首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY l-DOPA   总被引:3,自引:2,他引:1  
Abstract— A study has been made of the effect of a single intraperitoneal dose of l -DOPA on the in vivo metabolism of [14C]leucine and [14C]lysine by the brain, and on their uptake into brain protein. Administration of 500 mg DOPA/kg to 40-g rats raised the concentrations of several free amino acids; the only amino acid which underwent a statistically significant increment was alanine. Intracisternally-injected [U-14C]leucine was rapidly metabolized to other labelled compounds; DOPA administration did not influence significantly the rate of its metabolism. No similar metabolic change was observed after administering [U-14C]lysine intracisternally.
Incorporation of [14C]leucine and [14C]lysine into total brain protein was significantly reduced 45 min after DOPA administration. There was also depression of the uptake of labelled amino acid into a supernatant fraction, obtained by high speed centrifugation of the brain homogenate, and into brain microtubular protein (tubulin). Reduced amino-acid incorporation into brain proteins observed 45 min after l -DOPA injection coincided with extensive disaggregation of brain polyribosomes. At 120 min after DOPA treatment, disaggregation was no longer significant and there was a smaller depression in labelled amino aicd incorporation, which disappeared completely 240 min after l -DOPA injection. It is concluded that disaggregation of brain polysomes following DOPA treatment is an accurate reflection of a change in the intensity of brain protein synthesis in vivo.  相似文献   

2.
Abstract: Metabolism of [1-13C]glucose was monitored in superfused cerebral cortex slice preparations from 1-, 2-, and 5-week-old rats using 1H-observed/13C-edited (1H{13C}) NMR spectroscopy. The rate of label incorporation into glutamate C-4 did not differ among the three age groups: 0.52–0.67% of total 1H NMR-detected glutamate/min. This was rather unexpected, as oxygen uptake proceeded at 1.1 ± 0.1, 1.9 ± 0.1, and 2.0 ± 0.1 µmol/min/g wet weight in brain slices prepared from 1-, 2-, and 5-week-old animals, respectively. Steady-state glutamate C-4 fractional enrichments in the slice preparations were ∼23% in all age groups. In the acid extracts of slices glutamate C-4 enrichments were smaller, however, in 1- and 2-week-old (17.8 ± 1.7 and 16.8 ± 0.8%, respectively) than in 5-week-old rats (22.7 ± 0.7%) after 75 min of incubation with 5 m M [1-13C]glucose. We add a new assignment to the 1H{13C} NMR spectroscopy, as acetate C-2 was detected in slice preparations from 5-week-old animals. In the acid extracts of slice preparations acetate C-2 was labeled by ∼30% in 5-week-old rats but by 15% in both 1- and 2-week-old animals, showing that the turnover rate was increased in 5-week-old animals. In the extracts 3–4% of the C-6 of N -acetyl-aspartate (NAA; CH3 of the acetyl group) contained label as determined by both NMR and mass spectrometry, which indicated that there was no significant labeling to other carbons in NAA. NAA accumulated label from [1-13C]glucose but not from [2-13C]acetate, and the rate of label incorporation increased by threefold on cerebral maturation.  相似文献   

3.
Abstract: Oligodendroglia prepared from minced calf cerebral white matter by trypsinization at pH 7.4, screening, and isosmotic Percoll (polyvinylpyr-rolidone-coated silica gel) density gradient centrifugation survived in culture on polylysine-coated glass, extending processes and maintaining phenotypic characteristics of oligodendroglia. In the present study, ethanolamine glycerophospholipid (EGP) metabolism of the freshly isolated cells was examined during short-term suspension culture by dual label time course and substrate concentration dependence experiments with [2-3H]glycerol and either [1,2-14C]ethanolamine or L-[U-14C]serine. Rates of incorporation of 3H from the glycerol and of 14C from the ethanolamine into EGP were constant for 14 h. In medium containing 3 mM-[1,2-14C]ethanolamine and 4.8 mM-[2-3H]glycerol, rates of incorporation of 14C and 3H into diacyl glycerophosphoethanolamine (diacyl GPE) were similar. Under the same conditions, 3H specific activities of alkylacyl GPE and alkenylacyl GPE were much lower than 14C specific activities, likely as a result of the loss of tritium during synthesis of these forms of EGP via dihydroxyacetone phosphate. L-[U-14C]serine was incorporated into serine glycerophospholipid (SGP) by base exchange rather than de novo synthesis. 14C from L-[U-14C]serine also appeared in EGP after an initial lag period of several hours. Methylation of oligodendroglial EGP to choline glycerophospholipid (CGP) was not detected.  相似文献   

4.
IN VIVO INHIBITION OF RAT BRAIN PROTEIN SYNTHESIS BY d-AMPHETAMINE   总被引:1,自引:1,他引:0  
Abstract— Between 1 and 4 h after rats received a single injection of d-amphetamine (15 mg/kg)(when brain polysomes are known to be disaggregated), the in vivo incorporation of [14C]lysine into trichloroacetic acid-precipitable brain protein was reduced by 28–48%. Incorporation of the 14C label into the protein present in a 100,000 g supernatant extract of whole brain was similarly reduced (by 44%). Amphetamine administration suppressed protein synthesis in rat cerebral cortex, cerebellum, hypothalamus, striatum, and brainstem to an equivalent extent. The drug did not significantly affect lysine pool sizes measured in these brain regions; thus the reduced incorporation of labeled lysine was not the result of an isotope dilution effect. We therefore conclude that the brain polysome disaggregation resulting from amphetamine administration is associated with decreased in vivo synthesis of some brain proteins.  相似文献   

5.
6.
In liver cells recovering from reversible ischaemia, total protein synthesis by postmitochondrial supernatant and membrane-bound and free polyribosomes is not different from that in sham-operated controls. However, the relative proportion of specific proteins is changed, since the incorporation of [3H]leucine in vivo into liver albumin, relative to incorporation into total protein, as determined by precipitation of labelled albumin with the specific antibody, decreases by 40-50% in post-ischaemic livers. Cell-free synthesis by membrane-bound polyribosomes and poly(A)-enriched RNA isolated from unfractionated liver homogenate shows that the decrease in albumin synthesis in liver of rats recovering from ischaemia is due to the relative decrease in translatable albumin mRNA.  相似文献   

7.
Abstract— The incorporation of 14C into amino acids of the brain was determined at different times after injection of [U-14C]glucose and [U-14C]ribose to rats maintained on thiamine-supplemented and thiamine-deficient diets for 22 days.
The 14C-content of amino acids in the brain of thiamine-deficient rats decreased at times 2–10 min after injection of [U-14C]glucose. but it increased at 2 min and decreased at times 5–10 min after injection of [U-14C]ribose.
The results of labelling of amino acids indicated that the activities in vivo of the thiamine pyrophosphate requiring enzymes, pyruvate oxidase, a-oxoglutarate dehydrogenase and transketolase were similar in the two groups. It was suggested that the observed decrease in the labelling of amino acids was due to one or more of the following factors: (i) a decrease in the activities of glycolytic enzymes catalysing the conversion of glucose into triose phosphate; (ii) a decrease in the transport of substrate to the active site of the enzymes; or (iii) altered neurohistopathology of the brain.
Thiamine deficiency in rats showed a 5% decrease in glutamate ( P < 0–05), 46% decrease in threonine (P < 0001) and 16% increase in glycine ( P < 0–01) content of the brain.  相似文献   

8.
Abstract— The synthesis of γ-aminobutyric acid (GABA) in mouse brain was decreased by treatment of the animals with pyridoxal phosphate- γ-glutamylhydrazone, an inhibitor of glutamate decarboxylase in vivo. Under these experimental conditions the following parameters were studied: (1) the incorporation of labeled leucine in vivo , into protein of brain subcellular fractions; (2) the brain polysome profile; (3) the incorporation of labeled leucine into protein in vitro , in ribosomal preparations isolated from brain tissue. In other experiments, GABA synthesis was also decreased in brain cortex slices by preincubation with aminooxyacetic acid. The incorporation of [3H]leucine or [14C]leucine into protein in these slices was studied, and samples from the proteins were subjected to acrylamide-sodium dodecylsulfate gel electrophoresis. Radioactivity was counted in slices of the gel. The results of the experiments in vivo and in vitro indicate that the previously reported decrease of protein synthesis induced by an inhibition of GABA synthesis affects proteins of all subcellular fractions and all populations of protein as separated by gel electrophoresis. The polysome profile from brains of mice with decreased GABA synthesis was similar to that of control mice. This result differs from that found when brain protein synthesis is inhibited by dopamine and serotonin.  相似文献   

9.
Abstract— –The rates of incorporation of 14C from [U-l4C]glucose into intermediary metabolites have been measured in rat brain in vivo. The time course of labelling of glycogen was similar to that of glutamate and of glucose, which were all maximally labelled between 20 and 40min, but different from lactate, which lost radioactivity rapidly after 20min. The extent of labelling of glycogen (d.p.m./ μ mol of glucose) was of the same order as that of glutamate at 20 and 40 min after injection of [14C]glucose. However, calculations of turnover rates showed that glutamate turns over some 8-10 times faster than glycogen. Insulin, intracisternally applied, produced after 4-5 h a 60 per cent increase in glucose-6-P and a 50 per cent increase in glycogen. There was no change in the levels of glucose, glutamate or lactate, nor in the activity or properties of the particulate and soluble hexokinase of the brain. The injection of insulin affected neither the glycogen nor glucose contents of skeletal muscle from the same animals. The effects of insulin on the incorporation of l4C into the metabolites contrasted with its effects on their levels. The specific activities of glycogen and glucose were unchanged and there was a slight but non-significant increase in the specific activity of glutamate. The time course of incorporation into lactate was unaffected up to 20 min, but a significant delay in the loss of 14C after 20 min occurred as a result of the insulin injection. At 40 min, the specific activity of cerebral lactate was 60 per cent higher in insulin-treated animals than in control animals. The results are interpreted in terms of an effect of insulin on glucose uptake to the brain, with possibly an additional effect on a subsequent stage in metabolism, which involves lactate.  相似文献   

10.
The effects of drought stress and season on both allocation of photosynthates to stems and leaves and potential for stem rubber synthesis were studied in guayule ( Parthenium argentatum Gray USDA line 11604). Two-year-old plants grown under field conditions in the Negev desert of Israel were subjected to different irrigation regimes, and water status was assessed by measuring the relative water content (RWC). Undetached plant tips were exposed to a 1 h pulse of 14CO2, followed by a 24 h chase. 14C fixed and translocated to different plants parts and notably 14C incorporation into rubber and resin fractions was determined. The potential of detached branch slices to incorporate [14C]-acetate into rubber was also studied. A higher percentage of fixed 14C was translocated from shoot tips in winter (28–30%) than in summer (15–18%). The percentage of [14C]-acctate incorporated into the rubber fraction by stem slices was maximal in winter (20%) and minimal in summer (3–5%) in both cases in the absence of drought stress. In summer the translocation of photosynthates into stems was inversely related to plant RWC, dropping from 18% three days after irrigation to 3% 14 days later, and the potential of stems to synthesise rubber was high under drought conditions and low in well irrigated plants.  相似文献   

11.
Abstract— Ouabain (200μ m ) inhibited incorporation of radiolabelled leucine or glycine into the protein of neonatal synaptosome fractions but had minimal effect on preparations from adult rats. Leucine uptake into synaptosomes was rapid but not influenced by 200μ m -ouabain in contrast to ouabain inhibition of [14C]glycine and [14C]γ-aminobutyric acid uptake. Ouabain blocked the Na+ -dependent (stimulated) component of synaptosome fraction protein synthesis in the presence of 25m m -K+. Ouabain inhibition was not alleviated by addition of ADP or ATP. 100μ m -atractylate failed to influence [3H]leucine uptake or incorporation. Synergistic inhibition by ouabain was observed with the cycloheximide-sensitive component of protein synthesis and the chloramphenicol sensitive phase. Increasing the medium Ca2+ concentration stimulated protein synthesis and this stimulated component was inhibited by ouabain. Ouabain inhibition was associated with decreasing intraterminal K+ concentration and [K]i was linearly related to the protein synthesis rate in control and ouabain treated preparations.  相似文献   

12.
THE BIOSYNTHESIS OF CHOLESTEROL AND OTHER STEROLS BY BRAIN TISSUE   总被引:4,自引:1,他引:3  
Abstract— The distribution of [14C]labelled material into subcellular fractions of 30-day-old rat brain was studied as a function of time, following intracerebral injection of [2-14C] mevalonic acid. As in the adult and 15-day-old brain, the microsomal fraction was indicated as the site of sterol synthesis. Unlike the 15-day-old animal, the myelin fraction from the 30-day-old rat was the predominately labelled fraction at 2 weeks after injection of the animal. Significant amounts of [14C]cholesterol were not present until about 4 h after injection. In order to ascertain whether different populations of cholesterol were being labelled, depending on the age of the animal injected, we compared the labelling of myelin and non-myelin components in animals injected at 15 or at 30 days of age, and sacrificed, respectively, from 14 to 29 days or from 1 to 28 days after injection. Our results indicated that there was an apparent shift of labelled sterol from non-myelin to myelin fractions at about 37–44 days of age.  相似文献   

13.
CITRATE AS THE PRECURSOR OF THE ACETYL MOIETY OF ACETYLCHOLINE   总被引:13,自引:12,他引:1  
Abstract— Rat brain cortex slices were incubated with glucose labeled with either 3H or 14C in the 6-position. The 3H/14C ratios and the incorporation of radioactivity into lactate, citrate, malate and acetylcholine were determined. While the 3H/14C ratio of lactate was close to that of glucose, the ratios in the acetyl moiety of acetylcholine and the acetyl (C-4,5) portion of citrate decreased in a similar proportion. This was interpreted as indirect evidence for the participation of citrate as a precursor to the acetyl moiety of acetylcholine. Two inhibitors of the citrate cleavage pathway: n -butylmalonate, an inhibitor of citrate transport and (-)-hydroxycitrate, an inhibitor of ATP-citrate lyase were studied for their effect on acetylcholine synthesis. N -butylmalonate (10 mM) and (-)-hydroxycitrate (7.5 mM) led to a decrease in the per cent of 14C recovered as acetylcholine. In each instance the 3H/14C ratio in acetylcholine was higher in the presence of inhibitor while the corresponding ratios in lactate and citrate (C-4.5) remained unchanged. From the results, it is suggested that citrate is involved in the transport mechanism of acetyl units from its site of synthesis in mitochondria to the site of acetylcholine synthesis in the cytosol.  相似文献   

14.
Abstract— A newly described method for the isolation of morphologically intact neurons from newborn rat brain was used to study the influence of inhibitors and neuroactive substances on RNA and protein synthesis in these cells in vitro . Incorporation of [14C]-uridine into RNA and [3H]leucine into protein proceeded rapidly and continued up to 3 h. When the incorporation mixture was chased at 20 min with an excess of nonradioactive uridine and leucine, hardly any degradation of labelled RNA was noted during the following 2 h 40 min. In contrast, the specific radioactivity of proteins decreased by 22 per cent indicating turnover of cellular proteins.
Incorporation of labelled leucine into protein was markedly inhibited in the presence of NaF and cycloheximide but not affected in the presence of chloramphenicol or pancreatic RNase. A mixture of ATP + GTP depressed the incorporation by 38 per cent. The responses to ATP + GTP and RNase indicated that the incorporation system was typically cellular. Acetylcholine, γ-aminobutyrate, noradrenaline and phenylalanine in the incubation medium depressed the incorporation of labelled uridine into RNA by 10–30 per cent and 5-hydroxytryptamine by 75 per cent. Acetylcholine, γ-aminobutyrate and noradrenaline had no effect on protein synthesis, while 5-hydroxytryptamine and phenylalanine inhibited the incorporation by 60–80 per cent. Testosterone and prednisolone depressed both RNA and protein synthesis while thyroxine caused slight but non-significant stimulation.  相似文献   

15.
A toluene-degrading microbial consortium was enriched directly in a BTEX-contaminated aquifer under sulfate-reducing conditions using in situ microcosms consisting of toluene-loaded activated carbon pellets. Degradation of toluene and concomitant sulfide production by the consortium was subsequently demonstrated in laboratory microcosms. The consortium was physiologically and phylogenetically characterized by isotope tracer experiments using nonlabeled toluene, [13C]-α-toluene or [13C7]-toluene as growth substrates. Cells incubated with [13C]-α-toluene or [13C7]-toluene incorporated 8–15 at.%13C and 51–57 at.%13C into total lipid fatty acids, respectively, indicating a lower specific incorporation of 13C from [13C7]-toluene. In order to identify the toluene-assimilating bacteria, the incorporation of carbon from both [13C]-α-toluene and [13C7]-toluene into rRNA was analyzed by stable isotope probing. Time and buoyant density-resolved 16S rRNA gene-based terminal restriction fragment length polymorphism profiles, combined with cloning and sequencing, revealed that an uncultured bacterium (99% sequence similarity) related to the genus Desulfocapsa was the main toluene-degrading organism in the consortium. The ratio of the respective terminal restriction fragments changed over time, indicating trophic interactions within this consortium.  相似文献   

16.
Abstract Incorporation of [U-14C]palmitic acid ([14C]PA) into the specific phenolic glycolipid-I (PGL-I) of freshly harvested, nude mouse-derived Mycobacterium leprae was investigated in an axenic modified Dubos medium. Incorporation was approximately linear for 10–14 days at pH 7.2, 33°C. No incorporation of radiolabeled phenol, acetate, tyrosine, phenylalanine, bicarbonate, proprionate or UDP-glucose was detected. Procedures known to remove residual host tissue did not diminish the rate of [14C]PA incorporation, indicating that bacterial metabolism was being measured. The antileprosy compounds, rifampicin and dapsone, significantly reduced incorporation of the label. The ability to quantitate PGL-I synthesis in the extracellular bacillus should facilitate a better understanding of the optimum conditions for metabolism in M. leprae .  相似文献   

17.
Effects of Monensin on Assembly of Po Protein into Peripheral Nerve Myelin   总被引:1,自引:1,他引:0  
Abstract: The ionophore monensin has been used in a variety of systems to block secretion of glycoproteins or assembly of glycoproteins into membranes. We examined the effects of monensin on assembly of the Po glycoprotein into PNS myelin, and compared this agent with the glycosylation inhibitor tunicamycin in our system. Sciatic nerves from 9-day-old rat pups were sliced and incubated in vitro . Electron microscopy of the Schwann cells in slices incubated with monensin revealed extensive swelling of the Golgi complex. Incubation with 10−7 M monensin inhibited total protein synthesis by about 20% and fucose incorporation into protein about 35%. Following isolation of myelin, proteins were separated by sodium dodecyl sulfate gel electrophoresis. Monensin inhibited the appearance of Po in myelin, while causing its accumulation in a denser membrane fraction. In addition, a slightly faster-migrating species of Po labeled with both [3H]fucose and [14C]glycine was observed in all fractions. Assembly of basic proteins into myelin was not affected. Preincubation with 10 μg/ml tunicamycin for 30 min prior to incubation with [3H]fucose and [14C]glycine for 2 h resulted in a 65% decrease in [3H]fucose incorporation into Po, and the appearance of a new [14C]glycine-labeled peak that migrated in the region of the 23K protein reported by Smith and Sternberger. [3H]Fucose incorporation was inhibited earlier, and to a greater extent, than protein synthesis. Our results show that processing of the Po glycoprotein is sensitive to both monensin and tunicamycin, and that monensin partially blocks assembly of Po into myelin.  相似文献   

18.
Abstract— [U-14C]Ribose was given by subcutaneous injection to young rats aged 2–56 days. During the first week after birth 14C in the brain was found mainly combined in glucose, fructose and sedoheptulose which contained 46–57 per cent of the 14C in the acid soluble metabolites in the rat brain. In contrast, during the critical period (10–15 days after birth) the 14C in the free sugars decreased from 24 to 3 per cent, while the 14C content of amino acids in the brain increased from 11 to 44 per cent of the total perchloric acid-soluble 14C. The increase in labelling of amino acids during the critical period was attributed to increased glycolysis and increased oxidation of pyruvate. The relative specific radioactivity of y -aminobutyrate and aspartate in the rat brain at 28 days after birth was equal to or greater than the relative specific radioactivity of glutamate. Assuming that the increase in amino acid content following the cessation of cell proliferation in the brain is located mainly in cell processes (cytoplasm of axons, dendrites, glial processes and nerve terminals), tentative values were estimated for the pool sizes of glutamate, glutamine, aspartate and y -amino butyrate.  相似文献   

19.
Abstract: The metabolic precursors and cerebral compartmentation of the augmented GABA pool induced by vigabatrin, an irreversible inhibitor of GABA transaminase, have been investigated by 13C NMR. Adult rats receiving rat chow ad libitum were given either drinking water only or drinking water containing 2.5 g/L vigabatrin for 7 days. Both groups of animals were infused either with [1,2-13C2]acetate (15 µmol/min/100 g body weight), an exclusive precursor of GABA formation through the glial glutamine pathway, or with [1,2-13C2]glucose (15 µmol/min/100 g body weight), a substrate that can produce GABA through the glial glutamine pathway or by direct metabolism in the neurons. The brains were frozen in situ, extracted with perchloric acid, and analyzed by 13C NMR. In vigabatrin-treated animals [13C]glutamine, a common intermediate for [13C]GABA synthesis from glucose or acetate, was accumulated to similar amounts during infusions with [1,2-13C2]glucose or [1,2-13C2]acetate. However, [13C]GABA accumulation was sevenfold higher during [1,2-13C2]glucose infusions or twofold higher during [1,2-13C2]acetate infusions. These results show that the direct pathway of GABA formation by neuronal metabolism of glucose predominates over the alternative pathway through glial glutamine. Near-equilibrium relationships of the aminotransferases of GABA and aspartate imply that the observed [13C]GABA accumulation occurs initially in the neuronal compartment.  相似文献   

20.
1. Although marine research has indicated that metabolic fractionations of 13C due to differences in organismal trophic position and proximal composition can complicate the isotopic interpretation of energy flow pathways, such potentially confounding problems have never been examined in freshwater benthic food webs.
2. The δ13C values of animals comprising a littoral benthic food web composited from four Canadian Shield lakes showed no relationship with either individual trophic position (δ15N) or lipid content (C/N ratios).
3. Differences in the relative incorporation of autochthonous and allochthonous energy sources by freshwater benthic organisms will alter their δ13C and δ15N values, thereby masking any possibility of observing 13C trophic enrichment.
4. Removal of the possibly confounding influences of lipids through either empirical correction or by analytical extraction may be unnecessary in studies of freshwater benthic food webs. Likewise, a priori adjustments in δ13C for freshwater benthic organisms in order to accommodate trophic fractionations which are presumed to occur, based on data from marine offshore food webs, may also be inappropriate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号