首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The dynamic rearrangement of chromatin is critical for gene regulation, but mapping both the spatial organization of chromatin and its dynamics remains a challenge. Many structural conformations are too small to be resolved via conventional fluorescence microscopy and the long acquisition time of super-resolution photoactivated localization microscopy (PALM) precludes the structural characterization of chromatin below the optical diffraction limit in living cells due to chromatin motion. Here we develop a correlative conventional fluorescence and PALM imaging approach to quantitatively map time-averaged chromatin structure and dynamics below the optical diffraction limit in living cells. By assigning localizations to a locus as it moves, we reliably discriminate between bound and unbound dCas9 molecules, whose mobilities overlap. Our approach accounts for changes in DNA mobility and relates local chromatin motion to larger scale domain movement. In our experimental system, we show that compacted telomeres move faster and have a higher density of bound dCas9 molecules, but the relative motion of those molecules is more restricted than in less compacted telomeres. Correlative conventional and PALM imaging therefore improves the ability to analyze the mobility and time-averaged nanoscopic structural features of locus specific chromatin with single molecule sensitivity and yields unprecedented insights across length and time scales.  相似文献   

3.
4.
Translational dynamics of chromatin in interphase nuclei of living Swiss 3T3 and HeLa cells was studied using fluorescence microscopy and fluorescence recovery after photobleaching. Chromatin was fluorescently labeled using dihydroethidium, a membrane-permeant derivative of ethidium bromide. After labeling, a laser was used to bleach small (~0.4 μm radius) spots in the heterochromatin and euchromatin of cells of both types. These spots were observed to persist for >1 h, implying that interphase chromatin is immobile over distance scales 0.4 μm. Over very short times (<1 s), a partial fluorescence recovery within the spots was observed. This partial recovery is attributed to independent dye motion, based on comparison with results obtained using ethidium homodimer-1, which binds essentially irreversibly to nucleic acids. The immobility observed here is consistent with chromosome confinement to domains in interphase nuclei. This immobility may reflect motion-impeding steric interactions that arise in the highly concentrated nuclear milieu or outright attachment of the chromatin to underlying nuclear substructures, such as nucleoli, the nuclear lamina, or the nuclear matrix.  相似文献   

5.
高迁移率族蛋白与真核基因表达调控   总被引:12,自引:0,他引:12       下载免费PDF全文
高迁移率族蛋白 (high mobility group protein , HMG) 是一系列的染色质相关蛋白,广泛存在于真核生物细胞中,含量丰富,因其在聚丙烯酰胺凝胶电泳中的高迁移率而得名 . HMG 蛋白家族可分为 HMGB 、 HMGA 和 HMGN 三类亚家族,各亚家族有其特征的结构域,这些结构域介导了 HMG 和 DNA 或染色质相关区域的相互作用 . 现已发现这些蛋白质具有多种重要生物学功能,其中几乎所有 HMG 都可以通过修饰、弯曲或改变染色质 /DNA 的结构,促进各种蛋白质因子形成大分子复合物来调节基因转录 .  相似文献   

6.
The mobility of membrane proteins is a critical determinant of their interaction capabilities and protein functions. The heterogeneity of cell membranes imparts different types of motion onto proteins; immobility, random Brownian motion, anomalous sub-diffusion, 'hop' or confined diffusion, or directed flow. Quantifying the motion of proteins therefore enables insights into the lateral organisation of cell membranes, particularly membrane microdomains with high viscosity such as lipid rafts. In this review, we examine the hypotheses and findings of three main techniques for analysing protein dynamics: fluorescence recovery after photobleaching, single particle tracking and fluorescence correlation spectroscopy. These techniques, and the physical models employed in data analysis, have become increasingly sophisticated and provide unprecedented details of the biophysical properties of protein dynamics and membrane domains in cell membranes. Yet despite these advances, there remain significant unknowns in the relationships between cholesterol-dependent lipid microdomains, protein-protein interactions, and the effect of the underlying cytoskeleton. New multi-dimensional microscopy approaches may afford greater temporal and spatial resolution resulting in more accurate quantification of protein and membrane dynamics in live cells.  相似文献   

7.
BACKGROUND: In comparison with many nuclear proteins, the movement of chromatin in nuclei appears to be generally constrained. These restrictions on motion are proposed to reflect the attachment of chromatin to immobile nuclear substructures. RESULTS: To gain insight into the regulation of chromosome dynamics by nuclear architecture, we have followed the movements of different sites in the human genome in living cells. Here, we show that loci at nucleoli or the nuclear periphery are significantly less mobile than other, more nucleoplasmic loci. Disruption of nucleoli increases the mobility of nucleolar-associated loci. CONCLUSIONS: This is the first report of distinct nuclear substructures constraining the movements of chromatin. These constraints reflect the physical attachment of chromatin to nuclear compartments or steric impairment caused by local ultrastructure. Our data suggest a role for the nucleolus and nuclear periphery in maintaining the three-dimensional organization of chromatin in the human nucleus.  相似文献   

8.
Immobility in the tail suspension test (TST) is considered a model of despair in a stressful situation, and acute treatment with antidepressants reduces immobility. Inbred strains of mouse exhibit widely differing baseline levels of immobility in the TST and several quantitative trait loci (QTLs) have been nominated. The labor of manual scoring and various scoring criteria make obtaining robust data and comparisons across different laboratories problematic. Several studies have validated strain gauge and video analysis methods by comparison with manual scoring. We set out to find objective criteria for automated scoring parameters that maximize the biological information obtained, using a video tracking system on tapes of tail suspension tests of 24 lines of the BXD recombinant inbred panel and the progenitor strains C57BL/6J and DBA/2J. The maximum genetic effect size is captured using the highest time resolution and a low mobility threshold. Dissecting the trait further by comparing genetic association of multiple measures reveals good evidence for loci involved in immobility on chromosomes 4 and 15. These are best seen when using a high threshold for immobility, despite the overall better heritability at the lower threshold. A second trial of the test has greater duration of immobility and a completely different genetic profile. Frequency of mobility is also an independent phenotype, with a distal chromosome 1 locus. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

9.
The Schizosaccharomyces pombe Rad4/Cut5 protein is essential for DNA replication and checkpoint control. We have analyzed the behavior of the protein during unperturbed DNA replication, in different replication and checkpoint mutant backgrounds and in response to DNA-damaging agents. In an unperturbed cell cycle, Rad4 is chromatin bound and the mobility of the protein is not altered. Rad4 protein level and thus chromatin binding are dependent on a functional DNA polymerase epsilon. In response to replication arrest and DNA damage, the protein is modified in a Rad3-dependent manner. These data indicate that Rad4 undergoes diverse forms of regulation that are distinct in both DNA replication and checkpoint response.  相似文献   

10.
11.
The relationship of intensive motional load with quantitative changes of the synthesis processes and phosphorylation in chromatin peptide fractions of varied polyacrylamide gel electrophoretic mobility from different rat brain structures and liver has been investigated. It has been established that the functional influences change not only the velocity of metabolism and phosphorylation but also the pattern of chromatin protein distribution. The new low molecular peptides differing in their electrophoretical mobility appear in chromatin of liver and neocortical neurons. The changes of the synthesis processes and phosphorylation typical of some fractions of the cerebral chromatin are variable and not so important as in the case of cytoplasmic proteins. The velocity of synthesis of the most proteins studied and the phosphorylation rate of some proteins increase in the neocortical neurones. The phosphorylation rate of separate low molecular peptides increases in the glial cells.  相似文献   

12.
13.
The interphase nucleus exists as a highly dynamic system, the physical properties of which have functional importance in gene regulation. Not only can gene expression be influenced by the local sequence context, but also by the architecture of the nucleus in three-dimensions (3D), and by the interactions between these levels via chromatin modifications. A challenging task is to resolve the complex interplay between sequence- and genome structure-based control mechanisms. Here, we created a collection of 277 Arabidopsis lines that allow the visual tracking of individual loci in living plants while comparing gene expression potential at these locations, via an identical reporter cassette. Our studies revealed regional gene silencing near a heterochromatin island, via DNA methylation, that is correlated with mobility constraint and nucleolar association. We also found an example of nucleolar association that does not correlate with gene suppression, suggesting that distinct mechanisms exist that can mediate interactions between chromatin and the nucleolus. These studies demonstrate the utility of this novel resource in unifying structural and functional studies towards a more comprehensive model of how global chromatin organization may coordinate gene expression over large scales.  相似文献   

14.
We have varied the degree of protein-protein interactions among Ca-ATPase polypeptide chains in sarcoplasmic reticulum using the cleavable homobifunctional cross-linker dithiobissuccinimidyl propionate and have measured both the rotational mobility and calcium-dependent ATPase activity of the Ca-ATPase in order to assess 1) the nature of the microsecond rotational motion measured by saturation transfer EPR (ST-EPR) of the spin-labeled Ca-ATPase and 2) the functional significance of this rotational motion. The Ca-ATPase was labeled specifically and covalently with a maleimide spin label, with full preservation of enzymatic activity. ST-EPR experiments show that cross-linking increases the enzyme's effective rotational correlation time (tau r), thus decreasing its rotational mobility (tau r-1). As the degree of cross-linking is varied, tau r is proportional to the mean molecular weight of the cross-linked aggregate, as predicted by theory, adding to the evidence that ST-EPR measures the overall rotational mobility of the Ca-ATPase with respect to the membrane normal. Furthermore, enzymatic activity correlates with overall protein rotational mobility, suggesting that this motion is functionally important. The second-order inactivation profile resulting from the use of either cross-linking or chemical modification with fluorescein isothiocyanate as modes of inactivation indicates that protein-protein interactions are critical to the reaction mechanism. However, the pattern of cross-linking observed on polyacrylamide gels demonstrates that cross-linking occurs in a random manner, indicating that no specific and stable oligomeric complexes exist. In order to rationalize both the functional need for protein mobility and the evidence that protein-protein interactions are critical and random, we propose that the enzymatic cycle of the Ca-ATPase involves the making and breaking of functionally important protein-protein interactions.  相似文献   

15.
The chromatin structure of the ribosomal DNA in Xenopus laevis was studied by micrococcal nuclease digestions of blood, liver and embryonic cell nuclei. We have found that BglI-restricted DNA from micrococcal nuclease-digested blood cell nuclei has an increased electrophoretic mobility compared to the undigested control. Micrococcal nuclease digestion of liver cell nuclei causes a very slight shift in mobility, only in the region of the spacer containing the "Bam Islands". In contrast, the mobility of ribosomal DNA in chromatin of embryonic cells, under identical digestion conditions, remains unaffected by the nuclease activity. Denaturing gels or ligase action on the nuclease-treated DNA abolishes the differences in the electrophoretic mobility. Ionic strength and ethidium bromide influence the relative electrophoretic migration of the two DNA fragment populations, suggesting that secondary structure may play an important role in the observed phenomena. In addition, restriction analysis under native electrophoretic conditions of DNA prepared from blood, liver and embryonic cells shows that blood cell DNA restriction fragments always have a faster mobility than the corresponding fragments of liver and embryo cell DNA. We therefore propose that nicking activity by micrococcal nuclease modifies the electrophoretic mobility of an unusual DNA conformation, present in blood cell, and to a lesser extent, in liver cell ribosomal chromatin. A possible function for these structures is discussed. The differences of the ribosomal chromatin structures in adult and embryonic tissues may reflect the potential of the genes to be expressed.  相似文献   

16.
The regulation of chromatin mobility in response to DNA damage is important for homologous recombination in yeast. Anchorage reduces rates of recombination, whereas increased chromatin mobility correlates with more efficient homology search. Here we tracked the mobility and localization of spontaneous S‐phase lesions bound by Rad52, and find that these foci have reduced movement, unlike enzymatically induced double‐strand breaks. Moreover, spontaneous repair foci are positioned in the nuclear core, abutting the nucleolus. We show that cohesin and nucleolar integrity constrain the mobility of these foci, consistent with the notion that spontaneous, S‐phase damage is preferentially repaired from the sister chromatid.  相似文献   

17.
18.
19.
20.
Cheutin T  Cavalli G 《PLoS genetics》2012,8(1):e1002465
Polycomb group (PcG) proteins are conserved chromatin factors that maintain silencing of key developmental genes outside of their expression domains. Recent genome-wide analyses showed a Polycomb (PC) distribution with binding to discrete PcG response elements (PREs). Within the cell nucleus, PcG proteins localize in structures called PC bodies that contain PcG-silenced genes, and it has been recently shown that PREs form local and long-range spatial networks. Here, we studied the nuclear distribution of two PcG proteins, PC and Polyhomeotic (PH). Thanks to a combination of immunostaining, immuno-FISH, and live imaging of GFP fusion proteins, we could analyze the formation and the mobility of PC bodies during fly embryogenesis as well as compare their behavior to that of the condensed fraction of euchromatin. Immuno-FISH experiments show that PC bodies mainly correspond to 3D structural counterparts of the linear genomic domains identified in genome-wide studies. During early embryogenesis, PC and PH progressively accumulate within PC bodies, which form nuclear structures localized on distinct euchromatin domains containing histone H3 tri-methylated on K27. Time-lapse analysis indicates that two types of motion influence the displacement of PC bodies and chromatin domains containing H2Av-GFP. First, chromatin domains and PC bodies coordinately undergo long-range motions that may correspond to the movement of whole chromosome territories. Second, each PC body and chromatin domain has its own fast and highly constrained motion. In this motion regime, PC bodies move within volumes slightly larger than those of condensed chromatin domains. Moreover, both types of domains move within volumes much smaller than chromosome territories, strongly restricting their possibility of interaction with other nuclear structures. The fast motion of PC bodies and chromatin domains observed during early embryogenesis strongly decreases in late developmental stages, indicating a possible contribution of chromatin dynamics in the maintenance of stable gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号