首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drosophila male meiosis offers unique opportunities for mutational dissection of cytokinesis. This system allows easy and unambiguos identification of mutants defective in cytokinesis through the examination of spermatid morphology. Moreover, cytokinesis defects and protein immunostaining can be analyzed with exquisite cytological resolution because of the large size of meiotic spindles. In the past few years several mutations have been isolated that disrupt meiotic cytokinesis in Drosophila males. These mutations specify genes required for the assembly, proper constriction or disassembly of the contractile ring. Molecular characterization of these genes has identified essential components of the cytokinetic machinery, highlighting the role of the central spindle during cytokinesis. This structure appears to be both necessary and sufficient for signaling cytokinesis. In addition, many data indicate that the central spindle microtubules cooperatively interact with elements of the actomyosin contractile ring, so that impairment of either of these structures prevents the formation of the other.  相似文献   

2.
It is important for the proper execution of cell division in both mitosis and meiosis that the chromosome segregation, cytokinesis, and partition of cell organelles progress in smooth coordination. We show here that the mitochondria inheritance is closely linked with microtubules during meiotic divisions in Drosophila males. They are first clustered in a cell equator at metaphase associated with astral microtubules and then distributed along central spindle microtubules after anaphase. The molecular mechanism for the microtubule-dependent inheritance of mitochondria in male meiosis has not been demonstrated yet. We first isolated mutations for a larp gene that is highly conserved among eukaryotes and showed that these mutant males exhibited multiple meiotic phenotypes such as a failure of chromosome segregation, cytokinesis, and mitochondrial partition. Our cytological examination revealed that the mutants showed defects in spindle pole organization and spindle formation. The larp encodes a Drosophila orthologue of a La-related protein containing a domain exhibiting an outstanding homology with a La type RNA-binding protein. Surprisingly, the dLarp protein is localized in the cytoplasm of the male germ line cells, as observed by its distinct co-localization with mitochondria in early spermatocytes and during meiotic divisions. We discuss here the essential role that dLarp plays in multiple processes in Drosophila male meiosis.  相似文献   

3.
4.
Pebble (Pbl)-activated RhoA signalling is essential for cytokinesis in Drosophila melanogaster. Here we report that the Drosophila citron gene encodes an essential effector kinase of Pbl-RhoA signalling in vivo. Drosophila citron is expressed in proliferating tissues but is downregulated in differentiating tissues. We find that Citron can bind RhoA and that localisation of Citron to the contractile ring is dependent on the cytokinesis-specific Pbl-RhoA signalling. Phenotypic analysis of mutants showed that citron is required for cytokinesis in every tissue examined, with mutant cells exhibiting multinucleate and hyperploid phenotypes. Strong genetic interactions were observed between citron and pbl alleles and constructs. Vertebrate studies implicate at least two Rho effector kinases, Citron and Rok, in cytokinesis. By contrast, we failed to find evidence for a role for the Drosophila ortholog of Rok in cell division. We conclude that Citron plays an essential, non-redundant role in the Rho signalling pathway during Drosophila cytokinesis.  相似文献   

5.
Wakimoto BT  Lindsley DL  Herrera C 《Genetics》2004,167(1):207-216
Drosophila melanogaster is a widely used model organism for genetic dissection of developmental processes. To exploit its full potential for studying the genetic basis of male fertility, we performed a large-scale screen for male-sterile (ms) mutations. From a collection of 12,326 strains carrying ethyl-methanesulfonate-treated, homozygous viable second or third chromosomes, 2216 ms lines were identified, constituting the largest collection of ms mutations described to date for any organism. Over 2000 lines were cytologically characterized and, of these, 81% failed during spermatogenesis while 19% manifested postspermatogenic processes. Of the phenotypic categories used to classify the mutants, the largest groups were those that showed visible defects in meiotic chromosome segregation or cytokinesis and those that failed in sperm individualization. We also identified 62 fertile or subfertile lines that showed high levels of chromosome loss due to abnormal mitotic or meiotic chromosome transmission in the male germ line or due to paternal chromosome loss in the early embryo. We argue that the majority of autosomal genes that function in male fertility in Drosophila are represented by one or more alleles in the ms collection. Given the conservation of molecular mechanisms underlying important cellular processes, analysis of these mutations should provide insight into the genetic networks that control male fertility in Drosophila and other organisms, including humans.  相似文献   

6.
Genetic and cytological approaches have yielded significant insight into the mapping and organization of genes located in the heterochromatin of Drosophila melanogaster. To date, only a few of these genes have been molecularly characterized in detail, and their function unveiled. As a further step towards the identification of heterochromatic gene functions, we have carried out a cytological analysis of mitotic and meiotic cell divisions in mutants carrying different allelic combinations of 1(2)41Aa, a gene located in the proximal heterochromatin of chromosome 2. Our results showed that larval brains of 1(2)41Aa mutants display a high frequency of cells with irregularly condensed chromosomes. In addition, defective chromosome condensation was detected in male meiosis, consequently affecting chromosome segregation and giving rise to irregular spermatids. Taken together, these findings indicate that 1(2)41Aa is a novel cell cycle gene required for proper chromosome condensation in both somatic and germ line cells.  相似文献   

7.
Recent studies of meiotic recombination in the budding yeast and the model plant Arabidopsis thaliana indicate that meiotic crossovers (COs) occur through two genetic pathways: the interference-sensitive pathway and the interference-insensitive pathway. However, few genes have been identified in either pathway. Here, we describe the identification of the PARTING DANCERS (PTD) gene, as a gene with an elevated expression level in meiocytes. Analysis of two independently generated transferred DNA insertional lines in PTD showed that the mutants had reduced fertility. Further cytological analysis of male meiosis in the ptd mutants revealed defects in meiosis, including reduced formation of chiasmata, the cytological appearance of COs. The residual chiasmata in the mutants were distributed randomly, indicating that the ptd mutants are defective for CO formation in the interference-sensitive pathway. In addition, transmission electron microscopic analysis of the mutants detected no obvious abnormality of synaptonemal complexes and apparently normal late recombination nodules at the pachytene stage, suggesting that the mutant's defects in bivalent formation were postsynaptic. Comparison to other genes with limited sequence similarity raises the possibility that PTD may present a previously unknown function conserved in divergent eukaryotic organisms.  相似文献   

8.
Tomkiel JE  Wakimoto BT  Briscoe A 《Genetics》2001,157(1):273-281
In recombination-proficient organisms, chiasmata appear to mediate associations between homologs at metaphase of meiosis I. It is less clear how homolog associations are maintained in organisms that lack recombination, such as male Drosophila. In lieu of chiasmata and synaptonemal complexes, there must be molecules that balance poleward forces exerted across homologous centromeres. Here we describe the genetic and cytological characterization of four EMS-induced mutations in teflon (tef), a gene involved in this process in Drosophila melanogaster. All four alleles are male specific and cause meiosis I-specific nondisjunction of the autosomes. They do not measurably perturb sex chromosome segregation, suggesting that there are differences in the genetic control of autosome and sex chromosome segregation in males. Meiotic transmission of univalent chromosomes is unaffected in tef mutants, implicating the tef product in a pairing-dependent process. The segregation of translocations between sex chromosomes and autosomes is altered in tef mutants in a manner that supports this hypothesis. Consistent with these genetic observations, cytological examination of meiotic chromosomes suggests a role of tef in regulating or mediating pairing of autosomal bivalents at meiosis I. We discuss implications of this finding in regard to the evolution of heteromorphic sex chromosomes and the mechanisms that ensure chromosome disjunction in the absence of recombination.  相似文献   

9.
A recessive male sterile mutation (B2t8) that encodes a stable variant of the testis-specific beta 2-tubulin of Drosophila causes the assembly of aberrant microtubules both in vivo and in vitro. The B2t8 mutation appears to cause defects in the formation of interprotofilament bonds. In testes from homozygous mutant males, the most commonly observed aberrant structures were sheets of protofilaments curved to form an S in cross section rather than a normal, closed microtubule. These characteristic S-shaped structures appear in the meiotic spindle, in place of axonemes in differentiating spermatids, and in cytoplasmic microtubules, including those that lie next to the nucleus during nuclear elongation. Homozygous mutant males exhibit defects in chromosome movement and cytokinesis during meiosis, flagellar elongation, and nuclear shaping, indicating that the ability to form normal closed microtubules is required for each of these events. The presence of the aberrant microtubules in three architecturally different microtubule arrays demonstrates conclusively the multifunctional nature of the beta 2-tubulin gene product. Although the mutant beta 2-tubulin subunit causes assembly of aberrant microtubules in vitro and in homozygous males, in the presence of wild-type beta 2-tubulin in heterozygous males, the variant subunit coassembles with the wild-type subunit into functional sperm.  相似文献   

10.
By examining cytological phenotypes of 587 temperature-sensitive mutants of the fission yeast Schizosaccharomyces pombe, we obtained 18 mutants which cause cell division in the absence of nuclear division. By genetic analyses, these novel nuclear division arrest mutants can be classified into nine complementation groups (designated cut1cut9). The cytological phenotype of cut mutants is similar but not identical to that of DNA topoisomerase II mutants (top2). The cut1+ gene was cloned by transformation and shown to complement cut2 as well as cut1, indicating a functional relationship between the two genes. The cut genes are required for nuclear division, but their mutant phenotypes differ from most of the previously identified mutants which block nuclear division and also the subsequent cytokinesis. Fluorescence microscopy indicates that the mitotic chromosomes formed in cut mutant cells are abnormal and fail to separate properly. We suggest that cut mutations, like top2, block mitotic chromosome formation and concomitantly nuclear division, but that cytokinesis proceeds independently of the defects in nuclear division, demonstrating uncoordinated mitotic pathways. A novel mutant nuc1 is also described which shows a cytological phenotype similar to the double mutant of DNA topoisomerases I and II but contains normal levels of both DNA topoisomerase activities.  相似文献   

11.
Afshar K  Gönczy P  DiNardo S  Wasserman SA 《Genetics》2001,157(3):1267-1276
A number of fundamental processes comprise the cell division cycle, including spindle formation, chromosome segregation, and cytokinesis. Our current understanding of these processes has benefited from the isolation and analysis of mutants, with the meiotic divisions in the male germline of Drosophila being particularly well suited to the identification of the required genes. We show here that the fumble (fbl) gene is required for cell division in Drosophila. We find that dividing cells in fbl-deficient testes exhibit abnormalities in bipolar spindle organization, chromosome segregation, and contractile ring formation. Cytological analysis of larval neuroblasts from null mutants reveals a reduced mitotic index and the presence of polyploid cells. Molecular analysis demonstrates that fbl encodes three protein isoforms, all of which contain a domain with high similarity to the pantothenate kinases of A. nidulans and mouse. The largest Fumble isoform is dispersed in the cytoplasm during interphase, concentrates around the spindle at metaphase, and localizes to the spindle midbody at telophase. During early embryonic development, the protein localizes to areas of membrane deposition and/or rearrangement, such as the metaphase and cellularization furrows. Given the role of pantothenate kinase in production of Coenzyme A and in phospholipid biosynthesis, this pattern of localization is suggestive of a role for fbl in membrane synthesis. We propose that abnormalities in synthesis and redistribution of membranous structures during the cell division cycle underlie the cell division defects in fbl mutant cells.  相似文献   

12.
13.
Mutants that have been selected for defects in phagocytic recognition, adhesion, and vegetative cell-cell cohesion were found to be larger and more highly multinucleate than their parent strain. This defect is associated with the complex mutant phenotype of these mutants since revertants of the mutants coordinately acquire the wild-type phenotype for all of the defects. The larger size and multinuclearity were due to a high frequency of failure of cytokinesis in cells of wild-type size. This was shown by purifying the small cells in mutant populations and observing their growth and cell division. The mutant phenotype is more penetrant during axenic growth. Most of the mutants are not multinucleate when grown on bacteria. Recently, new mutants have been isolated that are also multinucleate when grown on bacteria by a strong selection procedure for non-adhesion to tissue culture dishes. The pleiotropic mutant phenotype and the greater penetrance of the mutant phenotype in axenic culture can be explained by hypothesizing a deficiency in a membrane component of the actomyosin motor that is involved in all of the processes defective in the mutants.  相似文献   

14.
The endgame of cytokinesis can follow one of two pathways depending on developmental context: resolution into separate cells or formation of a stable intercellular bridge. Here we show that the four wheel drive (fwd) gene of Drosophila melanogaster is required for intercellular bridge formation during cytokinesis in male meiosis. In fwd mutant males, contractile rings form and constrict in dividing spermatocytes, but cleavage furrows are unstable and daughter cells fuse together, producing multinucleate spermatids. fwd is shown to encode a phosphatidylinositol 4-kinase (PI 4-kinase), a member of a family of proteins that perform the first step in the synthesis of the key regulatory membrane phospholipid PIP2. Wild-type activity of the fwd PI 4-kinase is required for tyrosine phosphorylation in the cleavage furrow and for normal organization of actin filaments in the constricting contractile ring. Our results suggest a critical role for PI 4-kinases and phosphatidylinositol derivatives during the final stages of cytokinesis.  相似文献   

15.
Meiosis is coupled to gamete development and must be well regulated to prevent aneuploidy. During meiotic maturation, Drosophila oocytes progress from prophase I to metaphase I. The molecular factors controlling meiotic maturation timing, however, are poorly understood. We show that Drosophila alpha-endosulfine (endos) plays a key role in this process. endos mutant oocytes have a prolonged prophase I and fail to progress to metaphase I. This phenotype is similar to that of mutants of cdc2 (synonymous with cdk1) and of twine, the meiotic homolog of cdc25, which is required for Cdk1 activation. We found that Twine and Polo kinase levels are reduced in endos mutants, and identified Early girl (Elgi), a predicted E3 ubiquitin ligase, as a strong Endos-binding protein. In elgi mutant oocytes, the transition into metaphase I occurs prematurely, but Polo and Twine levels are unaffected. These results suggest that Endos controls meiotic maturation by regulating Twine and Polo levels, and, independently, by antagonizing Elgi. Finally, germline-specific expression of the human alpha-endosulfine ENSA rescues the endos mutant meiotic defects and infertility, and alpha-endosulfine is expressed in mouse oocytes, suggesting potential conservation of its meiotic function.  相似文献   

16.
Gene expression is translationally regulated during many cellular and developmental processes. Translation can be modulated by affecting the recruitment of mRNAs to the ribosome, which involves recognition of the 5' cap structure by the cap-binding protein eIF4E. Drosophila has several genes encoding eIF4E-related proteins, but the biological role of most of them remains unknown. Here, we report that Drosophila eIF4E-3 is required specifically during spermatogenesis. Males lacking eIF4E-3 are sterile, showing defects in meiotic chromosome segregation, cytokinesis, nuclear shaping and individualization. We show that eIF4E-3 physically interacts with both eIF4G and eIF4G-2, the latter being a factor crucial for spermatocyte meiosis. In eIF4E-3 mutant testes, many proteins are present at different levels than in wild type, suggesting widespread effects on translation. Our results imply that eIF4E-3 forms specific eIF4F complexes that are essential for spermatogenesis.  相似文献   

17.
18.
We have identified mutations in six previously uncharacterized genes of Arabidopsis, named club, bublina, massue, rod, bloated, and bims, that are required for cytokinesis. The mutants are seedling lethal, have morphological abnormalities, and are characterized by cell wall stubs, gapped walls, and multinucleate cells. In these and other respects, the new mutants are phenotypically similar to knolle, keule, hinkel, and pleiade mutants. The mutants display a gradient of stomatal phenotypes, correlating roughly with the severity of their cytokinesis defect. Similarly, the extent to which the different mutant lines were capable of growing in tissue culture correlated well with the severity of the cytokinesis defect. Phenotypic analysis of the novel and previously characterized loci indicated that the secondary consequences of a primary defect in cytokinesis include anomalies in body organization, organ number, and cellular differentiation, as well as organ fusions and perturbations of the nuclear cycle. Two of the 10 loci are required for both cytokinesis and root hair morphogenesis. The results have implications for the identification of novel cytokinesis genes and highlight the mechanistic similarity between cytokinesis and root hair morphogenesis, two processes that result in a rapid deposition of new cell walls via polarized secretion.  相似文献   

19.
The contractile ring is a highly dynamic structure, but how this dynamism is accomplished remains unclear. Here, we report the identification and analysis of a novel Drosophila gene, sticky (sti), essential for cytokinesis in all fly proliferating tissues. sti encodes the Drosophila orthologue of the mammalian Citron kinase. RNA interference-mediated silencing of sti in cultured cells causes them to become multinucleate. Components of the contractile ring and central spindle are recruited normally in such STICKY-depleted cells that nevertheless display asymmetric furrowing and aberrant blebbing. Together with an unusual distribution of F-actin and Anillin, these phenotypes are consistent with defective organization of the contractile ring. sti shows opposite genetic interactions with Rho and Rac genes suggesting that these GTPases antagonistically regulate STICKY functions. Similar genetic evidence indicates that RacGAP50C inhibits Rac during cytokinesis. We discuss that antagonism between Rho and Rac pathways may control contractile ring dynamics during cytokinesis.  相似文献   

20.
The FGF receptor Heartless (HTL) is required for mesodermal cell migration in the Drosophila gastrula. We show that mesoderm cells undergo different phases of specific cell shape changes during mesoderm migration. During the migratory phase, the cells adhere to the basal surface of the ectoderm and exhibit extensive protrusive activity. HTL is required for the protrusive activity of the mesoderm cells. Moreover, the early phenotype of htl mutants suggests that HTL is required for the adhesion of mesoderm cells to the ectoderm. In a genetic screen we identified pebble (pbl) as a novel gene required for mesoderm migration. pbl encodes a guanyl nucleotide exchange factor (GEF) for RHO1 and is known as an essential regulator of cytokinesis. We show that the function of PBL in cell migration is independent of the function of PBL in cytokinesis. Although RHO1 acts as a substrate for PBL in cytokinesis, compromising RHO1 function in the mesoderm does not block cell migration. These data suggest that the function of PBL in cell migration might be mediated through a pathway distinct from RHO1. This idea is supported by allele-specific differences in the expressivity of the cytokinesis and cell migration phenotypes of different pbl mutants. We show that PBL is autonomously required in the mesoderm for cell migration. Like HTL, PBL is required for early cell shape changes during mesoderm migration. Expression of a constitutively active form of HTL is unable to rescue the early cellular defects in pbl mutants, suggesting that PBL is required for the ability of HTL to trigger these cell shape changes. These results provide evidence for a novel function of the Rho-GEF PBL in HTL-dependent mesodermal cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号