首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary At low levels on shores in New South Wales, foliose algae are abundant and often occupy all substrata; microalgal grazing gastropods are rare or absent. At higher levels, foliose algae are sparse or absent and grazing gastropods are abundant. Hypotheses for the causes of the lower vertical limits of distribution of these grazers include the effects of increased predation or the deleterious physiological effects of increased period of submergence at lower levels on the shore. Alternatively, the presence of the algae, because they occupy space and deprive the grazers of substratum for feeding, may prevent the downward movement, or survival of the grazers at low levels. Under the first two of these hypotheses, algae are able to colonize and grow in low-shore areas as an indirect result of factors which remove grazers. Under the third hypothesis, the algae are directly responsible for the lack of grazers.Experimental clearings of the low-shore algae and introductions of the mid-shore limpets Cellana tramoserica and Siphonaria denticulata were used to test these hypotheses. C. tramoserica grazes microalgae and removes them from the substratum, preventing colonization. S. denticulata, in contrust, crops the algae, leaving a visible cover of algae on the substratum, which can grow rapidly. Because of its method of feeding, S. denticulata had no measurable impact on the rates of colonization, nor on the dry weights of algae, compared with those of ungrazed areas. C. tramoserica could keep cleared areas tree from foliose algae, but only when the limpets were mainfained in great density (10 per 900 cm2). They were less effective where wave-action was greater.Neither species of limpets could survive when placed onto beds of mature algae, because they had no substratum on which to cling and were swept away by the waves. C. tramoserica did not invade clearings below their lower limit of distribution where they had to move over a bed of foliose algae. Few C. tramoserica moved directly downshore into cleared areas. When placed on bare rock within low-shore beds of algae of different ages, S. denticulata remained amongst the algae and maintained their tissue-weights. Few C. tramoserica remained in areas with well-developed algae, compared with areas having sparse algal growth. Those Cellana which remained amongst well-developed algae lost weight, whereas limpets in areas with less algal growth mammtained their weights. In experimental cages in low-shore beds of algae, where the limpets were inaccessible to potential predators, C. tramoserica lost weight and died. On cleared areas they survived for many weeks, but lost weight and died as algae grew and covered the substratum. In the absence of predation, the micro-algal grazer C. tramoserica could not survive in lowshore areas because algae grew too fast and occupied the substratum, making it inaccessible for the limpets to graze; the algae, once grown beyond small sporelings, are not a suitable food-source for C. tramoserica, and the loss of weight and death of these limpets is attributable to starvation.The lower limit of distribution of C. tramoserica is not due to the direct effects of physical factors associated with prolonged submersion, nor to the impact of predators, but is apparently determined by the presence of rapidly growing, extensive beds of foliose algae at low levels on the shore. The cause of the limit of distribution of S. denticulata is not yet known and predation may prove to be important. Removal of S. denticulata from low-shore algal beds would not, however, affect the domination of substrata by algae. Grazing by S. denticulata at very great density had no effect on algal cover nor weight. In the intertidal community studied, the persistence of a low-shore algal zone, bounded above by abundant grazers is not influenced by the activities of predators, but is a direct result of interactions between the grazers and the algae.  相似文献   

2.
Populations of three coexisting intertidal gastropods, Nerita atramentosa Reeve, Bembicium nanum (Lamarck) and Cellana tramoserica (Sowerby), were sampled from a shore in Botany Bay, New South Wales, from July 1972 to September 1973. The recruitment and growth rates of each species were analysed from size frequency distributions. Mortality of each age cohort, and longevity, were estimated from analyses of the densities of Nerita atramentosa and Bembicium nanum.Nerita atramentosa showed no significant mortality during the first two years on the shore, but high mortality (at an instantaneous rate of 0.084 deaths/individual/month) after reaching the age of reproductive maturity, which was 20 months from settlement and at a mean shell-length of 13.5 mm. No growth could be detected after reproductive maturity was reached. Longevity of N. atramentosa was estimated as 3–5.5 years. Bembicium nanum juveniles showed higher mortality (at an instantaneous rate of 0.233 deaths/individual/month) than reproductively mature animals (0.060 deaths/individual/month). Reproductive maturity was reached at a mean shell-breadth of 11.0mm, i.e., about ten months after settlement on the shore. Longevity was estimated as from 4–8 years. Cellana tramoserica showed different growth patterns depending on the time of settlement.The three species showed different patterns of growth and life history relating to variable recruitment (which was demonstrated in all three species) and different rates of mortality of age cohorts.  相似文献   

3.
Etie B. Akpan 《Ichnos》2013,20(2):125-132
Studies on shells of the intertidal oyster Crassostrea tulipa cemented to aerial prop roots and stems of the mangroves Rhizo‐phora racemosa, R. harrisonii, and R. mangle from the Cross River and Qua Iboe River estuaries show that photosynthetic en‐dolithic cyanobacteria (blue‐greens) are the major bioerosional agent, affecting about 94% of the shells examined. Pblychaetes attacked less than 10% of these materials and thus have low bioerosional impact.

Herbivorous gastropods play a secondary role because, by grazing, they clear the shell surface of encrusting cyanobacteria and thus enhance the activity of boring forms. Where epilithic cyanobacteria have been removed, the gastropods sometimes leave faint grazing traces of low fossilization potential.

Microfloral boring activity is high at all stations, but the assemblage is of markedly low diversity compared with those of littoral and shallow sublittoral marine communities and may thus be useful as a paleoenvironmental tool. Bioerosional agents are directly or indirectly responsible for the disintegration of oyster shells, whose fragments are incorporated in muddy intertidal sediments.  相似文献   

4.
As a prerequisite for models of foraging behaviour of the whelk, Morula marginalba Blainville (Muricidae), the effects of variation in density of prey on the rate of feeding of the predator were examined in field conditions for three coexisting species of prey. Densities of prey used were those at which the prey, two limpets and a barnacle, occurred naturally in the rocky intertidal habitat.Large limpets, Cellana tramoserica (Sowerby) can resist attacks by predatory gastropods by raising the mantle over the outside of the shell. These experiments showed that no C. tramoserica were killed by Morula marginalba even at very great densities and with no alternative prey present. For the small limpet Patelloida latistrigata (Angas), one of the whelk's most highly preferred prey, juveniles were eaten 1.4 times as fast as adults. Fitting the random predator equation gave greater attack coefficients and shorter handling times for juvenile than adult limpets.Sizes of both predator and prey affected rates of eating barnacles, Tesseropora rosea (Krauss), but not in a simple way. Whelks of 15-mm aperture length ate adult barnacles 4.2 times faster than did 12-mm whelks, but there was no significant difference in the rates at which the two sizes of snail ate juvenile barnacles.Rates of feeding on T. rosea and Patelloida latistrigata increased significantly with prey density. These results form a basis for including the density of prey in models of spatial dispersion of the predatory gastropod Morula marginalba.  相似文献   

5.
Abstract Abundance of macro-algae in the mid-littoral zone on a Victorian intertidal rocky shore varied seasonally, algae being rare in Summer and common in Winter and Spring. Field experiments demonstrated that, of two species of grazing limpets (Cellana tramoserica and Siphonana diemenensis), only Siphonaria had a major effect on the abundance of foliose algae (e.g. Scytopsiphon lomeniarid) and neither species had a great effect on the encrusting algae (Ralfsia spp.). There was no evidence of competition for food between the two species of limpets, in contrast with results found for similar species in New South Wales.  相似文献   

6.
7.
Caging experiments were undertaken in the field to test if competition occurs within and between the limpet Cellana tramoserica (Sowerby) and the starfish Patiriella exigua (Lamarck). Both species suffer from intraspecific competition, even at natural densities, and increased density reduces body weight and survival in Cellana tramoserica and growth rate in Patiriella exigua. Cellana tramoserica depresses the growth of Patiriella exigua, while the starfish unexpectedly seems beneficial to Cellana tramoserica, increasing its body weight. The difference in these effects may be due to the divergent methods of feeding used by the two species. C. tramoserica digs into the substratum and removes most available microflora, while Patiriella exigua everts its stomach onto the rock face and can only remove superficial or loosely attached microflora and detritus, and leaves a mucous web which may supplement the diet of Cellana tramoserica. Even at low densities C. tramoserica can completely prevent macroalgae from developing, while Patiriella exigua is unable to do so, although it shows the rate of development. Macroalgae grew in all the cages which contained only P. exigua, but in spite of this the starfish still suffered from intraspecific competition, probably because they cannot feed on macroalgae. Cellana tramoserica also competes by interference, and on contact with Patiriella exigua it extends its mantle and pallial tentacles, both of which may release mucus. P. exigua retreats from Cellana tramoserica, and those parts of its body that have been touched by the limpet may temporarily be immobilised and become wrinkled up. It is suggested that this interference behaviour by C. tramoserica is derived from a similar but more intense reaction that it has to invertebrate predators. Patiriella exigua lacks a pelagic larva and does not have a refuge outside the range of Cellana tramoserica. Other factors must thus be sought to explain the continued coexistence of Patiriella exigua with Cellana tramoserica. It is suggested that although C. tramoserica has a competitive effect on Patiriella exigua, it (and other grazers) may be necessary for P. exigua, preventing macroalgal growth and maintaining a surface suitable for P. exigua to feed on.  相似文献   

8.
Two important lagerstätten of Early Triassic gastropods, the Sinbad Limestone (Utah, USA) and the Gastropod Oolite (North Italy) yield about 40% of all described Early Triassic species. This great contribution to the global diversity and the exceptional good preservation render high information content, which characterizes fossil lagerstätten. The Smithian Sinbad Limestone contains the most diverse Early Triassic gastropod fauna. At the type locality, it occurs in single, probably storm-induced shell bed within a series of high energy deposits underlain by intertidal microbial mats and subtidal oolite/peloid shoals. The main shell bed contains about 40 invertebrate taxa. Gastropods, scaphopods, and bivalves are most abundant and form an assemblage, which is dominated by small neritaemorphs, the opisthobranch Cylindrobullina convexa and the scaphopod Plagioglypta (annulated tubes). This assemblage lived on shallow, subtidal soft-bottoms based on sedimentological and ecological characteristics. The Dienerian (to Smithian?) Gastropod Oolite Member (North Italy) has extremely abundant, probably salinity-controlled gastropod faunas with low species richness. Almost monospecific assemblages of Pseudomurchisonia kokeni as well as assemblages with about four species are present in the Gastropod Oolite. Modern hydrobiid mudsnail faunas which are adapted to strongly fluctuating salinity in intertidal to shallow subtidal coastal areas form probably a suitable model for the Gastropod Oolite biota. Gastropods from the Werfen- and Moenkopi-Formation lagerstätten are well preserved compared to other Early Triassic deposits. The high contribution to the global diversity of just two sites suggests very incomplete sampling and preservational bias. However, the low richness of the major faunas reflects depauperate Early Triassic faunas and slow recovery from the Permian/Triassic crisis.  相似文献   

9.
Tree species differ in longevity, canopy structure, and bark texture, chemistry and water storage. Tree species-specific traits play a role in shaping epiphytic vegetation and likely influence the community assembly of organisms feeding on epiphytes. Lichenivorous gastropods, species with calcium-rich shells in particular, need calcium and likely occur more abundantly in and around tree species with high available calcium. We quantified gastropod grazing on the epiphytic lichens Lobaria pulmonaria and Lobaria scrobiculata transplanted to blocks of adjacent trunks of Acer platanoides, Quercus robur and Tilia cordata. We tested the hypothesis that tree species known to have more available Ca, exhibit more grazing damage on transplanted lichens than trees with lower Ca-availability. The grazing pressure was 1.6–1.8 times higher for lichen transplants on Acer and Tilia known to produce litter with easily soluble Ca than on Quercus, which binds Ca as oxalate. Trees with a high grazing pressure on transplants had greater natural abundance of Lobaria virens than of L. pulmonaria. Gastropods preferred L. scrobiculata to L. pulmonaria, evidenced by more observed grazing marks and greater measured biomass loss. We attribute this difference to the lower concentration of carbon-based secondary compounds in L. scrobiculata. However, the strength of the preference varied between the three tree species receiving lichen transplants and was strongest on A. platanoides, while gastropods on T. cordata grazed equal amounts of each transplanted lichen. In conclusion, tree species influenced grazing patterns of gastropods on epiphytic lichens. In addition to bark pH and other factors, we have shown that tree species-specific differences in grazing pressure play a role in shaping the epiphytic macrolichen community.  相似文献   

10.
The effects of small-scale disturbances (80×30-cm plots) of canopy and grazers on intertidal assemblages were investigated in this 4-year experiment on sheltered rocky shores on the Swedish west coast. Canopy disturbances due to ice scouring were mimicked by removal of adult plants of the seaweed Ascophyllum nodosum (L.) Le Joli. Density of the main epilithic grazing gastropods, Littorina spp., was lowered by exclosure and handpicking. Based on earlier experiments in other areas, the general hypothesis was that canopy removal and grazer exclosure, alone or in combination, should increase the recruitment of A. nodosum or other fucoid juveniles, and change the structure of the understorey assemblage.There was an effect of canopy removal on the development of this assemblage, lasting for more than 31 months. Both increased and decreased abundances of species were found as short-term effects, but there was also a longer-term effect with increased abundance. Grazer exclosure was only effective in combination with canopy removal, causing a short-term increase in ephemeral green algae. Short-term effects of canopy removal were also the increase in recruitment of Semibalanus balanoides (Linnaeus) and the decrease of the red alga Hildenbrandia rubra (Sommerfelt) Meneghini. Fast recruitment and growth of fucoid species (Fucus serratus L. and F. vesiculosus L.) restored the canopy and conditions of the understorey within 18 months. Thus, the canopy removal changed the physical conditions for the understorey, making it possible for other species to coexist in this community. Surprisingly, no effect of canopy removal or grazer exclusion was found on the recruitment of juvenile A. nodosum, neither by canopy removal nor grazer exclosure. The lack of such effects might be due to the early mortality caused by other grazers (small, mobile crustaceans), or to the low density of periwinkles on these shores. However, despite the patchy and generally low recruitment of A. nodosum juveniles, observations suggested that the cover of A. nodosum in manipulated patches would return to initial levels, either by recruitment or regrowth of small holdfasts and from growth of edge plants.  相似文献   

11.
A marine fossil assemblage from the Late Triassic (Early Carnian) Cassian Formation is reported. It was retrieved by bulk sampling, including wet sieving and quantitative picking, and by quantitative surface collection. The collection consists of c. 460 specimens (foraminiferans not included) representing 54 species. In terms of abundance and species richness, it is strongly dominated by molluscs, especially gastropods. 97 % of the individuals are molluscs. The most abundant species are the gastropods Goniospira armata, Schartia carinata and Helenostylina convexa, followed by the scaphopod Plagioglypta undulata and the bivalve Palaeonucula strigilata. Disarticulated echinoderm ossicles (mostly echinoids, crinoids, few holothurians) comprise almost all of the rest of the assemblage. The studied assemblage shows moderate diversity, similar to those of previously reported assemblages or associations from basinal settings. However, it differs considerably in taxonomic composition from previously described associations of the Cassian Formation. The abundance of small gastropods is a result of their primary abundance in these ancient living communities and of the sampling method (sieving at 0.5 mm), because most of the previous associations were obtained by performing surface collections, in which small gastropods are easily overlooked. The fauna is interpreted as an autochthonous soft bottom assemblage dominated by species that lived in low epifaunal to shallow infaunal habitats. Detritivory, deposit feeding and microcarnivory represent the main feeding types. Most of the species were fully motile but slow, and either infaunal (scaphopods, nuculids, the gastropod Domerionina) or epifaunal (most other gastropods, echinoids). The present assemblage underlines the pronounced heterogeneity of the Cassian biota. The low grade of lithification and diagenetic alteration facilitates bulk sampling and the investigation of small species. This minimizes possible sampling and preservation biases, so the studied assemblage reflects the alpha diversity of this ancient living community to an unusually high degree. The following gastropod taxa are new: Helenostylina convexa n. sp., Schartia carinata n. gen. n. sp., Schartiinae n. subfam.; Cassianastraea Bandel non Volz is replaced with Bandelastraea nom. nov.  相似文献   

12.
Wax discs have been used previously on intertidal rocky shores to record the grazing activity of gastropods. This study has evaluated this methodology for recording grazing of four common intertidal microalgal grazers on intertidal shores in New South Wales, Australia. In the laboratory, the four species examined-the patellid limpet, Cellana tramoserica (Sowerby), the trochid, Austrocochlea porcata (A. Adams), the neritid, Nerita atramentosa Reeve and the littorinid, Bembicium nanum (Lamarck)-made distinctive marks in the wax. These allowed identification of each species or combinations of species grazing over the different discs. Field experiments showed that the intensity of grazing, as indicated by the mean number of scratches per disc, was positively related to the number of gastropods in the surrounding area during low tide for C. tramoserica. The number of scratches per disc in any area was correlated with the percentage of discs scratched. The relationship for C. tramoserica was found at two scales-in sites (approximately 3x3 m) and also in plots (50x50 cm) within sites. Therefore, densities that were measured when these limpets were inactive during low tide provided good estimates of grazing activity during high tide. This is largely because these limpets do not move far between where they rest and where they feed. The amount of microalgal food in the vicinity was not correlated with density, nor with grazing intensity. No relationship between density and grazing intensity was found for N. atramentosa, although experiments were only done in the field at one spatial scale (in sites, 3x3 m). Results obtained in the laboratory and in the field show that wax discs are useful to distinguish grazing by different species of gastropods on Australian rocky shores and allow tests of hypotheses about grazing activity at different spatial scales.  相似文献   

13.
Over 3 successive seasonal cycles (April 1986 to October 1988), field experiments were established within 3 intertidal levels in the sheltered rocky intertidal of Helgoland (North Sea, German Bight). Competitors for space (Mytilus edulis, macroalgae), herbivores (Littorina spp.) and predators (Carcinus maenas) were either excluded from areas (0.25 m2) covered by undisturbed communities or enclosed at natural densities on areas that were cleared before of animals and plants. All the experimental fields (each 0.25 m2) were covered by cages with 4 mm gauze at the sides and a plexiglas top. The results of the experiments in the upper intertidal (occupied byLittorina spp. andEnteromorpha) showed that a natural density of herbivores could not prevent algal settlement and had only little influence on algal growth. Instead abiotic factors (storms, algae washed ashore) decreased the stock of the green algae. Experiments in the mid intertidal, dominated byMytilus (50% cover),Fucus spp. (20%) and grazingL. littorea (100 ind. m?2) showed that community structure was directly changed both by grazing periwinkles and by competition for space between mussels and macroalgae. WheneverLittorina was excluded, the canopy ofFucus spp. increased continuously and reached total cover within two years. In addition to the increase ofFucus spp., the rock surface and the mussel shells were overgrown byUlva pseudocurvata, which covered the experimental fields during parts of the summer in the absence of herbivores. As soon as perennial species (fucoids) covered most of the experimental areas, the seasonal growth ofUlva decreased drastically. Presence and growth of macroalgae were also controlled by serious competition for space with mussels. EstablishedMytilus prevented the growth of all perennial and ephemeral algae on the rocks. However, the shells of the mussels provided free space for a new settlement ofFucus andUlva. In the lower intertidal (dominated by total algal cover ofF. serratus, herbivores such asL. littorea andL. mariae, and increasing number of predators such asCarcinus), the feeding activity of herbivores can neither prevent the settlement of the fucoid sporelings nor reduce the growth of macroalgae.F. serratus achieved a total canopy on the rock within one year. Doubled density of herbivores prevented the settlement ofFucus and most of the undercover algae. Predation byCarcinus onLittorina spp. had little influence on the herbivore community patterns. However, the crabs supported the establishment of macroalgae by excluding the mussels from the lower intertidal. In summary, the community organization and maintenance in the mid and lower intertidal is influenced to a high degree by biological interactions. Whereas both the relatively important herbivory byL. littorea and competition for space between mussels and macroalgae dominate in the mid intertidal, predation reaches its highest relative degree of importance for community structure in the lower intertidal.  相似文献   

14.
Molluscan grazers can have important effects on the abundance, colonization rates, and successional pathways of algal assemblages and the entire intertidal community. In general, early successional algae are more readily consumed than corticated algae and kelps, which usually get established later in the community succession. To generalize, however, the effect of different grazers on algal assemblages must be examined on different coasts and under different scenarios. This information could help us understand the mechanisms of ecosystem processes and situations in which general models do not apply. Along the coast of Chile, humans harvest large keyhole limpets, which seem to be the only invertebrate grazers capable of controlling the dominant corticated alga Mazzaella laminarioides, a canopy-forming species that can cover extensive areas of the mid intertidal zone. In this scenario, where large limpets are harvested, the overall effects of the diverse molluscan assemblage of limpets, chitons and snails on algal succession and on corticated algae in particular are not clear. We conducted a 26-month-long experiment to evaluate the effects of molluscan grazers on mid-intertidal algal succession and to isolate the effects of Chiton granosus, the most conspicuous member of the assemblage at these tidal elevations. At sites heavily impacted by humans the molluscan grazer assemblage had strong negative effects on colonization and abundance of green algae such as ulvoids and Blidingia minima. In doing so, the grazer assemblage had a strong negative indirect effect on the establishments of chironomid fly larvae, which were only observed on green algal mats and rarely on bare rock. No significant effects were detected on epilithic microalgae, and effects on sessile invertebrates were highly variable over space and time. C. granosus also had significant negative effects on green algae but did not account for the total grazing pressure exerted by the guild. Limited foraging excursions (ca. 35 cm) from refuges and moderate site (crevice) fidelity in this species may contribute to the patchiness in green algal distribution observed in the field. Nearly 13 months after rock surface were experimentally cleared, M. laminarioides appeared in all experimental plots, but increased over three times faster in enclosures containing C. granosus than in exclosures plots or controls, suggesting that moderate levels of herbivory could actually facilitate the establishment of this alga in the succession and that the green algal cover found in the absence of grazers may delay its establishment.  相似文献   

15.
We determined whether temporal variation and succession were similar among sites with similar species composition by sampling unmanipulated and cleared plots in a high intertidal assemblage dominated by Endocladia muricata and Mastocarpus papillatus. Sampling was done for 6 years at six sites spanning over 4° of latitude in California. Ten 1×2-m permanent plots were chosen in the central portion of the assemblage at each site. Four of these served as unmanipulated controls, three were cleared (scraped and burned) in the spring of 1985, and three were cleared in the fall of 1985. The cover of sessile and density of motile species were determined by subsampling within the plots from 1985 until 1991. Recovery of the clearings was determined by their similarity to the controls. The algae E. muricata, M. papillatus, and Fucus gardneri, and the barnacle Balanus glandula, were the most abundant sessile organisms in the control plots, although the latter never exceeded 12% cover at any site. The grazing gastropods Littorina scutulata/plena, various limpets, and Tegula funebralis were the most common mobile organisms. The species composition of the common species remained constant in the control plots over the study period and there were few large changes in relative abundance. Significant seasonal variation was detected in 11 species but variation was commonly site-specific.Ephemeral algae were abundant during early succession at only two of the six sites, and barnacle cover was low (<15% cover) at four sites and moderate (15-50% cover) at the remaining two throughout succession. Recovery rate varied considerably among sites and between times of clearing (1-10%/month). Correlations between ephemeral algae and grazer abundance, and between these variables and recovery rate were not significant. The effects of grazers on recovery rate were only evident at one site where they appeared to reduce an initially high cover of ephemeral algae and delay the establishment of perennials. Some of the largest differences in recovery rate were between clearing times, associated with differences in the phenology of the dominant perennial algae. In spite of these differences, most plots recovered by the end of the study period.These results indicate that the assemblages in the control plots at each site were relatively stable and, while successional pathways and processes varied, the assemblage at most sites still recovered. Current models, based largely on biological interactions, that attempt to explain within assemblage structure and succession were not broadly applicable.  相似文献   

16.
Antarctic benthos has been a main target in Antarctic research, but very few quantitative studies have been carried out in the littoral zone, which may be seasonally covered by macroalgae. In this work, we studied (1) cover and biomass of the macroalgae Iridaea cordata and Adenocystis utricularis, and (2) composition of macrobenthic assemblage associated with these macroalgal species at three locations at King George Island: Mareograph Beach (1 M), Tank’s Bay (2R) and Ardley Bay (3R). Iridaea cordata was collected by completely detaching the algae from the substrate, while A. utricularis was scraped. Adenocystis utricularis covered more than 80 % of the substrate at all locations, while coverage of Iridaea cordata was below 53 % or absent (3R). Fresh biomass of I. cordata was 0.8–61.4 g/individual and 4.7–93.0 g/100 cm2 for A. utricularis. The assemblage associated with both macroalgae differed significantly between sites. The studied fauna was composed mainly of amphipods, gastropods and bivalves. Species diversity was higher in the community associated with A. utricularis. A total of ~27 ind/g DW were found associated with I. cordata, while ~112 ind/g DW were found associated with A. utricularis. The most abundant groups associated with I. cordata were amphipods at 1 M (57 %) and gastropods at 2R (46 %). Both groups were responsible for the dissimilarity between localities (62.50 %). The most abundant groups associated with A. utricularis were the gastropods at all localities reaching up to 82 % at 1 M. This study provides a first baseline on the diversity and abundance of benthic assemblages associated with intertidal macroalgae in the southwest of King George Island.  相似文献   

17.
The rate of oxygen uptake of three species of tropical intertidal gastropods,Nerita tessellata Gmelid., N. Versicolor Gmelin and N. Peloronta L., have been investigated under different environmental conditions. In all species the rates increased from 30 to 37°C, were depressed at 20 °C and were not size-dependent at that temperature. The rates of oxygen uptake varied between individuals collected from different habitats and were greater in areas of higher mean maximum daily temperatures, lower rainfall and lower wind speeds than in areas with the reverse conditions. A decrease in oxygen uptake was shown to occur with an increase of exposure time of the animals on the shore and in the laboratory. Rates were higher in two species collected at the time of high tide than those collected at the same level after exposure to low tides.  相似文献   

18.
The potential of ecosystem engineers to modify the structure and dynamics of food webs has recently been hypothesised from a conceptual point of view. Empirical data on the integration of ecosystem engineers and food webs is however largely lacking. This paper investigates the hypothesised link based on a field sampling approach of intertidal biogenic aggregations created by the ecosystem engineer Lanice conchilega (Polychaeta, Terebellidae). The aggregations are known to have a considerable impact on the physical and biogeochemical characteristics of their environment and subsequently on the abundance and biomass of primary food sources and the macrofaunal (i.e. the macro-, hyper- and epibenthos) community. Therefore, we hypothesise that L. conchilega aggregations affect the structure, stability and isotopic niche of the consumer assemblage of a soft-bottom intertidal food web. Primary food sources and the bentho-pelagic consumer assemblage of a L. conchilega aggregation and a control area were sampled on two soft-bottom intertidal areas along the French coast and analysed for their stable isotopes. Despite the structural impacts of the ecosystem engineer on the associated macrofaunal community, the presence of L. conchilega aggregations only has a minor effect on the food web structure of soft-bottom intertidal areas. The isotopic niche width of the consumer communities of the L. conchilega aggregations and control areas are highly similar, implying that consumer taxa do not shift their diet when feeding in a L. conchilega aggregation. Besides, species packing and hence trophic redundancy were not affected, pointing to an unaltered stability of the food web in the presence of L. conchilega.  相似文献   

19.
Experiments in intertidal and subtidal rocky marine habitats in temperate Australia have identified the effects of various biological and physical factors on algal assemblages. In intertidal habitats, these involve micro- and macro-algae and grazing by gastropods. In subtidal habitats, interactions among micro- and macro-algae, echinoids, gastropods, micro-invertebrates and sessile invertebrates have been studied. Experimental studies on physical disturbances of algal assemblages have focussed on the effects of desiccation and storms. Most studies have not considered more than one spatial or temporal scale. Few have been concerned with seasonal influences and fewer have been concerned with variation from year to year. Most of the work lacks applicability to biogeographic comparisons. More experimental work across a variety of spatial and temporal scales is required to determine significant biological and physical processes affecting structure of algal assemblages across broad areas of temperate Australia.  相似文献   

20.
The thermal reaction norms of 4 closely related intertidal Nacellid limpets, Antarctic (Nacella concinna), New Zealand (Cellana ornata), Australia (C. tramoserica) and Singapore (C. radiata), were compared across environments with different temperature magnitude, variability and predictability, to test their relative vulnerability to different scales of climate warming. Lethal limits were measured alongside a newly developed metric of “duration tenacity”, which was tested at different temperatures to calculate the thermal reaction norm of limpet adductor muscle fatigue. Except in C. tramoserica which had a wide optimum range with two break points, duration tenacity did not follow a typical aerobic capacity curve but was best described by a single break point at an optimum temperature. Thermal reaction norms were shifted to warmer temperatures in warmer environments; the optimum temperature for tenacity (Topt) increased from 1.0°C (N. concinna) to 14.3°C (C. ornata) to 18.0°C (an average for the optimum range of C. tramoserica) to 27.6°C (C. radiata). The temperature limits for duration tenacity of the 4 species were most consistently correlated with both maximum sea surface temperature and summer maximum in situ habitat logger temperature. Tropical C. radiata, which lives in the least variable and most predictable environment, generally had the lowest warming tolerance and thermal safety margin (WT and TSM; respectively the thermal buffer of CTmax and Topt over habitat temperature). However, the two temperate species, C. ornata and C. tramoserica, which live in a variable and seasonally unpredictable microhabitat, had the lowest TSM relative to in situ logger temperature. N. concinna which lives in the most variable, but seasonally predictable microhabitat, generally had the highest TSMs. Intertidal animals live at the highly variable interface between terrestrial and marine biomes and even small changes in the magnitude and predictability of their environment could markedly influence their future distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号