首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mucolipidosis II (ML-II) is a fatal inherited metabolic disease caused by deficiency of GlcNAc-phosphotransferase, which plays a role in generating the mannose 6-phosphate recognition marker on lysosomal enzymes. In ML-II, many lysosomal acid hydrolases are mistargeted out of cells, and lysosomes become filled with undigested substrates, which explains inclusion cell disease as an alternative name for this disease. In this study, we revealed various cellular phenotypes in ML-II skin fibroblasts. We quantitated phospholipid and cholesterol within cells and showed ~2-fold accumulation in ML-II as compared with normal cells. Lysosomal pH of ML-II cells was higher than that of normal cells (5.29 ± 0.08 versus 4.79 ± 0.10, p < 0.001). The proliferated lysosomes in ML-II cells were accumulated ~3-fold in amount as compared with normal cells. Intracellular logistics including endocytosis and mannose 6-phosphate receptor recycling were impaired in ML-II cells. To confirm whether these ML-II cellular phenotypes derive from deficient lysosomal acid hydrolases within lysosomes, we performed supplementation of lysosomal enzymes using a partially purified total enzyme mixture, which was derived from the conditioned culture medium of normal skin fibroblasts after NH(4)Cl treatment. This supplementation corrected all of the previously described ML-II phenotypes. In addition, the autophagic and mitochondrial impairment that we have previously reported improved, and inclusion bodies disappeared on electron micrography following total lysosomal enzyme supplementation. Our results indicate that various cellular phenotypes in ML-II are caused by the deficiency of many lysosomal enzymes and massive accumulation of undigested substrates.  相似文献   

2.
Using electron microscopic immunocytochemistry with gold probes, we have studied the localization of acid alpha-glucosidase, N-acetyl-beta-hexosaminidase and beta-glucocerebrosidase in cultured skin fibroblasts from control subjects and patients with mucolipidosis II (I-cell disease). In control fibroblasts, a random distribution of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase within the lysosomes was observed, whereas beta-glucocerebrosidase was found to be localized on or near the lysosomal membrane. The observations confirm the soluble character of acid alpha-glucosidase and N-acetyl-beta-hexosaminidase and the membrane-bound character of beta-glucocerebrosidase. In I-cell fibroblasts an abnormal localization of the two soluble enzymes was found. Labeling in lysosomes was very weak, but instead, small 'presumptive' vesicles containing both enzymes were detected throughout the cytoplasm and close to the plasma membrane. These vesicles could be involved in the secretion of the two enzymes. In contrast, a normal membrane-bound lysosomal localization was observed for beta-glucocerebrosidase. It is concluded that the intracellular transport of beta-glucocerebrosidase to the lysosomes can occur even when the mannose-6-phosphate recognition system is defective. This explains the normal activity of beta-glucocerebrosidase in I-cells in contrast to the deficiency of most other lysosomal enzymes.  相似文献   

3.
To better understand the role of lysosomes in apoptosis, we compared the responses to apoptotic stimuli of normal fibroblasts with those of inclusion cells (I-cells), i.e., fibroblasts with impaired function of lysosomal enzymes due to their missorting and ensuing nonlysosomal localization. Although both cell types did undergo apoptosis when exposed to the lysosomotropic detergent MSDH, the redox-cycling quinone naphthazarin, or the protein kinase inhibitor staurosporine, I-cells exerted a markedly decreased response to these agonists than did normal fibroblasts. Furthermore, leupeptin and pepstatin A (inhibitors of cysteine and aspartic proteases, respectively) suppressed staurosporine-induced apoptosis of normal fibroblasts, whereas survival of I-cells was unaffected. These findings give further support for the involvement of lysosomal enzymes in apoptosis and suggest I-cells as a suitable model for studying the role of lysosomes in programmed cell death.  相似文献   

4.
Lectins and traffic in the secretory pathway   总被引:7,自引:0,他引:7  
Hauri H  Appenzeller C  Kuhn F  Nufer O 《FEBS letters》2000,476(1-2):32-37
Evidence is accumulating that intracellular animal lectins play important roles in quality control and glycoprotein sorting along the secretory pathway. Calnexin and calreticulin in conjunction with associated chaperones promote correct folding and oligomerization of many glycoproteins in the endoplasmic reticulum (ER). The mannose lectin ERGIC-53 operates as a cargo receptor in transport of glycoproteins from ER to Golgi and the homologous lectin VIP36 may operate in quality control of glycosylation in the Golgi. Exit from the Golgi of lysosomal hydrolases to endosomes requires mannose 6-phosphate receptors and exit to the apical plasma membrane may also involve traffic lectins. Here we discuss the features of these lectins and their role in glycoprotein traffic in the secretory pathway.  相似文献   

5.
The mannose 6-phosphate receptor and the biogenesis of lysosomes   总被引:122,自引:0,他引:122  
Localization of the 215 kd mannose 6-phosphate receptor (MPR) was studied in normal rat kidney cells. Low levels of receptor were detected in the trans Golgi network, Golgi stack, plasma membrane, and peripheral endosomes. The bulk of the receptor was localized to an acidic, reticular-vesicular structure adjacent to the Golgi complex. The structure also labeled with antibodies to lysosomal enzymes and a lysosomal membrane glycoprotein (lgp120). While lysosome-like, this structure is not a typical lysosome that is devoid of MPRs. The endocytic marker alpha 2 macroglobulin-gold entered the structure at 37 degrees C, but not at 20 degrees C. With prolonged chase, most of the marker was transported from the structure into lysosomes. We propose that the MPR/lgp-enriched structure is a specialized endosome (prelysosome) that serves as an intermediate compartment into which endocytic vesicles discharge their contents, and where lysosomal enzymes are released from the MPR and packaged along with newly synthesized lysosomal glycoproteins into lysosomes.  相似文献   

6.
Procathepsin L self-association as a mechanism for selective secretion   总被引:1,自引:1,他引:0  
The lysosomal cysteine pro-protease procathepsin L was enriched in dense vesicles detectable when microsomes prepared from wild-type or transformed mouse fibroblasts were resolved on sucrose gradients. These dense vesicles did not comigrate with proteins characteristic of the endoplasmic reticulum, Golgi, endosomes or lysosomes. When gradient fraction vesicles were lysed at acidic pH in the presence of excess mannose 6-phosphate to prevent binding to mannose phosphate receptors, the majority of the procathepsin L was associated with the membrane, not the soluble, fraction. Immunogold labeling of procathepsin L in thin sections of cells or gradient fractions, using antibodies directed against the propeptide to avoid detection of the mature enzyme in dense lysosomes, revealed that the proenzyme was concentrated in dense cores localized in small vesicles near the plasma membrane and in multivesicular bodies. Consistent with the density of the gradient fraction and the electron density of the cores, yeast two-hybrid assays indicated the proenzyme could bind itself but could not interact with the aspartic proprotease procathepsin D. The data suggest that in mouse fibroblasts procathepsin L may self-associate into aggregates, initiating the formation of dense vesicles that could mediate the selective secretion of procathepsin L independent of mannose phosphate receptors.  相似文献   

7.
The human colon adenocarcinoma cell lines SW 948, SW 1116, and SW 1222 were tested for their ability to sort and internalize lysosomal enzymes. The biosynthesis of the lysosomal enzymes cathepsin B, arylsulfatase A, and beta-hexosaminidase in these cell lines exhibits no significant differences to that in human fibroblasts. The intracellular targeting of newly synthesized hydrolases to the lysosomes relies in colon carcinoma cells on the mannose 6-phosphate receptor system. Both the cation-independent mannose 6-phosphate receptor (CI-MPR) and the cation-dependent mannose 6-phosphate receptor are expressed in all colon carcinoma cell lines investigated. Endocytosis of lysosomal enzymes via mannose 6-phosphate receptors is reduced in colon carcinoma cells as compared with human fibroblasts. SW 1116 cells were shown to be deficient in receptor-mediated endocytosis of mannose 6-phosphate containing ligands. Ligands of other endocytic receptors as well as the fluid-phase marker horseradish peroxidase were internalized at normal rates. While antibodies against CI-MPR bind to the surface of SW 1116 cells, these antibodies cannot be internalized. These data suggest that the cycling of CI-MPR is specifically impaired in SW 1116 cells.  相似文献   

8.
This study represents the first example of immunological localization of lysosomal acid phosphatase. The intracellular localization of lysosomal acid phosphatase was investigated with immunocytochemical methods at the light and electron microscopical level in cultured fibroblasts obtained from normal subjects and from a patient with I-cell disease. Double-labeling studies using fluorescence microscopy showed that acid phosphatase is present in the same organelles as other hydrolases. At the electron microscopic level in control fibroblasts acid phosphatase was found in the rough endoplasmic reticulum, lysosomes, at the plasma membrane, in vesicles just below the plasma membrane and in multivesicular bodies. This localization was comparable with that of other lysosomal enzymes tested (acid alpha-glucosidase, N-acetyl-beta-hexosaminidase, beta-galactosidase). Acid phosphatase labeling was mainly found in association with the lysosomal membrane and with membranous material present within the lysosome. In I-cell fibroblasts the label was present in the same subcellular organelles but always associated with membranous structures. We suggest that the association of acid phosphatase with membranes might explain the normal enzyme activity found in I-cell fibroblasts.  相似文献   

9.
beta-Hexosaminidase B purified from human fibroblast secretions was used as a ligand to study phosphomannosyl-enzyme receptors in membranes from rat tissues. Enzyme binding to rat liver membranes was saturable, competitively inhibited by mannose 6-phosphate, not dependent on calcium, and destroyed by prior treatment of the hexosaminidase with either alkaline phosphatase or endoglycosidase H. Most (90%) of the phosphomannosyl-enzyme receptors were found in endoplasmic reticulum, Golgi apparatus, and lysosomes; 9.5% in the plasma membrane, and less than 1% in nuclei and mitochondria. Receptors were vesicle-enclosed in all fractions except plasma membrane. Receptors in the endoplasmic reticulum apparently were occupied by endogenous ligands, but most receptors in lysosomes and plasma membrane were unoccupied. Most of the endogenous beta-hexosaminidase was in lysosomes and was released from vesicles by detergent treatment. Displacement of the residual receptor-bound endogenous beta-hexosaminidase (mostly in endoplasmic reticulum and Golgi apparatus) from detergent-treated membranes by mannose 6-phosphate released high uptake enzyme with properties expected for phosphomannosyl-enzymes. Mannose 6-phosphate-inhibitable enzyme receptor activity was found in nine rat organs and correlated roughly with their lysosomal enzyme content. These data support a general model for lysosomal enzyme transport in which the phosphomannosyl-enzyme receptor acts as a vehicle for delivery of newly synthesized acid hydrolases from the endoplasmic reticulum to lysosomes.  相似文献   

10.
Acid sphingomyelinase (ASM), a member of the saposin-like protein (SAPLIP) family, is a lysosomal hydrolase that converts sphingomyelin to ceramide. Deficiency of ASM causes a variant form of Niemann-Pick disease. The mechanism of lysosomal targeting of ASM is poorly known. Previous studies suggest that ASM could use in part the mannose 6-phosphate receptor (M6P-Rc). Sortilin, a type I transmembrane glycoprotein that belongs to a novel family of receptor proteins, presents structural features of receptors involved in lysosomal targeting. In this study we examined the hypothesis that sortilin may be implicated in the trafficking of ASM to the lysosomes. Using a dominant-negative sortilin construct lacking the cytoplasmic tail, which is essential to recruit adaptor proteins and clathrin, we demonstrated that sortilin is also involved in the lysosomal targeting of ASM. Confocal microscopy revealed that truncated sortilin partially inhibited the lysosomal trafficking of ASM in COS-7 cells and abolished the lysosomal targeting of ASM in I-cells. Pulse-chase experiments corroborated that sortilin is involved in normal sorting of newly synthesized ASM. Furthermore, over-expression of truncated sortilin accelerated and enhanced the secretion of ASM from COS-7 cells and I-cells. Co-immunoprecipitation assays confirmed the interaction between sortilin and ASM. In conclusion, ASM uses sortilin as an alternative receptor to be targeted to the lysosomes.  相似文献   

11.
The distribution of the cation-independent mannose 6-phosphate and 78 kDa receptors was studied in postnuclear subcellular fractions from two rat liver cell lines. ELISA assays revealed that the mannose 6-phosphate receptor is enriched in the light buoyant Percoll fractions that contain Golgi structures and early endosomes. Most of the 78 kDa receptor is localized in a heavy fraction at the bottom of the Percoll gradient and smaller amounts in the endosomal fractions. The high-density compartment is denser than lysosomes, contains LAMP2 but not LIMPII or acid hydrolases, and is not disrupted with glycyl-l-phenylalanine 2-naphthylamide, a substrate for cathepsin C that selectively disrupts lysosomes. Immunofluorescence microscopy studies indicate no colocalization of the 78 kDa receptor with the mannose 6-phosphate receptor or LIMPII. Mannose 6-phosphate-independent endocytosed beta-glucuronidase was found in the lysosomal, the early and late endosomal fractions. These fractions were immunoadsorbed in columns containing antibodies against the 78 kDa receptor. Only the endocytosed beta-glucuronidase present in the early and late endosomal fractions is associated to immunoadsorbed vesicles. In these vesicles, LAMP2 was detected but no LIMPII or the mannose 6-phosphate receptor. Results obtained suggest that the 78 kDa receptor is found along the endocytic pathway, but in vesicles different from the cation-independent mannose 6-phosphate receptor.  相似文献   

12.
The localization and intracellular transport of major histocompatibility complex (MHC) class II molecules nd lysosomal hydrolases were studied in I-Cell Disease (ICD) B lymphoblasts, which possess a mannose 6-phosphate (Man-6-P)-independent targeting pathway for lysosomal enzymes. In the trans-Golgi network (TGN), MHC class II- invariant chain complexes colocalized with the lysosomal hydrolase cathepsin D in buds and vesicles that lacked markers of clathrin-coated vesicle-mediated transport. These vesicles fused with the endocytic pathway leading to the formation of "early" MHC class II-rich compartments (MIICs). Similar structures were observed in the TGN of normal beta lymphoblasts although they were less abundant. Metabolic labeling and subcellular fractionation experiments indicated that newly synthesized cathepsin D and MHC class II-invariant chain complexes enter a non-clathrin-coated vesicular structure after their passage through the TGN and segregation from the secretory pathway. These vesicles were also devoid of the cation-dependent mannose 6-phosphate (Man-6-P) receptor, a marker of early and late endosomes. These findings suggest that in ICD B lymphoblasts the majority of MHC class II molecules are transported directly from the TGN to "early" MIICs and that acid hydrolases cam be incorporated into MIICs simultaneously by a Man-6-P-independant process.  相似文献   

13.
In the human adenocarcinoma cell line Caco-2 a substantial amount of a precursor form of the lysosomal enzyme alpha-glucosidase is not segregated into lysosomes, but instead secreted from the apical membrane. In this study we addressed the question whether this process is mediated by mannose 6-phosphate receptors. The subcellular distribution of the cation-independent mannose 6-phosphate receptor was studied by means of electron microscopic immunocytochemistry. The bulk of label was found in the perinuclear region in electron-lucent and dense vesicles, some of the latter bearing a coat. Receptor-containing dense vesicles were also found throughout the cytoplasm. In the apical part of the cells, label for the receptor was present over the surrounding membrane and the interior vesicles of multivesicular bodies, but not over lysosomes. Label on the plasma membrane was mainly restricted to the apical domain. In contrast to alpha-glucosidase, the secreted forms of the lysosomal enzymes cathepsin D, beta-hexosaminidase and beta-glucuronidase are mainly found in the basolateral medium. Enzyme activity measurements and immunoprecipitation of metabolically labeled cells showed that incubation with NH4Cl leads to an enhanced secretion of these enzymes into the basolateral medium, but has no effect on the basolateral secretion of alpha-glucosidase. In addition, NH4Cl caused a minor decrease in the secretion of these enzymes from the apical side and had little or no effect on the secretion of alpha-glucosidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Cellular repressor of E1A-stimulated genes (CREG) has been reported to be a secretory glycoprotein implicated in cellular growth and differentiation. We now show that CREG is predominantly localized within intracellular compartments. Intracellular CREG was found to lack an N-terminal peptide present in the secreted form of the protein. In contrast to normal cells, CREG is largely secreted by fibroblasts missing both mannose 6-phosphate receptors. This is not observed in cells lacking only one of them. Mass spectrometric analysis of recombinant CREG revealed that the protein contains phosphorylated oligosaccharides at either of its two N-glycosylation sites. Cellular CREG was found to cosediment with lysosomal markers upon subcellular fractionation by density-gradient centrifugation. In fibroblasts expressing a CREG-GFP fusion construct, the heterologous protein was detected in compartments containing lysosomal proteins. Immunolocalization of endogenous CREG confirmed that intracellular CREG is localized in lysosomes. Proteolytic processing of intracellular CREG involves the action of lysosomal cysteine proteinases. These results establish that CREG is a lysosomal protein that undergoes proteolytic maturation in the course of its biosynthesis, carries the mannose 6-phosphate recognition marker and depends on the interaction with mannose 6-phosphate receptors for efficient delivery to lysosomes.  相似文献   

15.
The intracellular transport of soluble lysosomal enzymes relies on the post-translational modification of N-linked oligosaccharides to generate mannose 6-phosphate (Man 6-P) residues. In most cell types the Man 6-P signal is rapidly removed after targeting of the precursor proteins from the Golgi to lysosomes via interactions with Man 6-phosphate receptors. However, in brain, the steady state proportion of lysosomal enzymes containing Man 6-P is considerably higher than in other tissues. As a first step toward understanding the mechanism and biological significance of this observation, we analyzed the subcellular localization of the rat brain Man 6-P glycoproteins by combining biochemical and morphological approaches. The brain Man 6-P glycoproteins are predominantly localized in neuronal lysosomes with no evidence for a steady state localization in nonlysosomal or prelysosomal compartments. This contrasts with the clear endosome-like localization of the low steady state proportion of mannose-6-phosphorylated lysosomal enzymes in liver. It therefore seems likely that the observed high percentage of phosphorylated species in brain is a consequence of the accumulation of lysosomal enzymes in a neuronal lysosome that does not fully dephosphorylate the Man 6-P moieties.  相似文献   

16.
Niemann-Pick C disease (NP-C) is a neurovisceral lysosomal storage disorder. A variety of studies have highlighted defective sterol trafficking from lysosomes in NP-C cells. However, the heterogeneous nature of additional accumulating metabolites suggests that the cellular lesion may involve a more generalized block in retrograde lysosomal trafficking. Immunocytochemical studies in fibroblasts reveal that the NPC1 gene product resides in a novel set of lysosome-associated membrane protein-2 (LAMP2)(+)/mannose 6-phosphate receptor(-) vesicles that can be distinguished from cholesterol-enriched LAMP2(+) lysosomes. Drugs that block sterol transport out of lysosomes also redistribute NPC1 to cholesterol-laden lysosomes. Sterol relocation from lysosomes in cultured human fibroblasts can be blocked at 21 degrees C, consistent with vesicle-mediated transfer. These findings suggest that NPC1(+) vesicles may transiently interact with lysosomes to facilitate sterol relocation. Independent of defective sterol trafficking, NP-C fibroblasts are also deficient in vesicle-mediated clearance of endocytosed [14C]sucrose. Compartmental modeling of the observed [14C]sucrose clearance data targets the trafficking defect caused by mutations in NPC1 to an endocytic compartment proximal to lysosomes. Low density lipoprotein uptake by normal cells retards retrograde transport of [14C]sucrose through this same kinetic compartment, further suggesting that it may contain the sterol-sensing NPC1 protein. We conclude that a distinctive organelle containing NPC1 mediates retrograde lysosomal transport of endocytosed cargo that is not restricted to sterol.  相似文献   

17.
Newly-synthesized soluble lysosomal enzymes are transported from the trans-Golgi network to lysosomes by a mannose 6-phosphate receptor-mediated pathway. Lysosomal storage of indigestible material has been reported to perturb the biosynthesis and the fate of lysosomal hydrolases. In this study, we have focused our attention on the last steps in the transport of newly-synthesized cathepsin D to lysosomes in sucrose-treated WI-38 fibroblasts. Pulse-chase experiments indicate that, in sucrose-treated cells, cathepsin D maturation is delayed by 2 to 4 h. By subcellular fractionation, we show that newly-synthesized cathepsin D precursors transit through organelles endowed with a high sedimentation coefficient. These organelles are recovered in the dense region of a self-forming Percoll density gradient while the bulk of hydrolytic activities is redistributed to the low density region. Only later, are the precursors delivered to organelles containing the bulk of active hydrolases. There, procathepsin D is proteolytically processed into its 31 kDa-mature form. Our results suggest that when sucrose is present, the delayed maturation of procathepsin D is related to the delivery of the polypeptides into an organelle behaving in centrifugation like lysosomes but which is poorly efficient in proteolytic processing of procathepsin D. This low proteolytic activity of this organelle could be due to its poor ability to interact with hydrolase-containing structures.  相似文献   

18.
An established mechanism for directing newly made acid hydrolases to lysosomes involves acquisition of mannose 6-phosphate residues by the carbohydrate portion of acid hydrolases followed by binding to specific membrane-bound transport receptors and delivery to lysosomes. Two distinct phosphomannosyl receptors (CI-MPR and CD-MPR) have been identified. Alternative mechanisms for trafficking acid hydrolases exist. This report examines means for the possible receptor-mediated intracellular transport of -l-fucosidase in lymphoid cells. The binding of -l-fucosidase to intact cells and to total cell membrane preparations, in conjunction with immunoassays of solubilized membrane preparations, revealed the presence of CI-MPR and CD-MPR on human lymphoid and fibroblast cell lines. The mean level of CD-MPR in nine lymphoid cell lines was 7.2-fold greater than CI-MPR. The mean level of CI-MPR in two fibroblast lines was 3.8-fold greater than CD-MPR. The mean content of CI-MPR was 19.5-fold greater in the fibroblasts than in the lymphoid cells. The CD-MPR content of fibroblasts and lymphoid cells was nearly equivalent. Among these cell lines were a fibroblast and a lymphoid line from the same individual. These results indicate that human B-lymphoid cells are deficient in CI-MPR and suggest that modulation of expression of CI-MPR and CD-MPR in lymphoid cells differs from that in fibroblasts, including cell lines with identical genomes. No specific receptor capable of binding -l-fucosidase independent of mannose 6-phosphate was demonstrable, despite published results that support the existence of a mannose 6-phosphate independent trafficking mechanism in lymphoid cells for this enzyme.  相似文献   

19.
Endocytosis of human spleen beta-glucuronidase by human fibroblasts can be completely impaired by the competitive inhibitor mannose 6-phosphate or by pretreatment with acid phosphatase or endoglycosidases H or F. However, endocytosis of bovine spleen and liver beta-glucuronidase is partially impaired by the same treatments, suggesting that the bovine enzyme contains two endocytosis recognition markers located in separate enzyme domains. The mannose 6-phosphate recognition marker seems to be responsible for approximately 23% of the bovine enzyme endocytosis. The existence of two lysosomal endocytosis systems in human fibroblasts is supported by the following facts: (a) the rate of endocytosis of mannose 6-phosphate-containing human beta-glucuronidase was not affected by the presence of high levels of the bovine enzyme (which has only the other marker). (b) Anti-215K mannose 6-phosphate receptor antibodies selectively impair the endocytosis of the beta-glucuronidase containing mannose 6-phosphate. (c) Weak bases exert a differential effect on human and bovine endocytosis. beta-Glucuronidase internalized by either system is targeted to secondary lysosomes of human beta-glucuronidase-deficient fibroblasts, where it is able to degrade accumulated glycosaminoglycans. These results suggest that human fibroblasts have two different and independent endocytic systems for targeting of acid hydrolases to lysosomes.  相似文献   

20.
Delivery of soluble lysosomal proteins to the lysosomes is dependent primarily on the mannose 6-phosphate receptors (MPRs) in mammals. However, in non-mammalian cells the role of MPR300 in sorting and trafficking of acid hydrolases to lysosomes is not fully understood till now. In this paper, we tested the role of MPR300 in sorting and trafficking of lysosomal enzymes in CEF cells using a small interfering RNA (siRNA) technology. Inactivation of MPR300 resulted in the secretion of large amounts of newly synthesized hydrolases into the medium and also inhibited the endocytosis of mannose 6-phospharylated ligands. Knockdown of MPR300 in CEF cells results in missorting of fucosidase and arylsulfatse A enzymes into the medium. The results indicated that the MPR300 in CEF cells plays a key role in sorting and trafficking of these soluble hydrolases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号