首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In spring, Arctic coastal fast ice is inhabited by high densities of sea ice algae and, among other fauna, juveniles of benthic polychaetes. This paper investigates the hypothesis that growth rates of juveniles of the common sympagic polychaete, Scolelepis squamata (Polychaeta: Spionidae), are significantly faster at sea ice algal bloom concentrations compared to concurrent phytoplankton concentrations. Juvenile S. squamata from fast ice off Barrow, Alaska, were fed with different algal concentrations at 0 and 5?°C, simulating ambient high sea ice algal concentrations, concurrent low phytoplankton concentrations, and an intermediate concentration. Growth rates, calculated using a simple linear regression equation, were significantly higher (up to 115?times) at the highest algal concentration compared to the lowest. At the highest algal concentration, juveniles grew faster at 5?°C compared to those feeding at 0?°C with a Q 10 of 2.0. We conclude that highly concentrated sea ice algae can sustain faster growth rates of polychaete juveniles compared to the less dense spring phytoplankton concentrations. The earlier melt of Arctic sea ice predicted with climate change might cause a mismatch between occurrence of polychaete juveniles and food availability in the near future. Our data indicate that this reduction in food availability might counteract any faster growth of a pelagic juvenile stage based on forecasted increased water temperatures.  相似文献   

2.
Thomas Mock 《Hydrobiologia》2002,470(1-3):127-132
An in situ incubation technique used successfully to measure the photosynthetic carbon assimilation of internal algal assemblages within thick multiyear Arctic ice was developed and improved to measure the photosynthetic carbon assimilation within young sea ice only 50 cm thick (Eastern Weddell Sea, Antarctica). The light transmission was improved by the construction of a cylindrical frame instead of using a transparent acrylic-glass barrel. The new device enabled some of the first precise measurements of in situ photosynthetic carbon assimilation in newly formed Antarctic sea ice, which is an important component in the sea ice ecosystem of the Antarctic Ocean. The rates of carbon assimilation of the interior algal assemblage (top to 5 cm from bottom) was 0.25 mg C m–2 d–1 whereas the bottom algal community (lowest 5 cm) attained only 0.02 mg C m–2 d–1. Chl a specific production rates (PChl) for bottom algae (0.020 – 0.056 g C g chl a –1 h–1) revealed strong light limitation, whereas the interior algae (PChl = 0.7 – 1.2 g C g chl a –1 h–1) were probably more limited by low temperatures (< –5 °C) and high brine salinities.  相似文献   

3.
Photosynthetic parameters of phytoplankton and sea ice algae from landfast sea ice of the Chukchi Sea off Point Barrow, Alaska, were assessed in spring 2005 and winter through spring 2006 using Pulse Amplitude Modulated (PAM) fluorometry including estimates of maximum quantum efficiency (F v/F m), maximum relative electron transport rate (rETRmax), photosynthetic efficiency (α), and the photoadaptive index (E k). The use of centrifuged brine samples allowed to document vertical gradients in ice algal acclimation with 5 cm vertical resolution for the first time. Bottom ice algae (0–5 cm from ice–water interface) expressed low F v/F m (0.331–0.426) and low α (0.098–0.130 (μmol photons m−2s−1)−1) in December. F v/F m and α increased in March and May (0.468–0.588 and 0.141–0.438 (μmol photons m−2s−1)−1, respectively) indicating increased photosynthetic activity. In addition, increases in rETRmax (3.3–16.4 a.u.) and E k (20–88 μmol photons m−2 s−1) from December to May illustrates a higher potential for primary productivity as communities become better acclimated to under-ice light conditions. In conclusion, photosynthetic performance by ice algae (as assessed by PAM fluorometry) was tightly linked to sea ice salinity, temperature, and inorganic nutrient concentrations (mainly nitrogen).  相似文献   

4.
During the late winter and spring of 1994, the influence of sea ice on phytoplankton succession in the water was studied at a coastal station in the northern Baltic Sea. Ice cores were taken together with water samples from the underlying water and analysed for algal composition, chlorophyll a and nutrients. Sediment traps were placed under the ice and near the bottom, and the sedimented material was analysed for algal composition. The highest concentration of ice algae (4.1 mmol C m−2) was found shortly before ice break-up in the middle of April, coincidental with the onset of an under-ice phytoplankton bloom. The ice algae were dominated by the diatoms Chaetoceros wighamii Brightwell, Melosira arctica (Ehrenberg) Dickie and Nitzschia frigida Grunow. Under the ice the diatom Achnanthes taeniata Grunow and the dinoflagellate Peridiniella catenata (Levander) Balech were dominant. Calculations of sinking rates and residence times of the dominant ice algal species in the photic water column indicated that only one ice algal species (Chaetoceros wighamii) had a seeding effect on the water column: this diatom dominated the spring phytoplankton bloom in the water together with Achnanthes taeniata and Peridiniella catenata. Received: 9 May 1997 / Accepted: 15 February 1998  相似文献   

5.
B. D. Irwin 《Polar Biology》1990,10(4):247-254
Summary Ice algae samples were collected from the winter pack ice off Labrador during March 1984. The population was dominated by centric diatoms. Chlorophyll concentrations ranged from 40 to 190 mg m–3, and particulate organic carbon from 2 to 10 g m–3. Assimilation numbers for the ice algae ranged from 1.4 to 2.8 mg C (mg chl)–1 h–1 with a mean of 2.3, and were not significantly different from the assimilation numbers of the pelagic community beneath the ice. The ice algae were not photoinhibited at light intensities approaching surface light intensities. It is postulated that the dynamic nature of the ice field permits near-surface light intensities to reach the ice algae community at irregular intervals thereby suppressing photoinhibition.  相似文献   

6.
We investigated organic carbon quantity and biochemical composition, prokaryotic abundance, biomass and carbon production in the annual and platelet sea ice of Terra Nova Bay (Antarctica), as well as the downward fluxes of organic matter released by melting ice during early spring. Huge amounts of biopolymeric C accumulated in the bottom layer of the ice column concomitantly with the early spring increase in sympagic algal biomass. Such organic material, mostly accounted for by autotrophic biomass, was characterised by a high food quality and was rapidly exported to the sea bottom during sea ice melting. Prokaryote abundance (up to 1.3 × 109 cells L−1) and extracellular enzymatic activities (up to 24.3 μM h−1 for amino-peptidase activity) were extremely high, indicating high rates of organic C degradation in the bottom sea ice. Despite this, prokaryote C production values were very low (range 5–30 ng C L−1 h−1), suggesting that most of the degraded organic C was not channelled into prokaryote biomass. In the platelet ice, we found similar organic C concentrations, prokaryote abundance and biomass values and even higher extracellular enzymatic activities, but values of prokaryote C production (range 800–4,200 ng C L−1 h−1) were up to three orders of magnitude higher than in the intact bottom sea ice. Additional field and laboratory experiments revealed that the dissolved organic material derived from algae accumulating in the bottom sea ice significantly reduced prokaryote C production, suggesting the presence of a potential allopathic control of sympagic algae on prokaryote growth. This article belongs to a special topic: Five articles on Sea-ice communities in Terra Nova Bay (Ross Sea), coordinated by L. Guglielmo and V. Saggiomo, appear in this issue of Polar Biology. The studies were conducted in the frame of the National Program of Research in Antarctica (PNRA) of Italy.  相似文献   

7.
L. Arvola 《Hydrobiologia》1983,101(1-2):105-110
Primary production and phytoplankton in polyhumic lakes showed a very distinct seasonal succession. A vigorous spring maximum produced by Chlamydomonas green algae at the beginning of the growing season and two summer maxima composed mainly of Mallomonas caudata Iwanoff were typical. The annual primary production was ca. 6 g org. C · m–2 in both lakes. The mean epilimnetic biomass was 1.1 in the first lake and 2.2 g · m–2 (ww) in the second one. The maximum phytoplankton biomass, 14 g · m–2, was observed during the vernal peak in May.  相似文献   

8.
New sets of diatom-specific biomarkers, highly branched isoprenoids (HBIs), have been recently proposed to trace carbon flow from ice algae and pelagic phytoplankton to higher trophic level organisms. In the Antarctic, diene, a HBI of sea ice origin was more abundant in ice-associated species, while triene, a HBI of phytoplanktonic origin, was more abundant in pelagic species. However, this HBI approach has never been applied on Antarctic benthic species. Here, we analyzed diene and triene in the liver and the muscle of eight Antarctic coastal fish species (108 specimens). HBI lipids were detected in all specimens, confirming the contribution of sea ice and pelagic organic matter in coastal benthic fish species. Moreover, HBI markers were much more concentrated in the liver than in white muscle, and the relative concentrations of diene and triene strongly varied among species, as a probable result of species differences in feeding habits and trophic ecology. Seasonal variations in HBI concentrations were detected during the whole year in white muscle, but not in the liver. These findings are consistent with the well-known spring bloom in November–December, just before the annual ice break up, and the second proliferation of ice algae during the land-fast ice formation, in April–May. Therefore, investigation of HBI lipids in white muscle will likely shed new light on seasonal changes in the contribution of ice algal-derived organic matter in higher trophic level organisms.  相似文献   

9.
SUMMARY.
  • 1 Phytoplankton primary production and biomass were compared with bacterial secondary production estimated by means of frequency of dividing cells (FDC) in eutrophic Lake Tystrup. Denmark.
  • 2 In the upper part of the photic zone, bacterial secondary production constituted 12% of the carbon fixed by the phytoplankton. In vertical profiles, bacterial secondary production ranged from 7.6% (early spring) to 121% (during August) of the carbon fixed by the algae.
  • 3 A close relationship was found between occurrence and activity of bacteria and algae, suggesting that released organic products are of primary importance to the bacteria.
  • 4 The annual phytoplankton primary production was estimated as 227 g C m-2 compared to 102 g C m-2 assimilated by the bacteria, so 45% of the carbon fixed by the phytoplankton went through pelagic bacteria.
  相似文献   

10.
Global warming and the loss of sea ice threaten to alter patterns of productivity in arctic marine ecosystems because of a likely decline in primary productivity by sea ice algae. Estimates of the contribution of ice algae to total primary production range widely, from just 3 to >50%, and the importance of ice algae to higher trophic levels remains unknown. To help answer this question, we investigated a novel approach to food web studies by combining the two established methods of stable isotope analysis and fatty acid (FA) analysis--we determined the C isotopic composition of individual diatom FA and traced these biomarkers in consumers. Samples were collected near Barrow, Alaska and included ice algae, pelagic phytoplankton, zooplankton, fish, seabirds, pinnipeds and cetaceans. Ice algae and pelagic phytoplankton had distinctive overall FA signatures and clear differences in delta(13)C for two specific diatom FA biomarkers: 16:4n-1 (-24.0+/-2.4 and -30.7+/-0.8 per thousand, respectively) and 20:5n-3 (-18.3+/-2.0 and -26.9+/-0.7 per thousand, respectively). Nearly all delta(13)C values of these two FA in consumers fell between the two stable isotopic end members. A mass balance equation indicated that FA material derived from ice algae, compared to pelagic diatoms, averaged 71% (44-107%) in consumers based on delta(13)C values of 16:4n-1, but only 24% (0-61%) based on 20:5n-3. Our estimates derived from 16:4n-1, which is produced only by diatoms, probably best represented the contribution of ice algae relative to pelagic diatoms. However, many types of algae produce 20:5n-3, so the lower value derived from it likely represented a more realistic estimate of the proportion of ice algae material relative to all other types of phytoplankton. These preliminary results demonstrate the potential value of compound-specific isotope analysis of marine lipids to trace C flow through marine food webs and provide a foundation for future work.  相似文献   

11.
Arctic organisms are adapted to the strong seasonality of environmental forcing. A small timing mismatch between biological processes and the environment could potentially have significant consequences for the entire food web. Climate warming causes shrinking ice coverage and earlier ice retreat in the Arctic, which is likely to change the timing of primary production. In this study, we test predictions on the interactions among sea ice phenology and production timing of ice algae and pelagic phytoplankton. We do so using the following (1) a synthesis of available satellite observation data; and (2) the application of a coupled ice‐ocean ecosystem model. The data and model results suggest that, over a large portion of the Arctic marginal seas, the timing variability in ice retreat at a specific location has a strong impact on the timing variability in pelagic phytoplankton peaks, but weak or no impact on the timing of ice‐algae peaks in those regions. The model predicts latitudinal and regional differences in the timing of ice algae biomass peak (varying from April to May) and the time lags between ice algae and pelagic phytoplankton peaks (varying from 45 to 90 days). The correlation between the time lag and ice retreat is significant in areas where ice retreat has no significant impact on ice‐algae peak timing, suggesting that changes in pelagic phytoplankton peak timing control the variability in time lags. Phenological variability in primary production is likely to have consequences for higher trophic levels, particularly for the zooplankton grazers, whose main food source is composed of the dually pulsed algae production of the Arctic.  相似文献   

12.
Microalgal assemblages from the bottom ice, the ice-water interface and the water column were systematically sampled from April to June 1986, in southeastern Hudson Bay (Canadian Arctic). The taxonomic similarity between samples from the three environments was assessed using a clustering procedure. There were two groups that comprised samples from both the ice-water interface and the water column, while five other groups were made of samples originating from a single environment. Taxonomic compositions of the two mixed groups suggest two types of connexion between the ice-water interface and the water column, i.e. before the phytoplankton bloom, there was seeding of the water column by ice algae and, during ice melt, interfacial algae contributed to the water column communities that were otherwise typically phytoplankton. Overall, the phytoplankton community underwent a succession from pennate to centric diatoms. Sinking rates of algae from the ice-water interface were estimated using settling columns (SETCOL). The sinking rates increased seasonally (0.4–2.7 m d–1), which enhanced accessibility of ice-algal cells to the pelagic grazers. Ice algae contributed to water column production as they became accessible to the pelagic grazers, and also by seeding the water column before the phytoplankton bloom.Contribution to the programs of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec) and of the Maurice Lamontagne Institute (Department of Fisheries and Oceans)  相似文献   

13.
We report on the first record of interstitial cnidarians in sea ice. Ice core samples were collected during eight field periods between February 2003 and June 2006 in the coastal fast ice off Barrow, Alaska (71°N, 156°W) at four locations. A total of 194 solitary, small (0.2–1.1 mm) elongated specimens of a previously unknown interstitial hydroid taxon were found. By cnidome composition and the occurrence of a highly retractable pedal disc formed by epidermal tissue only, the specimens are tentatively assigned to representatives of the family Protohydridae, subclass Anthomedusae. The hydroids were found almost exclusively in the bottom 10 cm-layer (at the ice–water interface) of 118 ice cores, with abundances ranging from 0 to 27 individuals per core section (0–4,244 ind m−2) and a grand mean of 269 ind m−2 in bottom 10 cm-layer sections. Abundances were lower in December and late May than in months in between with considerable site variability. A factor analysis using 12 variables showed that hydroid abundance correlated highest with abundances of copepod nauplii and polychaete juveniles suggesting a trophic relationship.  相似文献   

14.
Cell viabilities of phytoplankton in the Oyashio and Kuroshio-Oyashio transition regions of the northwest Pacific Ocean were examined in September 2003 (late summer) and May 2005 (spring) using a membrane permeability test. Specific lysis rates of the phytoplankton during late summer were also assessed by an esterase activity assay. In late summer, cyanobacteria Synechococcus spp. were > 2 × 104 cells ml− 1 and numerically dominated the phytoplankton communities. The cell viabilities of Synechococcus spp. and eukaryotic ultraphytoplankton (< 10 μm in size) were 60-79% and 26-41% in surface waters, respectively. The specific lysis rates of the phytoplankton were 0.12-0.67 d− 1 in late summer. By contrast, in spring, eukaryotic cells were predominant in the phytoplankton communities. The cell viabilities of surface eukaryotic ultraphytoplankton in spring were > 70% and significantly higher than those in late summer. During spring, Synechococcus spp. only occurred with < 1 × 104 cells ml− 1 in the Kuroshio-Oyashio transition region, and their viabilities were 80%. In the Oyashio region where a spring diatom bloom developed, the viability of fucoxanthin-containing algae (mainly diatoms and prymnesiophytes) was ca. 90%. These results suggested that the cell viability of phytoplankton could vary seasonally with their community structure in the study area. The phytoplankton cell death in late summer was particularly significant for their loss process and could support the microbial food webs by supplying dissolved organic carbon (DOC) derived from the dead cells.  相似文献   

15.
Currently, the impact of declining seasonal sea ice extent in the Arctic on polar food webs remains uncertain. Previously, a range of proxy techniques has been employed to determine links between sea ice or phytoplankton primary production and the Arctic marine food web, although it is accepted that such approaches have their limitations. Here, we propose a novel approach to tracing sea ice primary production through Arctic food webs using the sea ice diatom biomarker, IP25. Various benthic macrofaunal specimens were collected between March and May 2008 from Franklin Bay in the Amundsen Gulf, Arctic Canada, as part of the International Polar Year–Circumpolar Flaw Lead system study. Each specimen was analysed for the presence of the sea ice diatom biomarker IP25 in order to provide evidence for feeding by benthic organisms on sea ice algae. IP25 was found in nineteen out of the twenty-one specimens analysed, often as the most abundant of the highly branched isoprenoid biomarkers detected. The stable isotope composition of IP2513C = −17.1 ± 0.5‰) in the sea urchin (Strongylocentrotus sp.) specimens was similar to that reported previously for this biomarker in Arctic sea ice, sedimenting particles and sediments. It is concluded that detection of IP25 in Arctic benthic macrofauna represents a novel approach to providing convincing evidence for feeding on sea ice algae. It is also proposed that analysis of IP25 may be used to trace trophic transfer of sea ice algal-derived organic matter through Arctic food webs in the future.  相似文献   

16.
Physical-chemical conditions, phytoplankton productivity, community structure and productivity of the macroinvertebrate benthic community were determined during 1976–77 in a subtropical reservoir. Physical-chemical results revealed high nitrate and phosphate concentrations with highest values in the riverine segment. Large phytoplankton populations were present during most of the year. Phytoplankton productivity was high, producing an annual mean of 87 mg C · m−3 · h−1 (12 hours light day). High turbidity in the riverine segment limited phytoplankton productivity during winter and spring. Macrobenthos was dominated by chironomids (Chironomus, Procladius, Coelotanypus and Tanypus) and oligochaetes (Limnodrilus). The annual mean benthic population was estimated at 1,626 · m−2 with a mean dry weight of 0.66 g · m−2. Mean benthic species diversity was 1.80. A lacustrine-riverine community gradient was revealed. Benthic productivity was 6.8 g · m−2 · yr−1 (dry weight) with a P: B ratio of 10. A low correlation was observed between benthic and phytoplankton productivity, and between phytoplankton standing crop and benthic macroinvertebrate numbers throughout the reservoir. Algal food supplies had little impact on the benthic community which was composed predominately of species which fed mostly on organic detritus. Stressful conditions caused by low dissolved oxygen concentrations probably inhibited development of the benthic community throughout the reservoir during summer months, while high sedimentation rates limited development in the head waters.  相似文献   

17.
We report here the first comprehensive seasonal study of benthic microbial activity in an Antarctic coastal environment. Measurements were made from December 1990 to February 1992 of oxygen uptake and sulfate reduction by inshore coastal sediments at Signy Island, South Orkney Islands, Antarctica. From these measurements the rate of benthic mineralization of organic matter was calculated. In addition, both the deposition rate of organic matter to the bottom sediment and the organic carbon content of the bottom sediment were measured during the same period. Organic matter input to the sediment was small under winter ice cover, and the benthic respiratory activity and the organic content of the surface sediment declined during this period as available organic matter was depleted. On an annual basis, about 32% of benthic organic matter mineralization was anoxic, but the proportion of anoxic compared with oxic mineralization increased during the winter as organic matter was increasingly buried by the amphipod infauna. Fresh organic input occurred as the sea ice melted and ice algae biomass sedimented onto the bottom, and input was sustained during the spring after ice breakup by continued primary production in the water column. The benthic respiratory rate and benthic organic matter content correspondingly increased towards the end of winter with the input of this fresh organic matter. The rates of oxygen uptake during the southern summer (80 to 90 mmol of O2 m-2 day-1) were as high as those reported for other sediments at much higher environmental temperatures, and the annual mineralization of organic matter was equally high (12 mol of C m-2 year-1). Seasonal variations of benthic activity in this antarctic coastal sediment were regulated by the input and availability of organic matter and not by seasonal water temperature, which was relatively constant at between -1.8 and 0.5°C. We conclude that despite the low environmental temperature, organic matter degradation broadly balanced organic matter production, although there may be significant interrannual variations in the sources of the organic matter inputs.  相似文献   

18.
Climate‐forced ice losses are increasing potential for iceberg‐seabed collisions, termed ice scour. At Ryder Bay, West Antarctic Peninsula (WAP) sea ice, oceanography, phytoplankton and encrusting zoobenthos have been monitored since 1998. In 2003, grids of seabed markers, covering 225 m2, were established, surveyed and replaced annually to measure ice scour frequency. Disturbance history has been recorded for each m2 of seabed monitored at 5–25 m for ~13 years. Encrusting fauna, collected from impacted and nonimpacted metres each year, show coincident benthos responses in growth, mortality and mass of benthic immobilized carbon. Encrusting benthic growth was mainly determined by microalgal bloom duration; each day, nanophytoplankton exceeded 200 μg L?1 produced ~0.05 mm radial growth of bryozoans, and sea temperature >0 °C added 0.002 mm day?1. Mortality and persistence of growth, as benthic carbon immobilization, were mainly influenced by ice scour. Nearly 30% of monitored seabed was hit each year, and just 7% of shallows were not hit. Hits in deeper water were more deadly, but less frequent, so mortality decreased with depth. Five‐year recovery time doubled benthic carbon stocks. Scour‐driven mortality varied annually, with two‐thirds of all monitored fauna killed in a single year (2009). Reduced fast ice after 2006 ramped iceberg scouring, killing half the encrusting benthos each year in following years. Ice scour coupled with low phytoplankton biomass drove a phase shift to high mortality and depressed zoobenthic immobilized carbon stocks, which has persevered for 10 years since. Stocks of immobilized benthic carbon averaged nearly 15 g m?2. WAP ice scouring may be recycling 80 000 tonnes of carbon yr?1. Without scouring, such carbon would remain immobilized and the 2.3% of shelf which are shallows could be as productive as all the remaining continental shelf. The region's future, when glaciers reach grounding lines and iceberg production diminishes, is as a major global sink of carbon storage.  相似文献   

19.
By using the stable isotope 15N, we have measured in situ the uptake of nitrate and ammonium by the seagrass Posidonia oceanica, its leaf epiphyte community, the brown macroalgae Halopteris scoparia and the suspended particulate organic matter (SPOM). In Revellata Bay (Gulf of Calvi, Western Corsica), which is a very nutrient-poor region, the specific uptake rates (V) (μg N g N−1 h−1) of SPOM measured at ambient concentrations are 10-1000 higher than those of benthic primary producers. Macroalgae have intermediary V, between the seagrass leaf and leaf epiphytes. V are quite variable and the reasons for this variability remain unclear.Despite the difference of specific uptake rates found between benthic and pelagic primary producers, when integrating the uptake fluxes for a water column of 10 m depth, the contribution of benthic primary producers to N uptake fluxes (g N m−2 h−1) is significant, corresponding on average to 40% of total uptake flux. This results from the dominance in terms of N biomass of benthic primary producers in this shallow nutrient-poor area. When reported for the entire volume of the Revellata Bay, the contribution of benthic primary producers is reduced to 5-10% of total N uptake flux.Although this contribution could appear relatively low, it results in a significant direct transfer of inorganic nitrogen from the water column to the benthic compartment. By this transfer, the benthic plants act as a biological pump incorporating the pelagic N into the benthic compartment for a time longer than the characteristic time of phytoplankton dynamics (month-years vs. day-week).  相似文献   

20.
How the abundant pelagic life of the Southern Ocean survives winter darkness, when the sea is covered by pack ice and phytoplankton production is nearly zero, is poorly understood. Ice‐associated (“sympagic”) microalgae could serve as a high‐quality carbon source during winter, but their significance in the food web is so far unquantified. To better understand the importance of ice algae‐produced carbon for the overwintering of Antarctic organisms, we investigated fatty acid (FA) and stable isotope compositions of 10 zooplankton species, and their potential sympagic and pelagic carbon sources. FA‐specific carbon stable isotope compositions were used in stable isotope mixing models to quantify the contribution of ice algae‐produced carbon (αIce) to the body carbon of each species. Mean αIce estimates ranged from 4% to 67%, with large variations between species and depending on the FA used for the modelling. Integrating the αIce estimates from all models, the sympagic amphipod Eusirus laticarpus was the most dependent on ice algal carbon (αIce: 54%–67%), and the salp Salpa thompsoni showed the least dependency on ice algal carbon (αIce: 8%–40%). Differences in αIce estimates between FAs associated with short‐term vs. long‐term lipid pools suggested an increasing importance of ice algal carbon for many species as the winter season progressed. In the abundant winter‐active copepod Calanus propinquus, mean αIce reached more than 50% in late winter. The trophic carbon flux from ice algae into this copepod was between 3 and 5 mg C m?2 day?1. This indicates that copepods and other ice‐dependent zooplankton species transfer significant amounts of carbon from ice algae into the pelagic system, where it fuels the food web, the biological carbon pump and elemental cycling. Understanding the role of ice algae‐produced carbon in these processes will be the key to predictions of the impact of future sea ice decline on Antarctic ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号