首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Numerous species of estuarine and freshwater-tolerant crabs show an “export strategy”, i.e. an early larval downstream transport towards coastal marine waters, later zoeal development at higher salinities, and a return of the last larval stage, the megalopa, into estuaries or rivers. The speed and extent of the upstream migration of the megalopa through strong salinity gradients may be constrained by increasing hypo-osmotic stress. In an experimental laboratory study with Armases roberti, a freshwater-inhabiting sesarmid crab from the Caribbean region, we studied in the megalopa stage (after zoeal rearing at 25‰) the tolerance of reduced salinities.In the first experiment, the larvae were exposed directly to various constant salinities (1-25‰). For the second experiment, they were transferred stepwise to strongly diluted media (within 6 days from 25‰ to ≤ 3‰), simulating differential scenarios of upstream migration into brackish or freshwater habitats.When postmoult megalopae were exposed directly to salinities ≤ 3‰, they all died within 24 h. A slightly higher salt concentration (5‰), however, allowed for considerable survival (46%) through metamorphosis to the first juvenile crab stage. In treatments with continuous exposure to 10-15‰, as well as in a control group (25‰), survival to metamorphosis was significantly higher (83-96%), and the average duration of development was shorter compared to 5‰ (12-13 vs. 16 days). In the second experiment, with stepwise salinity reductions, gradual acclimation to decreasing osmotic pressures permitted a successful development to metamorphosis at ≤ 3‰ and even in freshwater (< 0.2‰).This strong physiological adaptability enables the megalopa of A. roberti to cross during its upstream migration, within a short time (6 days), strong osmotic gradients, so that metamorphosis is possible also in freshwater habitats where the conspecific adult crabs live. The speed of migration appears to be limited by physiological constraints related to changes in the capability for osmoregulation occurring during the course of the moulting cycle.  相似文献   

2.
Anger  Klaus  Riesebeck  Kim  P&#;schel  Cornelia 《Hydrobiologia》2000,426(1):161-168
The neotropical crab Armases miersii (Rathbun, 1897) breeds in supratidal rock pools, where great salinity variations occur. In laboratory experiments, all larval stages and the first juveniles were reared at six different salinities (5–55 PSU, intervals of 10 PSU). In five series of experiments, exposure to these conditions began either from hatching (Zoea I) or from the onset of successively later stages (Zoea II, III, Megalopa, Crab I). Growth was measured in terms of dry weight, carbon, nitrogen and hydrogen content. At osmotically extreme conditions (5 and 55 PSU, resp.), all stages showed minimum biomass accumulation; this was consistent with maximum mortality and longest duration of development (data presented in a separate paper). Successively later exposure to these salinities tended to reduce these effects. Lowest mortality and shortest time of development occurred generally at 15–25 PSU, indicating an optimum at moderately reduced salinities. This response pattern, however, was not congruent with that observed in growth. Biomass accumulation was initially maximum within a wide range of salinities (15–45 PSU), but in the Zoea II and III stages, this range tended to narrow and to shift towards higher salinities (35–45 PSU). These trends reversed in the Megalopa and Crab I, where maximum growth occurred again in a wider range and at lower salinities (15–35 PSU). The reduction of zoeal growth in moderately dilute media (15–25 PSU), which were optimal for survival and development, is interpreted as an energetic cost of hyper-osmoregulation, which begins already at hatching. Five PSU caused hypo-osmotic stress, exceeding in the long term the larval capacity for hyper-regulation. Poor zoeal survival and growth at 55 PSU are interpreted as effects of hyper-osmotic stress. In the Megalopa and Crab I, reduced growth at salinities 35 PSU may reflect the energetic costs of hypo-osmoreguation beginning in these stages. Our data suggest that the physiological adaptations of larval and early juvenile A. miersii allowing for survival and development in a physically harsh and unpredictable habitat imply a trade-off with reduced growth, due to energetic costs of osmoregulation.  相似文献   

3.
The complete larval development is described forPorcellana platycheles (Pennant) reared under laboratory conditions. The development consists of two zoeal stages and one megalopa. At 20°C and 35‰ salinity, the megalopa appeared 17–18 days after hatching. Survival was 56% from hatching to the megalopa stage. The morphological features of the zoeal and megalopa stages ofP. platycheles are compared with those of other species ofPorcellana, and a key of the known zoeal stages of the genus is given.  相似文献   

4.
Ontogenetic changes in osmoregulation were compared between two geographically separate populations of a South American shrimp, Macrobrachium amazonicum, originating from the Amazon delta (A) and the Pantanal (P), respectively. Population A lives in coastal rivers and estuaries in northern Brazil, whereas population P may be considered as land-locked, spending its entire life cycle in inland freshwater (FW) habitats in southwestern Brazil. All life-history stages of population A tolerated brackish and seawater (SW) conditions, being hyper-osmoregulators at salinities < 17, iso-osmotic at ca. 17, and hypo-regulators at higher concentrations. The capabilities to survive and osmoregulate in FW were in this population expressed already at hatching (zoea I), but not any longer in the subsequent larval stages (II-IX), which showed complete mortality during an experimental 24 h exposure to fully limnic conditions. FW tolerance re-appeared only in the juvenile and adult life-history stages. Similarly, the ability to hyper-regulate at salinities 1-5 was strong in the zoea I, weaker in the subsequent larval stages, and increasing again after metamorphosis. The function of hypo-regulation in concentrated media including SW was present throughout ontogeny, particularly in late larval and early juvenile stages. These ontogenetic patterns of osmoregulation and FW tolerance are congruent with a diadromous life cycle, which includes larval release in FW and a subsequent downstream transport of the salt-dependent early larvae towards estuarine or coastal marine waters, where development to metamorphosis is possible. The FW-tolerant juveniles can later migrate upstream, recruiting to riverine populations. In the land-locked population P, all life-history stages tolerated FW and brackish conditions up to salinity 25, but mortality was high in SW (100% in adults). All postembryonic stages of this population were hyper-osmoregulators at salinities < 17, with a strong osmoregulatory capacity in FW. Unlike in population A, all stages were osmoconformers at higher salinities, lacking the function of hypo-regulation. In summary, our results show in two hydrologically and genetically isolated shrimp populations close relationships between differential patterns of ontogenetic change in osmoregulatory functions, salinity tolerance, and the ecology of successive life-history stages. In all postembryonic stages of the hololimnetic Pantanal population, the acquisition of an increased ability to hyper-osmoregulate in FW and, in particular, the complete loss of the ability to hypo-osmoregulate at high salt concentrations represent striking differences to the diadromous population from the Amazon estuary. These differences reflect different life styles and reproductive strategies, suggesting an at least incipient phylogenetic separation.  相似文献   

5.
Larvae of Mithrax caribbaeus were reared in the laboratoryin a factorial experiment employing three temperatures (22,25 and 28°C) and three salinities (32, 35 and 38). Survivaland duration of larval stages were recorded. Ovigerous femalesof M.caribbaeus were collected from the south-eastern coastof Margarita Island, Venezuela, and maintained in individualaquaria until hatching. Eggs from three of the females hatchedin the laboratory. Larvae from each hatching were subdividedinto groups of 10 and reared in plastic bowls containing 200ml filtered and UV-irradiated sea water at different temperature–salinitycombinations. Larvae were transferred daily to clean bowls withnewly hatched Artemia nauplii, and the number of molts and mortalitywithin each bowl was recorded. Complete larval development ofM.caribbaeus occurred under all experimental conditions. Salinityhad the greatest effect on percentage survival of each larvalstage and complete development up to the first crab stage. Thefirst zoeal stage exhibited the highest survival rate. Maximumsurvival for this stage occurred at 25°C, 32–35. Survivalin the second zoeal stage and the megalopa was affected onlyby salinity. Effects of temperature and salinity on survivaldecreased with advance in development. The duration of the twozoeal stages, the megalopa, and development to the first crabstage showed a gradual reduction with increasing temperature.Salinity showed an effect on the duration of zoeal stages butnot on the megalopal stage. Development from hatching to thefirst crab stage required 8–18 days, depending on thetemperature–salinity combination, and was inversely relatedto temperature, averaging 14.3 days at 22°C, 11.8 days at25°C and 9.2 days at 28°C.  相似文献   

6.
The Gulf killifish, Fundulus grandis, is a euryhaline teleost which has important ecological roles in the brackish-water marshes of its native range as well as commercial value as live bait for saltwater anglers. Effects of osmoregulation on growth, survival, and body condition at 0.5, 5.0, 8.0 and 12.0‰ salinity were studied in F. grandis juveniles during a 12-week trial. Relative expression of genes encoding the ion transport proteins Na+/K+-ATPase (NKA), Na+/K+/2Cl cotransporter(NKCC1), and cystic fibrosis transmembrane conductance regulator (CFTR) Cl channel was analyzed. At 0.5‰, F. grandis showed depressed growth, body condition, and survival relative to higher salinities. NKA relative expression was elevated at 7 days post-transfer but decreased at later time points in fish held at 0.5‰ while other salinities produced no such increase. NKCC1, the isoform associated with expulsion of ions in saltwater, was downregulated from week 1 to week 3 at 0.5‰ while CFTR relative expression produced no significant results across time or salinity. Our results suggest that Gulf killifish have physiological difficulties with osmoregulation at a salinity of 0.5‰ and that this leads to reduced growth performance and survival while salinities in the 5.0-12.0‰ are adequate for normal function.  相似文献   

7.
8.
Physiology, behavior, habitat, and morphology are used to determine the degree of adaptation to life on land for amphipod species and systemization within the four functional groups of the family talitridae. Talorchestia longicornis is a semi-terrestrial amphipod found in the supratidal zone of estuaries. The present study investigates the physiological adaptations of this species to life on land through measurements of osmoregulation and respiration. Over the salinity range of 1-40‰, T. longicornis regulated its hemolymph hyperosmotically at low salinities and hypoosmotically at high salinities. The isosmotic point was about 27‰. Analogously, hemolymph chloride levels were well regulated being hyperionic at low salinities and hypoionic at high salinities. This species is capable of respiration in both air and water. Slopes (b values) of the relationship between weight and oxygen uptake rates ranged from 0.316 to 0.590. Oxygen uptake rates were higher in air than water and at night versus day. Q10 values were slightly below 2.0 for respiration in air for amphipods, irrespective of weight. These physiological adaptations, along with its behaviors, habitat, and morphology, place T. longicornis within the Group III sandhoppers of the Talitridae.  相似文献   

9.
The larval development of the squat lobster Munida subrugosa from subantarctic waters of the Beagle Channel (Tierra del Fuego, Argentina) was studied under controlled laboratory conditions of temperature, salinity, and food supply. Developmental times, survival, and growth of larvae and early juveniles were investigated. Hatching of the entire brood always occurred during one night. Larvae were kept in 100ml individual bowls with filtered seawater at 8 ± 0.5°C and fed with Artemia spp. nauplii three times a week. Larvae passed through 6 zoeal instars and one megalopa. Previously, only five zoeal instars were known from this species. Mean cumulative durations of the zoeal stages I to VI were: 20.5 ± 2.5, 33.9 ± 4.1, 43.3 ± 5.4, 52.6 ± 5, 61.2 ± 3.9, and 83days, respectively. By adding the 28days that a single megalopa took to metamorphose to crab I stage, the complete larval development lasted 111days. Highest mortality occurred prior to the moult from the zoea I to zoea II stage (79.21% ± 18.65%) and during the moult from zoea VI to megalopa (92.86%). Carapace length was 1.64 ± 0.06, 1.52 ± 0.16, 1.57 ± 0.26, 1.64 ± 0.21, 2.11 ± 0.35, and 2.58 ± 0.19mm, for zoeal stages I to VI, respectively. Carapace length of megalopae and crab I instars was similar (2.85 ± 0.28 and the 2.84 ± 0.05, respectively). Unlike other subantarctic decapods, which show a tendency towards abbreviated larval development and/or some degree of endotrophy, M. subrugosa shows an extended planktotrophic larval development synchronized with short seasonal plankton production in austral summers.  相似文献   

10.
Effects of reduced salinities on dry weight (DW) and biochemical composition (total lipid and protein contents) of zoea 1 larvae were evaluated in four decapod crustacean species differing in salinity tolerance (Cancer pagurus, Homarus gammarus, Carcinus maenas, Chasmagnathus granulata). The larvae were exposed to two different reduced salinities (15‰ and 25‰ in C. granulata, 20‰ and 25‰ in the other species) for a long (ca. 50% of the zoea 1 moulting cycle) or a short period (16 h, starting at ca. 40% of the moulting cycle), while a control group was continually maintained in seawater (32‰).In general, the increments in dry weight, lipid and protein content were lower at the reduced salinities than in the control groups. In the zoea 1 of H. gammarus (stenohaline) and C. pagurus (most probably also stenohaline), the lipid and protein contents varied greatly among treatments: larvae exposed to low salinities exhibited very low lipid and protein contents at the end of the experiments compared to the controls. In some cases, there were negative growth increments, i.e. the larvae had, after the experimental exposure, lower lipid and protein contents than at the beginning of the experiment. C. maenas (moderately euryhaline) showed a lower variation in protein and lipid content than the above species. The zoea 1 of C. granulata (fairly euryhaline) showed the lowest variability in dry weight, protein and lipid content. Since salinity tolerance (eury- v. stenohalinity) is associated with the osmoregulatory capacity, our results suggest a relationship between the capability for osmoregulation and the degree of change in the biochemical composition of larvae exposed to variable salinities.Besides larval growth of these species should be affected by natural reductions of salinity occurring in coastal areas at different time scales. These effects may be potentially important for population dynamics since they should influence the number and quality of larvae reaching metamorphosis.  相似文献   

11.
The flounder, Paralichthys orbignyanus, is found in coastal and estuarine waters of the Western South Atlantic Ocean. It is being considered for aquaculture due to its high market price and wide tolerance to environmental factors such as salinity, pH, and nitrogenous compounds. The objective of this study was to characterize the ionic and osmotic regulation of P. orbignyanus over the range of its tolerated ambient salinities (0-40‰) and to evaluate the survival and growth in freshwater (0‰) and seawater (30‰) over 90 days. After 15 days of exposure to different salinities (0‰, 10‰, 20‰, 30‰ and 40‰), plasma osmolality and ionic (Na+, Cl, K+ and Ca2+) concentrations slightly increased with salinity. The isosmotic point was estimated as 328.6 mOsm kg−1 H2O and corresponded to 10.9‰ salinity. After 90 days, survival was similar in freshwater and seawater, but osmo- and ionoregulation was significantly affected in freshwater and flounders reared in this medium showed a lower growth rate than those reared in seawater. Based on the results from this study, P. orbignyanus can be characterized as a marine/estuarine euryhaline teleost capable of hyper/hypo iono- and osmoregulation over the fluctuating salinity regime faced by this species in the environment. Furthermore, results suggest that the lower growth rate exhibited by P. orbignyanus in freshwater could be due, at least partially, to a higher energy expenditure associated to a higher branchial Na+, K+-ATPase activity in this environment.  相似文献   

12.
The southern king crab, Lithodes santolla Molina, is distributed in cold-temperate and subantarctic waters ranging from the southeastern Pacific island of Chiloé (Chile) and the deep Atlantic waters off Uruguay, south to the Beagle Channel (Tierra del Fuego, Argentina/Chile). Recent investigations have shown that its complete larval development from hatching to metamorphosis, comprising three zoeal stages and a megalopa, is fully lecithotrophic, i.e. independent of food. In the present study, larvae were individually reared in the laboratory at seven constant temperatures ranging from 1 to 18 °C, and rates of survival and development through successive larval and early juvenile stages were monitored throughout a period of 1 year. The highest temperature (18 °C) caused complete mortality within 1 week; only a single individual moulted under this condition, 2 days after hatching, to the second zoeal stage, while all other larvae died later in the zoea I stage. At the coldest condition (1 °C), 71% of the larvae reached the zoea III stage, but none of these moulted successfully to a megalopa. A temperature of 3 °C allowed for some survival to the megalopa stage (17-33% in larvae obtained from two different females), but only a single individual passed successfully, 129 days after hatching, through metamorphosis to the first juvenile crab instar. At all other experimental conditions (6, 9, 12 and 15 °C), survival through metamorphosis varied among temperatures and two hatches from 29% to 90% without showing a consistent trend. The time of nonfeeding development from hatching to metamorphosis lasted, on average, from 19 days at 15 °C to 65 days at 6 °C. The relationship between the time of development through individual larval or juvenile stages (D) and temperature (T) was described as a power function (D=aTb, or log[D]=log[a]blog[T]). The same model was also used to describe the temperature dependence of cumulative periods of development from hatching to later larval or juvenile stages. One year after hatching, the 7th (6 °C) to 9th (15 °C) crab instar was reached. Under natural temperature conditions in the region of origin of our material (Beagle Channel, Argentina), L. santolla should reach metamorphosis in October-December, i.e. ca. 2 months after hatching (taking place in winter and early spring). Within 1 year from hatching, the crabs should grow approximately to juvenile instars VII-VIII. Our results indicate that the early life-history stages of L. santolla tolerate moderate cold stress as well as planktonic food-limitation in winter, implying that this species is well adapted to subantarctic environments with low temperatures and a short seasonal plankton production.  相似文献   

13.
The spider crab Platymaia wyvillethomsoni was reared in the laboratory, from hatching to the megalopal stage at 20°C. The larval development comprises two zoeal stages and a megalopa. The zoeal stages are described for the first time and compared with those of the four known species of the family Inachidae from the northern Pacific. The zoeal characters (carapace spines, antenna, mouthpart appendages, pleon and telson fork) of P. wyvillethomsoni are significantly different from those of two Achaeus species from northern Pacific and other inachid genera (Inachus and Macropodia) from the Atlantic. Therefore, this species should not be placed in the family Inachidae based on zoeal morphology. A provisional key for the identification of known zoeae of the family from the northern Pacific is provided.  相似文献   

14.
An energy budget is constructed for the larval development of the crab Rhithropanopeus harrisii (Gould) fed nauplii of the brine shrimp Artemia salina (L.). Between the first zoeal instar and the megalopa, there is a 5.4-fold increase in caloric consumption and a 13.2-fold increase in dry weight. Weight specific energy content increases through the zoeal stages and drops at the megalopa. Rate of oxygen consumption increases steadily throughout development. Assimilation, gross growth, and net growth efficiencies increase steadily through zoeal development and drop at the megalopa. Calories put into tissue production exceed those expended via respiration in zoeal stages II–IV; the reverse is true in zoeal stage I and the megalopa.

A total energy budget has been calculated and the partitioning of energy is discussed in relation to other physiological studies on this species.  相似文献   


15.
The complete larval development (four zoeae and one megalopa) of Clibanarius aequabilis and C. erythropus, reared under laboratory conditions, is described and illustrated. The larval stages of the two northeastern Atlantic Clibanarius species cannot be easily differentiated. Their morphological characters are compared with those of other known Clibanarius larvae. The genus Clibanarius is very homogeneous with respect to larval characters. All Clibanarius zoeae display a broad and blunt rostrum, smooth abdominal segments and an antennal scale without a terminal spine. Beyond the second zoeal stage, the fourth telson process is present as a fused spine, and the uropods are biramous. In the fourth larval stage all species display a mandibular palp. The Clibanarius megalopa presents weakly developed or no ocular scales, symmetrical chelipeds, apically curved corneous dactylus in the second and third pereiopods, and 5–11 setae on the posterior margin of the telson. Apart from the number of zoeal stages, Clibanarius species may be separated, beyond the second zoeal stage, by the telson formula and the morphology of the fourth telson process.  相似文献   

16.
17.
It is known that the rhizocephalan barnacle Loxothylacus texanus infects the greater blue crab, Callinectes sapidus, in the Gulf of Mexico and adjacent waters, however, factors that affect the prevalence and distribution of this parasite, particularly the dispersive larval stages of this organism, are not well understood. In the current study, the effects of salinity on larval survival and the metamorphosis of L. texanus in response to postmolt host exoskeleton were examined. Acute and acclimated responses were similar. Larval survival was highest in the 20-35‰ range, with 100% mortality of nauplii at all salinities <20‰ and >50‰. L. texanus cyprids were able to metamorphose over a broad range of salinities (15-60‰). In several cases, metamorphosis was actually greatest at high salinities (40-50‰). These data predict that L. texanus larvae would be concentrated in portions of Gulf of Mexico waters with salinities >20‰ such as the mouths of estuaries and bays. Conversely, upper regions of estuaries may be inhospitable to the dispersive (naupliar) stage of the parasite and may serve as a refuge from infection for host crabs.  相似文献   

18.
Larvae of many marine decapod crustaceans are released in unpredictable habitats with strong salinity fluctuations during the breeding season. In an experimental laboratory study, we investigated the influence of seven different salinities (0, 5, 10, 15, 20, 25 and 30) on the survival and development time of fiddler crab zoea larvae, Uca vocator, from northern Brazilian mangroves. The species reproduces during the rainy season when estuarine salinity strongly fluctuates and often reaches values below 10 and even 5. Salinity significantly affected the survival rate and development period from hatching to megalopa, while the number of zoeal stages remained constant. In salinities 0 and 5, no larvae reached the second zoeal stage, but they managed to survive for up to 3 (average of 2.3 days) and 7 days (average of 5.1 days), respectively. From salinity 10 onwards, the larvae developed to the megalopal stage. However, the survival rate was significantly lower (5–15%) and development took more time (average of 13.5 days) in salinity 10 than in the remaining salinities (15–30). In the latter, survival ranged from 80–95% and development took 10–11 days. Given the 100% larval mortality in extremely low salinities and their increased survival in intermediate and higher salinities, we conclude that U. vocator has a larval ‘export’ strategy with its larvae developing in offshore waters where salinity conditions are more stable and higher than in mangrove estuaries. Thus, by means of ontogenetic migration, osmotic stress and resulting mortality in estuarine waters can be avoided.  相似文献   

19.
The semiterrestrial crab Neohelice (=Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5–32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10–15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4–10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4–10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.  相似文献   

20.
Callianassa kraussi Stebbing in southern Africa has been recorded in salinities down to 1‰ Experiments suggest that because of the burrowing activities of the prawns, the substratum is unlikely to provide insulation against transient low surface salinities. Investigation of osmotic and ionic regulation in this species has shown that hyper-osmoregulation occurs in salinities below $?20 ‰: hyper-osmoregulatory ability decreases in salinities below $?3.5 ‰ Previous work on the genus Callianassa suggested that there was no osmo-regulatory ability in this group and a possible reason for the development of this faculty in the southern African species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号