native soil P availability as well as artificially elevated P availability on litter decomposition rates in a lowland Amazonian rain forest on highly weathered soils. Although both available and total soil P pools varied almost three fold across treatments, there was no significant difference in decomposition rates among treatments. Decomposition was rapid in all treatments, with approximately 50% of the mass lost over the 11-month study period. Carbon (C) and nitrogen (N) remaining and C:N ratios were the most effective predictors of amount of mass remaining at each time point in all treatments. Fertilized treatments showed significant amounts of P immobilization (P < 0.001). By the final collection point, the remaining litter contained a quantity equivalent to two-thirds of the initial P and N, even though only half of the original mass remained. In these soils, immobilization of nutrients in the microbial biomass, late in the decomposition process, effectively prevents the loss of essential nutrients through leaching or occlusion in the mineral soil.  相似文献   

10.
Sequences of 16S rRNA and partial 23S rRNA genes and PCR assays with genotype-specific primers indicated that bacteria in the genus Burkholderia were the predominant root nodule symbionts for four mimosoid legumes (Mimosa pigra, M. casta, M. pudica, and Abarema macradenia) on Barro Colorado Island, Panama. Among 51 isolates from these and a fifth mimosoid host (Pithecellobium hymenaeafolium), 44 were Burkholderia strains while the rest were placed in Rhizobium, Mesorhizobium, or Bradyrhizobium. The Burkholderia strains displayed four distinct rRNA sequence types, ranging from 89% to 97% similarity for 23S rRNA and 96.5-98.4% for 16S rRNA. The most common genotype comprised 53% of all isolates sampled and was associated with three legume host species. All Burkholderia genotypes formed nodules on Macroptilium atropurpureum or Mimosa pigra, and sequencing of rRNA genes in strains re-isolated from nodules verified identity with inoculant strains. Sequence analysis of the nitrogenase alpha-subunit gene (nifD) in two of the Burkholderia genotypes indicated that they were most similar to a partial sequence from the nodule-forming strain Burkholderia tuberum STM 678 from South Africa. In addition, a PCR screen with primers specific to Burkholderia nodB genes yielded the expected amplification product in most strains. Comparison of 16S rRNA and partial 23S rRNA phylogenies indicated that tree topologies were significantly incongruent. This implies that relationships across the rRNA region may have been altered by lateral gene transfer events in this Burkholderia population.  相似文献   

11.
We examined social and spatial relations of adult males in one group of mantled howling monkeys (Alouatta palliata) on Barro Colorado Island (BCI) in central Panama to document patterns of association. Beyond the existence of an alpha male, we could not distinguish any linear dominance hierarchy among the 6 study males. All males copulated with estrous females. Our findings contrast with reports of intragroup male behavior in Costa Rican howlers. Study males engaged in little or no affiliative or agonistic behavior with one another, but engaged in significantly more such interactions with females. The alpha male, the oldest male and a younger male were most frequently in association with females. Of group males, the oldest male associated significantly more with other males. Overall, male behavior in mantled howling monkeys on BCI generally followed the van Hooff and van Schaik (1994) model of male relationships. The low incidence of intragroup social interactions of any type in the focal males may reflect the energetic costs of social behavior. We suggest that intragroup social relationships among mantled howler males are structured by more subtle means than overt physical interactions, possibly including vocal communication, relationships with individual group females, and kinship.  相似文献   

12.
We measured concentrations of soil nutrients (0–15 and 30–35 cm depths) before and after the dry season in control and dry-season irrigated plots of mature tropical moist forest on Barro Colorado Island (BCI) in central Panama to determine how soil moisture affects availability of plant nutrients. Dry-season irrigation (January through April in 1986, 1987, and 1988) enhanced gravimetric soil water contents to wet-season levels (ca. 400 g kg–1 but did not cause leaching beyond 0.8 m depth in the soil. Irrigation increased concentrations of exchangeable base cations (Ca2+, Mg2+, K+, Na+), but it had little effect on concentrations of inorganic N (NH4 +C, NO3 and S (SO4 2–). These BCI soils had particularly low concentrations of extractable P especially at the end of the dry season in April, and concentrations increased in response to irrigation and the onset of the rainy season. We also measured the response of soil processes (nitrification and S mineralization) to irrigation and found that they responded positively to increased soil moisture in laboratory incubations, but irrigation had little effect on rates in the field. Other processes (plant uptake, soil organic matter dynamics) must compensate in the field and keep soil nutrient concentrations at relatively low levels.  相似文献   

13.
Seedling and sapling dynamics in a Puerto Rican rain forest were compared between forest understory and soil pits created by the uprooting of 27 trees during Hurricane Hugo. Soil N and P, organic matter, and soil moisture were lower and bulk densities were higher in the disturbed mineral soils of the pits than in undisturbed forest soils ten months after the hurricane. No differences in N and P levels were found in pit or forest soils under two trees with N–fixing symbionts (Inga laurina and Ormosia krugii) compared to soils under a tree species without N–fixing sym–bionts (Casearia arborea), but other soil variables (Al, Fe, K) did vary by tree species. Forest plots had greater species richness of seedlings (<10 cm tall) and saplings (10–100 cm tall) than plots in the soil pits (and greater sapling densities), but seedling densities were similar between plot types. Species richness and seedling densities did not vary among plots associated with the three tree species, but some saplings were more abundant under trees of the same species. Pit size did not affect species richness or seedling and sapling densities. Recruitment of young Cecropia schreberiana trees (>5 m tall) 45 months after the hurricane was entirely from the soil pits, with no tree recruitment from forest plots. Larger soil pits had more tree recruitment than smaller pits. Defoliation of the forest by the hurricane created a large but temporary increase in light availability. Recruitment of C. schreberiana to the canopy occurred in gaps created by the treefall pits that had lower soil nutrients but provided a longer–term increase in light availability. Treefall pits also significantly altered the recruitment and mortality of many understory species in the Puerto Rican rain forest but did not alter species richness.  相似文献   

14.
Abstract The influence of forest stand composition on soil was investigated by comparing the forest floor (FH) and upper mineral soil (0–20 cm) nutritional properties of jack pine and aspen stands on two soil types of contrasting fertility, a coarse-textured and a fine-textured deposit, in a replicated design. The studied tree species are pioneers that are found after major disturbances in the southern boreal forest of western Quebec and that differ in their nutrient requirements but not in their growth rate. Soil organic matter as well as total and available N, P, K, Ca, Mg contents were determined and the relationships with nutrient accumulation in tree biomass were studied. On both soil types a greater total and available nutrient accumulation in the forest floor layer was observed in aspen than in jack pine whereas such differences between stand types could not be detected in the mineral soil. Differences in FH nutrient content between stand types were larger on coarse deposits than on fine-textured soils. These results support the hypothesis that tree species with greater nutrient requirements cause an enrichment of the surface soil at least in the short term. The modulation of tree species effect by soil type was contrary to the pattern observed in other studies since a greater expression of this effect was observed on poorer soils. Differences in soil nutrient content were related to levels of organic matter accumulation.  相似文献   

15.
Effects of Exotic Plant Invasions on Soil Nutrient Cycling Processes   总被引:41,自引:3,他引:38  
Although it is generally acknowledged that invasions by exotic plant species represent a major threat to biodiversity and ecosystem stability, little attention has been paid to the potential impacts of these invasions on nutrient cycling processes in the soil. The literature on plant–soil interactions strongly suggests that the introduction of a new plant species, such as an invasive exotic, has the potential to change many components of the carbon (C), nitrogen (N), water, and other cycles of an ecosystem. I have reviewed studies that compare pool sizes and flux rates of the major nutrient cycles in invaded and noninvaded systems for invasions of 56 species. The available data suggest that invasive plant species frequently increase biomass and net primary production, increase N availability, alter N fixation rates, and produce litter with higher decomposition rates than co-occurring natives. However, the opposite patterns also occur, and patterns of difference between exotics and native species show no trends in some other components of nutrient cycles (for example, the size of soil pools of C and N). In some cases, a given species has different effects at different sites, suggesting that the composition of the invaded community and/or environmental factors such as soil type may determine the direction and magnitude of ecosystem-level impacts. Exotic plants alter soil nutrient dynamics by differing from native species in biomass and productivity, tissue chemistry, plant morphology, and phenology. Future research is needed to (a) experimentally test the patterns suggested by this data set; (b) examine fluxes and pools for which few data are available, including whole-site budgets; and (c) determine the magnitude of the difference in plant characteristics and in plant dominance within a community that is needed to alter ecosystem processes. Such research should be an integral component of the evaluation of the impacts of invasive species.  相似文献   

16.
Habitat fragmentation may influence genetic variability through reductions in population size and the physical isolation of conspecifics. We explored the effects of these factors on genetic diversity in a population of mantled howler monkeys (Alouatta palliata) on Barro Colorado Island (BCI), Panama. The study population was established in 1914 when an unknown number of resident individuals were isolated from the surrounding mainland by damming of the Río Chagres to create the Panama Canal. Analyses of 10 microsatellite loci indicated that, despite this isolation, the howler monkeys on BCI exhibit levels of genetic diversity (H S = 0.584 ± 0.063) among the highest reported for any species of Alouatta. These data also revealed that although relatedness among adults in a social group was significantly greater than zero, the BCI population is not highly genetically structured. Tests for genetic bottlenecks based on departures from equilibrium expectations failed to reveal evidence of a recent reduction in population size. In contrast, coalescent modeling indicated that this population has likely experienced a marked decline within the last few 100 years. These findings generate new insights into the genetic structure of A. palliata and suggest that while the formation of BCI may not have substantially reduced genetic variation in these animals, genetic diversity has been influenced by historical changes in population size.  相似文献   

17.
I used a mesic to wet precipitation gradient on Maui, Hawaii, to test whether variation in rainfall regulates decomposition in tropical wet forest. Decomposition rates of leaves and roots from the dominant tree species, Metrosideros polymorpha, were measured at six sites similar in temperature regime, parent material, ecosystem age, vegetation, and topographical relief, whereas mean annual precipitation (MAP) at these six sites varied from 2200 to over 5000 mm/y. In situ decomposition rates of leaves placed on the soil surface declined by a factor of 6.4 with increased precipitation, whereas the decomposition rate of roots placed below ground declined by a factor of 2.3 across the gradient. Leaves collected from the 2200-mm site and placed at all sites on the gradient decomposed faster on the soil surface than they did below ground, whereas both above- and belowground decomposition rates of the common leaves decreased by a factor of 2.5 with increased precipitation. Of the environmental variables that changed with MAP, soil oxygen availability appeared to be the proximal factor that limited decomposition rates across the gradient, both above and below ground. When plant tissue collected from all sites across the gradient was decomposed at a common site, leaves from the wettest sites decomposed almost three times more slowly than leaves from the mesic sites. In contrast, roots from across the gradient all decomposed at a similar rate in a common site. Of tissue chemistry variables, high lignin concentration was correlated consistently with slow decomposition for roots and leaves. These results suggest that soil oxygen limitation combined with poorly decomposable leaves caused slower rates of decomposition and nutrient release with increased rainfall in these upland forests. Received 14 April 2000; Accepted 11 December 2000.  相似文献   

18.
19.
20.
Dynamics of C,N, P and S in grassland soils: a model   总被引:42,自引:8,他引:42  
We have developed a model to simulate the dynamics of C, N, P, and S in cultivated and uncultivated grassland soils. The model uses a monthly time step and can simulate the dynamics of soil organic matter over long time periods (100 to 10,000 years). It was used to simulate the impact of cultivation (100 years) on soil organic matter dynamics, nutrient mineralization, and plant production and to simulate soil formation during a 10,000 year run. The model was validated by comparing the simulated impact of cultivation on soil organic matter C, N, P, and S dynamics with observed data from sites in the northern Great Plains. The model correctly predicted that N and P are the primary limiting nutrients for plant production and simulated the response of the system to inorganic N, P, and S fertilizer. Simulation results indicate that controlling the C:P and C:S ratios of soil organic matter fractions as functions of the labile P and S levels respectively, allows the model to correctly simulate the observed changes in C:P and C:S ratios in the soil and to simulate the impact of varying the labile P and S levels on soil P and S net mineralization rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号