首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relation between irradiance, skeletal growth and net photosynthesis was studied for the scleractinian coral Galaxea fascicularis to provide experimental evidence for mediation of light-enhanced calcification through photosynthesis. The hypothesis was tested that skeletal growth and photosynthesis are linearly correlated.A long-term experiment was performed in a closed-circuit aquarium system, in which four series of nine nubbins (single polyp clones of a coral colony) of Galaxea fascicularis were exposed to four light treatments (10L:14D): 144 W T8 fluorescent lighting providing an irradiance of 68 µE/m2/s and 70, 250 and 400 W Metal Halide lighting providing an irradiance of 38 µE/m2/s, 166 µE/m2/s and 410 µE/m2/s, respectively. Growth of these nubbins was measured as buoyant weight at different time intervals in a 294 day experiment. A light-saturation curve for photosynthesis was measured in a respirometric flow cell using a 54 week Galaxea fascicularis colony grown at 60 µE/m2/s.No saturation of net photosynthesis of Galaxea fascicularis was found at the irradiances tested. The specific growth rate (µ, in day- 1) of the coral nubbins increased with irradiance. Whereas irradiance varied 11-fold (38 to 410 µE/m2/s), buoyant weight (increase after 294 days) increased 5.7 times (2243 to 12374 mg), specific growth rate (1-294 days) increased 1.6 times (0.0103 to 0.0161 day- 1), while net photosynthetic rate increased 8.9 times (0.009 µmol O2/min/cm2 to 0.077 µmol O2/min/cm2). The increase of specific growth rate with irradiance was less than expected based on the increase in net photosynthetic rate with irradiance. This discrepancy between potential energy produced in photosynthesis and energy used for skeletal growth indicates that skeletal growth is not limited by photosynthetic potential at high irradiance levels.  相似文献   

2.
Both field and laboratory studies were used to investigate the effects of temperature limitation and nutrient availability on seasonal growth dynamics of Laurencia papillosa and Gracilaria coronopifolia from a nearshore coral reef in the southern tip of Taiwan during 1999-2000. L. papillosa was a summer blooming alga abundant in August-November and G. coronopifolia was abundant year round except April-May. L. papillosa blooms in the summer were attributed to its preference for high temperatures and highly sensitivity to low temperatures. A wider temperature range and a significant stimulation of growth by high N inputs can explain the appearance of G. coronopifolia year round and also its maximum growth in November-March. Levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) in water column were extremely high, but the growth of these two rhodophytes still suffered nutrient limitation that the type and severity of nutrient limitation were variable over time and also between two species. The growth of L. papillosa was limited by P in the early growth stage (August-September) as indicated by decreased tissue P contents, increased C/P and N/P molar ratios and increased alkaline phosphatase activity (APA) and in the later growth stage, it was subjected to N-limitation, evidenced by decreased tissue N contents and C/P and N/P molar ratios and increased tissue P contents. The growth of G. coronopifolia was also P-limited as indicated by increased tissue N contents and concomitantly decreased tissue P contents, while marked drops in tissue P contents below the subsistence level in mid September and December 1999 reveal severe P limitation, which was supported by increased alkaline phosphatase activity. Higher critical nutrient contents and nutrient thresholds for maximum growth of G. coronopifolia suggest that G. coronopifolia faced more frequent nutrient limitation compared to L. papillosa. In conclusion, the results from these laboratory and field studies provide evidence that the seasonal abundance of L. papillosa and G. coronopifolia from southern Taiwan was determined by seasonal variations in seawater temperatures and nutrient concentrations as well as different physiological growth strategies. Seawater temperature and nutrient availability were important determinants of seasonal abundance of L. papillosa while the seasonal abundance of G. coronopifolia was influenced by nutrient availability.  相似文献   

3.
两种抗生素对龙须菜的光合生理效应   总被引:3,自引:0,他引:3  
探讨了不同浓度的两种抗生素(氯霉素和青霉素G钠)对龙须菜(Gracilaria lemaneiformis)生长、光合作用、呼吸作用、色素含量以及可溶性蛋白含量等生理特性的影响。结果表明:龙须菜的生长受到两种抗生素的影响,但是氯霉素的影响要比青霉素G钠的影响大的多。在氯霉素处理的过程中,光合作用、有效光化学效率(Yield)、藻红藻蓝蛋白以及可溶性蛋白含量都随着氯霉素浓度的升高而显著下降,但是呼吸作用速率由于氯霉素的处理而升高;此外光合色素含量不受氯霉素的影响。在青霉素G钠的处理中,光合作用、有效光化学效率随着青霉素G钠的升高而下降,龙须菜叶绿素a与类胡萝卜素含量随着青霉素G钠浓度的升高而具有升高的趋势,但藻红蛋白、藻蓝蛋白以及可溶性蛋白在各处理组之间均没有表现出一定趋势。这些结果说明,氯霉素对生长的影响主要是光合作用速率的下降,以及有关蛋白合成下降引起,而青霉素G钠对生长的影响可能原因是呼吸作用速率的增加引起。由于龙须菜对氯霉素的敏感性比对青霉素G钠的敏感性更强,氯霉素在基因工程的育种中可能更适合作为选择压力。  相似文献   

4.
The macroalga Gracilaria lemaneiformis is an important and commercially valuable renewable resource. It is distributed widely in shallow marine waters but grows mostly on tropical or subtropical coasts. We investigated the accumulation of Cd, Cu, and Pb by live G. lemaneiformis under low concentrations. There was a positive correlation between the organisms’ metal concentrations and exposure concentrations. When exposed to both Cu and Cd, the concentrations of Cu and Cd in G. lemaneiformis were higher than those exposed to solutions of Cu and Cd alone. However, the concentrations of heavy metals in G. lemaneiformis were not markedly different (p?<?0.05) between the treatment groups and the control groups. We analyzed the results with nonlinear curve fitting and employed a two-compartment model to study the accumulation kinetics of heavy metals by G. lemaneiformis. The uptake rate constants and bioconcentration factors (BCFs) of the metals decreased with increased exposure concentration. The theoretical equilibrium concentrations increased significantly with the exposure concentrations. Our results suggested that G. lemaneiformis obviously accumulated heavy metals from seawater. As an important resource for food and pharmaceuticals, G. lemaneiformis should be cultivated in clear seawater.  相似文献   

5.
Orthosiphon stamineus (Java tea) has been widely used as traditional herb and several bioactive compounds against animal cells have been isolated. However, no bioactive compound against plants has been reported. Therefore, we investigated possible allelopathic properties and substances in O. stamineus. Aqueous methanol extracts of O. stamineus inhibited root and hypocotyl growth of cress (Lepidium sativum) and lettuce (Lactuca sativa) seedlings. Increasing the extract concentration increased the inhibition, which suggests that O. stamineus may have allelopathic properties. When the extract was divided into an ethyl acetate and an aqueous fraction, the ethyl acetate fraction showed the stronger inhibitory effect. Thus, the ethyl acetate phase was further purified, and the main allelopathic substance was isolated and identified as 13-epi-orthosiphol N, a novel compound, by spectral data. 13-epi-Orthosiphol N inhibited root and hypocotyl growth of cress and lettuce at concentrations greater than 10 μmol/L. The concentrations required for 50% inhibition ranged from 41 to 102 μmol/L. These results suggest that 13-epi-orthosiphol N may be an allelochemical and main contributor to the growth inhibitory effect of O. stamineus and may have potential as a template for the development of new plant control substances.  相似文献   

6.
7.
设置模拟氮沉降的控制试验,以NH4NO3作为外加氮源,设计CK(0kg N hm-2·a-1)、LN(50 kg N hm-2·a-1)、MN(100 kg N hm-2·a-1)、HN(150 kg N hm-2· a-1)4个处理,历时9个月,测定木荷(Schima superba)幼苗的光合特性、生物量和C、N、P含量及其分配格局对氮沉降的响应.结果表明:(1)木荷幼苗的最大净光合速率和光饱和点随着氮处理水平增加呈先增加后减小的特点,在中氮处理下极显著增加(P<0.01).氮处理降低了幼苗的光补偿点和暗呼吸速率,光补偿点在低氮处理下显著降低(P<0.05),暗呼吸速率在低中氮处理下极显著降低(P<0.01),高氮处理下显著降低(P<0.05).未见氮处理对表观量子效率产生显著影响.(2)氮处理促进了木荷的全株生物量以及各部分生物量的增长.随着氮处理水平的增加,叶重比呈升高的趋势,而根重比和根冠比呈降低的趋势,在高氮处理下叶重比的增加和根重比、根冠比的降低都达到了显著水平(P<0.05).(3)氮沉降促进各器官N含量的增加,在高氮处理下根和茎中N含量极显著增加(P<0.01),叶中N含量显著增加(P<0.05).而各器官C含量随着氮沉降程度的增加呈先增加后降低的趋势,在中氮处理下根和茎中C含量极显著增加(P<0.01),叶中C含量显著增加(P<0.05).但各器官P含量变化趋势各不相同,随着氮的增加,根中P含量是呈先增加后降低的趋势,而茎和叶中P含量是呈降低的趋势.氮沉降一定程度上降低了木荷各器官的C/N比值而增加了N/P比值.  相似文献   

8.
The seasonal cycle of biomass and tissue composition of Ulva rigida C. Agardh, in relation to nitrogen availability in the water column, was studied in 1991-1992 in the Sacca di Goro, a highly eutrophic lagoon in the Po River Delta (Italy). Nitrate uptake rates and storage capacity were also determined in laboratory experiments. The seasonal growth of U. rigida was related to the seasonal trend of nitrogen concentration in the water column. U. rigida biomass increased exponentially during spring and attained peaks of about 300-400 g dry mass (DM) m−2 in June. As biomass increased, U. rigida depleted nitrate in the water column. Thallus nitrate reserves also declined from 100 μmol N (g DM)−1 to almost undetectable levels, and total thallus nitrogen declined from 4% to 2.5% DM and 1.25% DM in 1991 and 1992, respectively. During summer, U. rigida decomposition increased, and organic nitrogen concentrations in the water column increased. The uptake experiments demonstrated an inverse relationship between thallus nitrate content and nitrate uptake rates. A modified Michaelis-Menten equation that accounts for thallus nitrate fit the uptake data well. U. rigida can accumulate up to about 400-500 μmol nitrate (g DM)−1 in cellular reserves. U. rigida in the Sacca di Goro has higher Km and lower Vmax/Km ratios for nitrate uptake than other chlorophycean species, indicating a low efficiency of uptake at low nitrate concentrations. This low uptake efficiency, and the ability to exploit N availability by storing cellular nitrate pools in excess of immediate growth needs, may represent a physiological response to an eutrophic environment where nitrate is in large supply for most of the year.  相似文献   

9.
《Aquatic Botany》2007,86(2):139-147
The effects of fresh thalli and culture medium filtrates from two species of marine macroalgae, Ulva pertusa Kjellm (Chlorophyta) and Gracilaria lemaneiformis (Bory) Dawson (Rhodophyta), on growth of marine microalgae were investigated in co-culture under controlled laboratory conditions. A selection of microalgal species were used, all being identified as bloom-forming dinoflagellates: Prorocentrum donghaiense Lu sp., Alexandrium tamarense (Lebour) Balech, Amphidinium carterae Hulburt and Scrippsiella trochoide (Stein) Loeblich III. Results showed that the fresh thalli of either U. pertusa or G. lemaneiformis significantly inhibited the microalgal growth, or caused mortality at the end of the experiment. However, the overall effects of the macroalgal culture filtrates on the growth of the dinoflagellates were species-specific (inhibitory, stimulatory or none) for different microalgal species. Results indicated an allelopathic effect of macroalga on the co-cultured dinoflagellate. We then took P. donghaiense as an example to further assess this hypothesis. The present study was carried out under controlled conditions, thereby excluded the fluctuation in light and temperature. Nutrient assays showed that nitrate and phosphate were almost exhausted in G. lemaneiformis co-culture, but remained at enough high levels in U. pertusa co-culture, which were well above the nutrient limitation for the microalgal growth, when all cells of P. donghaiense were killed in the co-culture. Daily f/2 medium enrichment greatly alleviated the growth inhibition on P. donghaiense in G. lemaneiformis co-culture, but could not eliminate it. Other environmental factors, such as carbonate limitation, bacterial presence and the change of pH were also not necessary for the results. We thus concluded that allelopathy was the most possible reason leading to the negative effect of U. pertusa on P. donghaiense, and the combined roles of allelopathy and nutrient competition were essential for the effect of G. lemaneiformis on P. donghaiense.  相似文献   

10.
In this study, we apply Fry's classification of environmental factors to demonstrate the limiting effects of oxygen and its interaction with temperature on the growth of juvenile P. lethostigma. We also evaluated the properties of two metabolic indices, marginal metabolic scope (MMS) and limiting oxygen concentration (LOC), as indicators of metabolic scope. We found that oxygen limitation has its greatest impact near the optimum temperature for growth of the species. At 29 °C a reduction from 6.00 mg/L to 4.00 mg/L caused a 50% reduction in growth rate while at 27 °C the reduction had no significant effect on growth rate. The results are particularly relevant because these temperatures and oxygen concentrations are commonly observed in nursery areas during summer months. At all temperatures fish from the lowest oxygen treatment (1.75 mg/L) had negative growth rates. Comparisons between daily oscillating oxygen treatments and constant treatments failed to demonstrate significant effects. At temperatures past the optimum, growth rates between the 6.00 mg/L and 4.00 mg/L treatments were not statistically different. LOC was significantly affected by temperature, oxygen, and their interaction. Estimates were positively correlated with oxygen treatment (R2 > 0.71) and negatively correlated with temperature at moderate and low oxygen concentrations (R2 > − 0.84). MMS was significantly affected by temperature and oxygen and was significantly correlated with oxygen treatment (R2 > − 0.91), but correlations with temperature were not as clear. In conclusion, oxygen and temperature interactions have significant effects on metabolic scope and growth rates of fish, well above the accepted hypoxia threshold of 2.00 mg/L and MMS has proved a useful estimator of the metabolic scope of the organism within an environment.  相似文献   

11.
There remains conflicting evidence on the relationship between P supply and biological N2-fixation rates, particularly N2-fixing plant adaptive strategies under P limitation. This is important, as edaphic conditions inherent to many economically and ecologically important semi-arid leguminous tree species, such as Acacia senegal, are P deficient. Our research objective was to verify N acquisition strategies under phosphorus limitations using isotopic techniques. Acacia senegal var. senegal was cultivated in sand culture with three levels of exponentially supplied phosphorus [low (200 μmol of P seedling−1 over 12 weeks), mid (400 μmol) and high (600 μmol)] to achieve steady-state nutrition over the growth period. Uniform additions of N were also supplied. Plant growth and nutrition were evaluated. Seedlings exhibited significantly greater total biomass under high P supply compared to low P supply. Both P and N content significantly increased with increasing P supply. Similarly, N derived from solution increased with elevated P availability. However, both the number of nodules and the N derived from atmosphere, determined by the 15N natural abundance method, did not increase along the P gradient. Phosphorus stimulated growth and increased mineral N uptake from solution without affecting the amount of N derived from the atmosphere. We conclude that, under non-limiting N conditions, A. senegal N acquisition strategies change with P supply, with less reliance on N2-fixation when the rhizosphere achieves a sufficient N uptake zone.  相似文献   

12.
大型海藻富含多种活性物质,具有抗衰老等生物活性;轮虫是良好的潜在抗衰老研究模式生物。本研究以褶皱臂尾轮虫(Brachionus plicatilis)作为实验对象,研究了不同浓度的大型海藻龙须菜抽提液(0,250,500,750,1000 mg/L)和不同浓度的食物(蛋白核小球藻和普通小球藻)对褶皱臂尾轮虫生命表参数的影响。结果表明:与对照组相比,食物浓度为1.0×10~6个/mL蛋白核小球藻时,不同浓度龙须菜抽提液对轮虫产卵数、平均寿命、净生长率以及世代时间有显著促进效应(P0.05);轮虫平均产卵数及寿命在龙须菜抽提液浓度750 mg/L处达到最高,分别为16只和13.9d(P0.05)。食物浓度为2.0×10~6个/mL普通小球藻时,轮虫平均产卵数和寿命在抽提液浓度为500 mg/L处达到最高,分别为16只和13.6d(P0.05),轮虫平均寿命和净生长率均有显著提高(P0.05)。相同龙须菜抽提液浓度下,食物浓度为1.0×10~6个/mL蛋白核小球藻下轮虫的净生长率、世代时间均显著高于食物浓度为2.0×10~6个/mL蛋白核小球藻培养的轮虫(P0.05);食物浓度为2.0×10~6个/mL时,普通小球藻培养轮虫的净生长率和世代时间均显著高于蛋白核小球藻实验组(P0.05)。交互作用分析显示,龙须菜抽提液与小球藻的交互作用对褶皱臂尾轮虫的内禀增长率有显著影响(P0.05)。研究结果表明,大型海藻龙须菜抽提液对褶皱臂尾轮虫的生长与生殖有促进作用,延长轮虫寿命。  相似文献   

13.
Addition of nutrients to sediments has been proposed as a means of enhancing transplantation success in seagrasses. The effects of nutrient and iron additions to natural sediments on the growth and morphology of Posidonia australis transplants were evaluated in underwater plots in two contrasting environments: a coastal embayment (Princess Royal Harbour) with sandy sediments and little riverine input, and an estuary (Oyster Harbour) with organic-rich sediments and subject to seasonal river flow from a large rural catchment. Sixty six planting units spaced 1 m apart were transplanted in situ in each location. Nitrogen (N) and phosphorus (P) were added in a randomized factorial design using slow release fertilizer granules at the start of the experiment and repeated every 4-5 months for 2 years. In a concurrent experiment, chelated iron Fe EDTA was added to modify the sediment sulphur cycle.In Oyster Harbour, the addition of N significantly increased leaf N concentrations but reduced total biomass and biomass of leaves. Addition of P significantly increased leaf P concentrations and number of living leaves per transplant, leaf area, leaf length, length of longest rhizome axis and total rhizome length. Combined N + P addition resulted in a significant increase in leaf P concentrations and leaf area per plant only. In Princess Royal Harbour, addition of N produced significant increases in leaf variables (total and leaf biomass, number of shoots and living leaves, leaf area, and leaf length) but there were no significant differences observed in below ground plant parts (rhizomes). Addition of P had no significant effects on any growth measurements. Addition of N + P combined increased number of living leaves and leaf area significantly. δ15N in mature leaf tissue were significantly more negative for N and N + P treatments at both locations.Our results indicated that N limitation was occurring in the coastal embayment, Princess Royal Harbour whereas in the more estuarine Oyster Harbour, P was limiting plant growth. Addition of FeEDTA produced equivocal results at both sites and we suggest these results are confounded by the addition of N and C in the EDTA. We caution the use of nutrient addition to transplants of slow growing seagrasses such as P. australis without a thorough understanding of the nutrient status of the system, estuarine or coastal embayment, in which they are to be transplanted.  相似文献   

14.
Tributyltin (TBT) is the most common pesticide in marine and freshwater environments. To evaluate the potential ecological risk posed by TBT, we measured biological responses such as growth rate, gonad index, sex ratio, the percentage of intersex gonads, filtration rate, and gill abnormalities in the equilateral venus clam (Gomphina veneriformis). Additionally, the biochemical and molecular responses were evaluated in G. veneriformis exposed to various concentrations of TBT. The growth of G. veneriformis was significantly delayed in a dose-dependent manner after exposure to all tested TBT concentrations. After TBT was administered to G. veneriformis, the gonad index decreased and the sex balance was altered. The percentage of intersex gonads also increased significantly in treated females, whereas no intersex gonads were detected in the solvent control group. Additionally, intersex gonads were detected in male G. veneriformis specimens exposed to relatively high TBT concentrations (20 μg L−1). The filtration rate was also reduced in a dose-dependent manner in TBT-exposed G. veneriformis. We also noted abnormal gill morphology in TBT-exposed G. veneriformis. Furthermore, increases in antioxidant enzyme activities were observed in TBT-exposed G. veneriformis clams, regardless of dosage. Vitellogenin gene expression also increased significantly in a dose-dependent manner in G. veneriformis exposed to TBT. These results provide valuable information regarding our understanding of the toxicology of TBT in G. veneriformis. Moreover, the responses of biological and molecular factors could be utilized as information for risk assessments and marine monitoring of TBT toxicity.  相似文献   

15.
The objective of this study was to evaluate the interactions between green tide-forming macroalgae Ulva linza and red macroalgae Gracilaria lemaneiformis in the laboratory. The results demonstrated that the presence of U. linza can restrict growth (9–31 %) and photosynthesis (25–85 %) of G. lemaneiformis. In contrast, G. lemaneiformis had little apparent effect on the growth of U. linza. Culture medium experiments confirmed that allelochemicals may be released by both the tested macroalgae. The causative mechanism for the growth and photosynthesis inhibition of G. lemaneiformis was not light limitation nor increase of pH, but a combination of allelopathic effects of U. linza and nutrient competition between the two macroalgae. Moreover, the “green tide” macroalga U. linza was a stronger competitor for nutrient than G. lemaneiformis. The results from this study provide evidence for the mechanisms of “green tide” formation by U. linza: potent allelopathic effects on G. lemaneiformis and faster nutrients uptake than its competitors.  相似文献   

16.
The objective of the study was to identify nutrient impacts, if any, on stream periphyton growth in Black Bear Creek (north central Oklahoma) and its tributaries. Passive diffusion periphytometers were deployed at ten study sites within the Black Bear Creek basin to evaluate periphyton growth in response to nutrient enrichment. These sites were selected to represent a gradient of land uses, from predominantly agricultural to predominantly urban. Periphytometer treatments included phosphorus (P) (1.0 mg/L PO4-P, n = 10), nitrogen (N) (10.0 mg/L NO3-N, n = 10), N plus P (n = 10) and control (reverse osmosis-treated water, n = 10). Results indicated that average dissolved inorganic N (DIN, PQL = 0.04 mg/L) concentrations were significantly correlated (R2 = 0.63, p < 0.01) with chlorophyll a production on the periphytometer control treatments in the Black Bear Creek basin. Periphytic growth was nutrient-limited (increased chlorophyll a was measured on nutrient-enriched growth media) at four of the ten sites sampled; two sites were limited by N and two sites were co-limited by both N and P. The lotic ecosystem trophic status index (LETSI), the ratio of C to N + P chlorophyll a, was calculated to compare treatment responses across sites. At nutrient-limited sites, LETSI was positively correlated to ambient DIN values (R2 = 0.97, p < 0.01). However, some sites that were not nutrient-limited had ambient nutrient concentrations similar to sites with observed nutrient limitation, indicating other factors were limiting periphyton growth at those sites.  相似文献   

17.
An increase in clinical cases of Candidiosis globally as well as fungal resistance to drugs prompted the search for novel anti-Candida albicans agents from plant sources. Leaf extracts of Markhamia obtusifolia were screened for activity against C. albicans in vitro. An acetone extract obtained following serial exhaustive extraction contained mainly the active components with at least four active zones on the bioautogram. Bioassay guided fractionation of this extract led to the isolation of three compounds which inhibited the growth of three C. albicans strains. Based on spectroscopy studies (NMR and MS), the compounds were identified as 3β-hydroxyurs-12-en-28-oic acid, ursolic acid (1) 3β, 19α-dihydroxyurs-12-en-28-oic acid, pomolic acid (2) and 2β, 3β, 19α -trihydroxy-urs-12-en-28-oic acid, 2-epi-tormentic acid (3). The most active compound was 3β, 19α-dihydroxy-12-ursen-28-oic acid (2) with a minimum inhibitory concentration (MIC) value of 12.5 µg/mL for C. albicans isolated from dog and 25.0 µg/mL for C. albicans from cat and ATCC 90028 at 24 h following incubation. However, at 48 h of incubation MICs were > 400 µg/mL for all the three compounds isolated. This study indicated that M. obtusifolia could be a potential source of active principles against C. albicans.  相似文献   

18.
An amperometric detector and an enzymatic reaction were combined for the measurement of l-ascorbic acid. The enzyme cell (containing immobilized ascorbate oxidase) was connected to a flow injection analyzer (FIA) system with a glassy carbon electrode as an amperometric detector. During optimization and measurements two sample injectors were used, one before and one after the enzyme cell, thus eliminating the background interferences. Subtraction of the signal area given in the presence of enzyme from the one given in the absence of enzyme was applied for measuring analyte concentrations and calibration at 400 mV. Analysis capacity of system is 25 samples/hour. The relative standard deviation (RSD) was below 5% (5 times repeated, 400 μmol/L conc.), linearity up to 400 μmol/L, limit of detection (LOD) 5 μmol/L, fitting of calibration curve in 25–400 μmol/L range was R 2 = 0.99.  相似文献   

19.
A microcosm approach was used to test whether: a) growth under unbalanced nutrient conditions (varying N:P ratios) affected the susceptibility of a phytoplankton community including the dinoflagellate Alexandrium catenella (a paralytic shellfish toxin producer) to mesozooplankton grazing, and b) the potential effects of unbalanced nutrient conditions were mediated by changes in toxicity of A. catenella or by other mechanisms. The experimental setup consisted of fifteen 30 l microcosms, filled with water from the Barcelona Harbour and subjected to treatments combining nutrient inputs at three different N:P ratios (Redfield N:P ratio or nutrient-balanced, high N:P and low N:P), addition or omission of A. catenella (an estimated initial concentration of 38 A. catenella cells ml− 1, a value typical for blooms in harbours of the Catalan coast), and selective addition of a cultured population of Acartia grani. P sufficiency had a strong positive effect on the growth of A. grani, both with or without A. catenella addition, presumably due to enhanced food quality of the prey community. The presence of this copepod resulted in lower concentrations of ciliates, A. catenella, and other dinoflagellates, suggesting active grazing by the copepods. No noxious effects of A. catenella on the copepods were detected at the relatively low cell concentrations of that dinoflagellate used in the experiment.  相似文献   

20.
Atmospheric CO2 enrichment may impact arbuscular mycorrhizae (AM) development and function, which could have subsequent effects on host plant species interactions by differentially affecting plant nutrient acquisition. However, direct evidence illustrating this scenario is limited. We examined how elevated CO2 affects plant growth and whether mycorrhizae mediate interactions between C4 barnyard grass (Echinochloa crusgalli (L.) Beauv.) and C3 upland rice (Oryza sativa L.) in a low nutrient soil. The monocultures and combinations with or without mycorrhizal inoculation were grown at ambient (400 ± 20 μmol mol?1) and elevated CO2 (700 ± 20 μmol mol?1) levels. The 15N isotope tracer was introduced to quantify the mycorrhizally mediated N acquisition of plants. Elevated CO2 stimulated the growth of C3 upland rice but not that of C4 barnyard grass under monoculture. Elevated CO2 also increased mycorrhizal colonization of C4 barnyard grass but did not affect mycorrhizal colonization of C3 upland rice. Mycorrhizal inoculation increased the shoot biomass ratio of C4 barnyard grass to C3 upland rice under both CO2 concentrations but had a greater impact under the elevated than ambient CO2 level. Mycorrhizae decreased relative interaction index (RII) of C3 plants under both ambient and elevated CO2, but mycorrhizae increased RII of C4 plants only under elevated CO2. Elevated CO2 and mycorrhizal inoculation enhanced 15N and total N and P uptake of C4 barnyard grass in mixture but had no effects on N and P acquisition of C3 upland rice, thus altering the distribution of N and P between the species in mixture. These results implied that CO2 stimulation of mycorrhizae and their nutrient acquisition may impact competitive interaction of C4 barnyard grass and C3 upland rice under future CO2 scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号