首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The implication of the released peptides in allosteric effects during protein degradation catalyzed by the proteasome is an important question not completely resolved. We present here data showing modulation of 26S proteasome activities by peptides composed of 5 or 6 natural amino acids that mimic the products generated during protein breakdown. Several of these peptides inhibit the chymotrypsin-like activity of the Xenope 26S proteasome whereas its trypsin-like activity is enhanced. The basic peptides produced competitive inhibition of the chymotrypsin-like activity and the acidic peptides, parabolic inhibition involving two different binding sites. Our results are in agreement with a model involving hypothetical non-catalytic sites interacting with effectors to modulate the peptidase activities of the proteasome. They also suggest that allosteric effects may occur in the proteasome during protein degradation.  相似文献   

2.
Glycation and glycoxidation protein products are formed upon binding of sugars to NH(2) groups of lysine and arginine residues and have been shown to accumulate during aging and in pathologies such as Alzheimer's disease and diabetes. Because the proteasome is the major intracellular proteolytic system involved in the removal of altered proteins, the effect of intracellular glycation on proteasome function has been analyzed in human dermal fibroblasts subjected to treatment with glyoxal that promotes the formation of N epsilon-carboxymethyl-lysine adducts on proteins. The three proteasome peptidase activities were decreased in glyoxal-treated cells as compared with control cells, and glyoxal was also found to inhibit these peptidase activities in vitro. In addition, the activity of glucose-6-phosphate dehydrogenase, a crucial enzyme for the regulation of the intracellular redox status, was dramatically reduced in glyoxal-treated cells. Further analysis was performed to determine whether glycated proteins are substrates for proteasome degradation. In contrast to the oxidized glucose-6-phosphate dehydrogenase, both N epsilon-carboxymethyl-lysine- and fluorescent-glycated enzymes were resistant to degradation by the 20 S proteasome in vitro, and this resistance was correlated with an increased conformational stability of the glycated proteins. These results provide one explanation for why glycated proteins build up both as a function of disease and aging. Finally, N epsilon-carboxymethyl-lysine-modified proteins were found to be ubiquitinated in glyoxal-treated cells suggesting a potential mechanism by which these modified proteins may be marked for degradation.  相似文献   

3.
The major environmental influence for epidermal cells is sun exposure and the harmful effect of UV radiation on skin is related to the generation of reactive oxygen species that are altering cellular components including proteins. It is now well established that the proteasome is responsible for the degradation of oxidized proteins. Therefore, the effects of UV-irradiation on proteasome have been investigated in human keratinocyte cultures. Human keratinocytes were irradiated with 10 J/cm(2) of UVA and 0.05 J/cm(2) of UVB and proteasome peptidase activities were measured in cell lysates using fluorogenic peptides. All three peptidase activities were decreased as early as 1 h and up to 24 h after irradiation of the cells. Increased levels of oxidized and ubiquitinated proteins as well as proteins modified by the lipid peroxidation product 4-hydroxy-2-nonenal were also observed in irradiated cells. However, immunopurified 20S proteasome exhibited no difference in both peptidase specific activities and 2D gel pattern of subunits in irradiated cells, ruling out the possibility that the 20S proteasome could be a target for the UV-induced damage. Finally, extracts from irradiated keratinocytes were able to inhibit degradation by the proteasome, demonstrating the presence of endogeneous inhibitors, including 4-hydroxy-2-nonenal modified proteins, generated upon UV-irradiation.  相似文献   

4.
(−)-epigallocatechin-3-gallate (EGCG) has been shown to possess chemopreventative properties and the ability to inhibit proteasome, a multicatalytic protease involved in the removal of oxidized and misfolded proteins and in the turnover of important checkpoint proteins. The stability of EGCG under neutral-alkaline and cellular physiological conditions was evaluated, identifying a biologically active ring-fission oxidative product. This derivative differentially affected proteasome activities with respect to EGCG in vitro, whereas, in cervical carcinoma cells, both compounds inhibited proteasome functionality to a similar extent, promoting a significant accumulation of ubiquitinated proteins and apoptotic markers.Despite of EGCG high instability, an equally active metabolite, able to modulate both proteasome functionality and apoptotic pathways, is generated. Interestingly this derivative protracts both the EGCG antioxidant and proteasome modulating efficacy, irrespective of the catechin short half-life.  相似文献   

5.
Ishii T  Sakurai T  Usami H  Uchida K 《Biochemistry》2005,44(42):13893-13901
Reactive oxygen species (ROS) have the potential to damage cellular components, such as protein, resulting in loss of function and structural alteration of proteins. The oxidative process affects a variety of side amino acid groups, some of which are converted to carbonyl compounds. We have previously shown that a prostaglandin D2 metabolite, 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2), is the potent inducer of intracellular oxidative stress on human neuroblastoma SH-SY5Y cells [Kondo, M., Oya-Ito, T., Kumagai, T., Osawa, T., and Uchida, K. (2001) Cyclopentenone prostaglandins as potential inducers of intracellular oxidative stress, J. Biol. Chem. 276, 12076-12083]. In the present study, to elucidate the molecular mechanism underlying the oxidative stress-mediated cell degeneration, we analyzed the protein carbonylation on SH-SY5Y cells when these cells were submitted to an endogenous inducer of ROS production. Upon exposure of SH-SY5Y cells to this endogenous electrophile, we observed significant accumulation of protein carbonyls within the cells. Proteomic analysis of oxidation-sensitive proteins showed that the major intracellular target of protein carbonylation was one of the regulatory subunits in 26 S proteasome, S6 ATPase. Accompanied by a dramatic increase in protein carbonyls within S6 ATPase, the electrophile-induced oxidative stress exerted a significant decrease in the S6 ATPase activities and a decreased ability of the 26 S proteasome to degrade substrates. Moreover, in vitro oxidation of 26 S proteasome with a metal-catalyzed oxidation system also confirmed that S6 ATPase represents the most oxidation-sensitive subunit in the proteasome. These and the observation that down-regulation of S6 ATPase by RNA interference resulted in the enhanced accumulation of ubiquitinated proteins suggest that S6 ATPase is a molecular target of ROS under conditions of electrophile-induced oxidative stress and that oxidative modification of this regulatory subunit of proteasome may be functionally associated with the altered recognition and degradation of proteasomal substrates in the cells.  相似文献   

6.
Glucose-6-phosphate dehydrogenase (G6PD) was treated with various concentrations of hypochlorite, which is produced by myeloperoxidase and is one of the most important oxidants during inflammatory processes. Inhibition of enzymatic activity, protein fragmentation, and proteolytic susceptibility toward the isolated 20S proteasome of G6PD were investigated. With rising hypochlorite concentrations, an increased proteasomal degradation of G6PD was measured. This occurred at higher hypochlorite concentrations than G6PD inactivation and at lower levels than G6PD fragmentation. The proteolytic activities of the 20S proteasome itself was determined by degradation of oxidized model proteins and cleavage of the synthetic proteasome substrate suc-LLVY-MCA. Proteasome activities remained intact at hypochlorite concentrations in which G6PD is maximally susceptible to proteasomal degradation. Only higher hypochlorite concentrations could decrease the proteolytic activities of the proteasome, which was accompanied by disintegration and fragmentation of the proteasome and proteasome subunits. Therefore, we conclude that the 20S proteasome can degrade proteins moderately damaged by hypochlorite and could contribute to an increased protein turnover in cells exposed to inflammatory stress.  相似文献   

7.
Proper assembly of the 26 S proteasome is required to efficiently degrade polyubiquitinated proteins. Many proteasome subunits contain the proteasome-COP9-initiation factor (PCI) domain, thus raising the possibility that the PCI domain may play a role in mediating proteasome assembly. We have previously characterized the PCI protein Yin6, a fission yeast ortholog of the mammalian Int6 that has been implicated in breast oncogenesis, and demonstrated that it binds and regulates the assembly of the proteasome. In this study, we isolated another PCI proteasome subunit, Rpn7, as a high copy suppressor that rescued the proteasome defects in yin6 null cells. To better define the function of the PCI domain, we aligned protein sequences to identify a conserved leucine residue that is present in nearly all known PCI domains. Replacing it with aspartate in yeast Rpn7, Yin6, and Rpn5 inactivated these proteins, and mutant human Int6 mislocalized in HeLa cells. Rpn7 and Rpn5 bind Rpn9 with high affinity, but their mutant versions do not. Our data suggest that this leucine may interact with several hydrophobic amino acid residues to influence the spatial arrangement either within the N-terminal tandem alpha-helical repeats or between these repeats and the more C-terminal winged helix subdomain. Disruption of such an arrangement in the PCI domain may substantially inactivate many PCI proteins and block their binding to other proteins.  相似文献   

8.
Premature ageing, one of the characteristics of Down syndrome (DS), may involve oxidative stress and impairment of proteasome activity. Transgenic mice overexpressing the human copper/zinc superoxide dismutase (SOD1) gene are one of the first murine models for DS and it has been shown that SOD1 overexpression might be either deleterious or beneficial. Here, we show a reduction in proteasome activities in the cortex of SOD1 transgenic mice and an associated increase in the content of oxidized SOD1 protein. As we demonstrate that in vitro oxidized SOD can inhibit purified proteasome peptidase activities, modified SOD1 might be partially responsible for proteasome inhibition shown in SOD1 transgenic mice.  相似文献   

9.
In order to examine the possible involvement of the 20S proteasome in degradation of oxidized proteins, the effects of different cadmium concentrations on its activities, protein abundance and oxidation level were studied using maize (Zea mays L.) leaf segments. The accumulation of carbonylated and ubiquitinated proteins was also investigated. Treatment with 50 microM CdCl(2) increased both trypsin- and PGPH-like activities of the 20S proteasome. The incremental changes in 20S proteasome activities were probably caused by an increased level of 20S proteasome oxidation, with this being responsible for degradation of the oxidized proteins. When leaf segments were treated with 100 microM CdCl(2), the chymotrysin- and trypsin-like activities of the 20S proteasome also decreased, with a concomitant increase in accumulation of carbonylated and ubiquitinated proteins. With both Cd(2+) concentrations, the abundance of the 20S proteasome protein remained similar to the control experiments. These results provide evidence for the involvement of this proteolytic system in cadmium-stressed plants.  相似文献   

10.
11.
12.
Huang L  Ho P  Chen CH 《FEBS letters》2007,581(25):4955-4959
This study discovered that betulinic acid (BA) is a potent proteasome activator that preferentially activates the chymotrypsin-like activity of the proteasome. Chemical modifications can transform BA into proteasome inhibitors. Chemical modifications at the C-3 position of BA resulted in compounds, such as dimethylsuccinyl BA (DSB), with various inhibitory activities against the human 20S proteasome. Interestingly, the proteasomal activation by BA and the inhibitory activity of DSB could be abrogated by introducing a side chain at the C-28 position. In summary, this study discovered a class of small molecules that can either activate or inhibit human proteasome activity depending on side chain modifications.  相似文献   

13.
Yen HC  Gordon C  Chang EC 《Cell》2003,112(2):207-217
Yin6 is a yeast homolog of Int6, which is implicated in tumorigenesis. We show that Yin6 binds to and regulates proteasome activity. Overexpression of Yin6 strengthens proteasome function while inactivation weakens and causes the accumulation of polyubiquitinated proteins including securin/Cut2 and cyclin/Cdc13. Yin6 regulates the proteasome by preferentially interacting with Rpn5, a conserved proteasome subunit, and affecting its localization/assembly. We showed previously that Yin6 cooperates with Ras1 to mediate chromosome segregation; here, we demonstrate that Ras1 similarly regulates the proteasome via Rpn5. In yeast, human Int6 binds Rpn5 and regulates its localization. We propose that human Int6, either alone or cooperatively with Ras, influences proteasome activities via Rpn5. Inactivating Int6 can lead to accumulation of mitotic regulators affecting cell division and mitotic fidelity.  相似文献   

14.
Proteins are major biological targets for oxidative damage within cells because of their high abundance and rapid rates of reaction with radicals and singlet oxygen. These reactions generate high yields of hydroperoxides. The turnover of both native and modified/damaged proteins is critical for maintaining cell homeostasis, with this occurring via the proteasomal and endosomal-lysosomal systems; the former is of particular importance for intracellular proteins. In this study we have examined whether oxidation products generated on amino acids, peptides, and proteins modulate 26S proteasome activity. We show that oxidation products, and particularly protein hydroperoxides, are efficient inhibitors of the 26S proteasome tryptic and chymotryptic activities, with this depending, at least in part, on the presence of hydroperoxide groups. Removal of these species by reduction significantly reduces proteasome inhibition. This loss of activity is accompanied by a loss of thiol residues, but an absence of radical formation, consistent with molecular, rather than radical, reactions being responsible for proteasome inhibition. Aldehydes also seem to play a role in the inhibition of chymotryptic activity, with this prevented by treatment with NaBH(4), which reduces these groups. Inhibition occurred at hydroperoxide concentrations of ≥1μM for oxidized amino acids and peptides and ≥10μM for oxidized proteins, compared with ca. 100μM for H(2)O(2), indicating that H(2)O(2) is a much less effective inhibitor. These data indicate that the formation of oxidized proteins within cells may modulate cell function by interfering with the turnover of native proteins and the clearance of modified materials.  相似文献   

15.
Synthetic analogs of green tea polyphenols as proteasome inhibitors   总被引:2,自引:0,他引:2  
BACKGROUND: Animal, epidemiological and clinical studies have demonstrated the anti-tumor activity of pharmacological proteasome inhibitors and the cancer-preventive effects of green tea consumption. Previously, one of our laboratories reported that natural ester bond-containing green tea polyphenols (GTPs), such as (-)-epigallocatechin-3-gallate [(-)-EGCG] and (-)-gallocatechin-3-gallate [(-)-GCG], are potent and specific proteasome inhibitors. Another of our groups, for the first time, was able to enantioselectively synthesize (-)-EGCG as well as other analogs of this natural GTP. Our interest in designing and developing novel synthetic GTPs as proteasome inhibitors and potential cancer-preventive agents prompted our current study. MATERIALS AND METHODS: GTP analogs, (+)-EGCG, (+)-GCG, and a fully benzyl-protected (+)-EGCG [Bn-(+)-EGCG], were prepared by enantioselective synthesis. Inhibition of the proteasome or calpain (as a control) activities under cell-free conditions were measured by fluorogenic substrate assay. Inhibition of intact tumor cell proteasome activity was measured by accumulation of some proteasome target proteins (p27, I kappa B-alpha and Bax) using Western blot analysis. Inhibition of tumor cell proliferation and induction of apoptosis by synthetic GTPs were determined by G(1) arrest and caspase activation, respectively. Finally, inhibition of the transforming activity of human prostate cancer cells by synthetic GTPs was measured by a colony formation assay. RESULTS: (+)-EGCG and (+)-GCG potently and specifically inhibit the chymotrypsin-like activity of purified 20S proteasome and the 26S proteasome in tumor cell lysates, while Bn-(+)-EGCG does not. Treatment of leukemic Jurkat T or prostate cancer LNCaP cells with either (+)-EGCG or (+)-GCG accumulated p27 and IkappaB-alpha proteins, associated with an increased G(1) population. (+)-EGCG treatment also accumulated the pro-apoptotic Bax protein and induced apoptosis in LNCaP cells expressing high basal levels of Bax, but not prostate cancer DU-145 cells with low Bax expression. Finally, synthetic GTPs significantly inhibited colony formation by LNCaP cancer cells. CONCLUSIONS: Enantiomeric analogs of natural GTPs, (+)-EGCG and (+)-GCG, are able to potently and specifically inhibit the proteasome both, in vitro and in vivo, while protection of the hydroxyl groups on (+)-EGCG renders the compound completely inactive.  相似文献   

16.
Icariin has been shown to significantly facilitate the differentiation of embryonic stem (ES) cells into cardiomyocytes in vitro. However, the mechanism underlying the icariin-induced cardiomyocyte differentiation is still not fully understood. In the present study, 52 differentially displayed proteins selected from two-dimensional electrophoresis gels were identified by MALDI-TOF mass spectrometry analysis. More than half of proteins could be assigned to six main categories: (1) protein synthesis, metabolism, processing and degradation, (2) stress response, (3) cytoskeleton proteins, (4) energy metabolism, (5) carbohydrate metabolism/transport, and (6) RNA/other nucleic acids metabolisms and transport, nuclear proteins. MALDI-TOF/MS showed that icariin treatment resulted in the induction of five ubiquitin-proteasome system (UPS)-related proteins, such as ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), ubiquitin-conjugating enzyme E2N, proteasome 26S, proteasome subunit-alpha type 6, and proteasome subunit-alpha type 2 in the differentiated cardiomyocytes. These results implied that UPS might play an important role in the control of cardiomyocyte differentiation. Epoxomicin (a proteasome inhibitor) significantly reduced the cardiomyocyte differentiation rate of ES cells and proteasome activities, as well as inhibited NF-κB translocation into the nucleus, which were evidently reversed by presence of icariin. Meanwhile, icariin could significantly reverse the reduction of four proteins (proteasome subunit-alpha type 6, proteasome subunit-alpha type 2, UCH-L1, and ubiquitin-conjugating enzyme E2N) expressions owing to application of epoxomicin. These suggest UPS could be a means by which icariin may regulate expressions of key proteins that control cardiomyocyte differentiation. Taken together, these results indicated that UPS played an important role in ES cell differentiate into cardiomyocytes induced by icariin.  相似文献   

17.
The tobacco-specific N-nitrosamine, 4-(methylnitrosamino)-1-(3-pyridinyl)-1-butanone (NNK), is a well-known carcinogen. Although the ability of the metabolically activated form of NNK to generate DNA adducts is well established, little is known about the cellular pathways perturbed by NNK in its native state. In this study, we utilized stable isotope labeling by amino acid in cell culture (SILAC), together with mass spectrometry, to assess the perturbation of protein expression in GM00637 human skin fibroblast cells upon NNK exposure. With this approach, we were able to quantify 1412 proteins and 137 of them were with significantly altered expression following NNK exposure, including the up-regulation of all subunits of the 20S proteasome core complex. The up-regulation of the 20S core complex was also reflected by a significant increase in 20S proteasome activities in GM00637, IMR90, and MCF-7 cells upon NNK treatment. Furthermore, the β-adrenergic receptor (β-AR) antagonist propranolol could attenuate significantly the NNK-induced increase in proteasome activity in all the three cell lines, suggesting that up-regulation of the 20S proteasome may be mediated through the β-AR. Additionally, we found that NNK treatment altered the expression levels of other important proteins including mitochondrial proteins, cytoskeleton-associated proteins, and proteins involved in glycolysis and gluconeogenesis. Results from the present study provided novel insights into the cellular mechanisms targeted by NNK.  相似文献   

18.
Oxidized and cross-linked proteins tend to accumulate in aging cells. Declining activity of proteolytic enzymes, particularly the proteasome, has been proposed as a possible explanation for this phenomenon, and direct inhibition of the proteasome by oxidized and cross-linked proteins has been demonstrated in vitro. We have further examined this hypothesis during both proliferative senescence (this paper) and postmitotic senescence (see the accompanying paper, ref 1 ) of human BJ fibroblasts. During proliferative senescence, we found a marked decline in all proteasome activities (trypsin-like activity, chymotrypsin-like activity, and peptidyl-glutamyl-hydrolyzing activity) and in lysosomal cathepsin activity. Despite the loss of proteasome activity, there was no concomitant change in cellular levels of actual proteasome protein (immunoassays) or in the steady-state levels of mRNAs for essential proteasome subunits. The decline in proteasome activities and lysosomal cathepsin activities was accompanied by dramatic increases in the accumulation of oxidized and cross-linked proteins. Furthermore, as proliferation stage increased, cells exhibited a decreasing ability to degrade the oxidatively damaged proteins generated by an acute, experimentally applied oxidative stress. Thus, oxidized and cross-linked proteins accumulated rapidly in cells of higher proliferation stages. Our data are consistent with the hypothesis that proteasome is progressively inhibited by small accumulations of oxidized and cross-linked proteins during proliferative senescence until late proliferation stages, when so much proteasome activity has been lost that oxidized proteins accumulate at ever-increasing rates. Lysosomes attempt to deal with the accumulating oxidized and cross-linked proteins, but declining lysosomal cathepsin activity apparently limits their effectiveness. This hypothesis, which may explain the progressive intracellular accumulation of oxidized and cross-linked proteins in aging, is further explored during postmitotic senescence in the accompanying paper (1).  相似文献   

19.
20.
The proteasome controls many cellular processes by degrading a large number of regulatory proteins. Most proteins are targeted to the proteasome through covalent tagging by a chain consisting of several copies of the small protein ubiquitin. Finley and coworkers have now discovered two proteins, Hul5 and Ubp6, which regulate degradation further, when bound to the proteasome. Hul5 promotes degradation by extending the number of ubiquitin moieties in the tag on substrates, whereas Ubp6 antagonizes degradation by trimming ubiquitin from the tag. The balance between these two opposing activities might control the substrate specificity of the proteasome and adjusting the balance would provide a new level of degradation control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号