首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A cultivation-independent technique for genetic profiling of PCR-amplified small-subunit rRNA genes (SSU rDNA) was chosen to characterize the diversity and succession of microbial communities during composting of an organic agricultural substrate. PCR amplifications were performed with DNA directly extracted from compost samples and with primers targeting either (i) the V4–V5 region of eubacterial 16S rRNA genes, (ii) the V3 region in the 16S rRNA genes of actinomycetes, or (iii) the V8–V9 region of fungal 18S rRNA genes. Homologous PCR products were converted to single-stranded DNA molecules by exonuclease digestion and were subsequently electrophoretically separated by their single-strand-conformation polymorphism (SSCP). Genetic profiles obtained by this technique showed a succession and increasing diversity of microbial populations with all primers. A total of 19 single products were isolated from the profiles by PCR reamplification and cloning. DNA sequencing of these molecular isolates showed similarities in the range of 92.3 to 100% to known gram-positive bacteria with a low or high G+C DNA content and to the SSU rDNA of γ-Proteobacteria. The amplified 18S rRNA gene sequences were related to the respective gene regions of Candida krusei and Candida tropicalis. Specific molecular isolates could be attributed to different composting stages. The diversity of cultivated bacteria isolated from samples taken at the end of the composting process was low. A total of 290 isolates were related to only 6 different species. Two or three of these species were also detectable in the SSCP community profiles. Our study indicates that community SSCP profiles can be highly useful for the monitoring of bacterial diversity and community successions in a biotechnologically relevant process.  相似文献   

2.
Bacteria and yeasts are important sensory factors of raw-milk cheeses as they contribute to the sensory richness and diversity of these products. The diversity and succession of yeast populations in three traditional Registered Designation of Origin (R.D.O.) Salers cheeses have been determined by using phenotypic diagnoses and Single-Strand Conformation Polymorphism (SSCP) analysis. Isolates were identified by phenotypic tests and the sequencing of the D1-D2 domains of the 26S rRNA gene. Ninety-two percent of the isolates were identified as the same species in both tests. Yeast-specific primers were designed to amplify the V4 region of the 18S rRNA gene for SSCP analysis. The yeast species most frequently encountered in the three cheeses were Kluyveromyces lactis, Kluyveromyces marxianus, Saccharomyces cerevisiae, Candida zeylanoides and Debaryomyces hansenii. Detection of less common species, including Candida parapsilosis, Candida silvae, Candida intermedia, Candida rugosa, Saccharomyces unisporus, and Pichia guilliermondii was more efficient with the conventional method. SSCP analysis was accurate and could be used to rapidly assess the proportions and dynamics of the various species during cheese ripening. Each cheese was clearly distinguished by its own microbial community dynamics.  相似文献   

3.
Genetic profiling techniques of microbial communities based on PCR-amplified signature genes, such as denaturing gradient gel electrophoresis or single-strand-conformation polymorphism (SSCP) analysis, are normally done with PCR products of less than 500-bp. The most common target for diversity analysis, the small-subunit rRNA genes, however, are larger, and thus, only partial sequences can be analyzed. Here, we compared the results obtained by PCR targeting different variable (V) regions (V2 and V3, V4 and V5, and V6 to V8) of the bacterial 16S rRNA gene with primers hybridizing to evolutionarily conserved flanking regions. SSCP analysis of single-stranded PCR products generated from 13 different bacterial species showed fewer bands with products containing V4-V5 (average, 1.7 bands per organism) than with V2-V3 (2.2 bands) and V6-V8 (2.3 bands). We found that the additional bands (>1 per organism) were caused by intraspecies operon heterogeneities or by more than one conformation of the same sequence. Community profiles, generated by PCR-SSCP from bacterial-cell consortia extracted from rhizospheres of field-grown maize (Zea mays), were analyzed by cloning and sequencing of the dominant bands. A total of 48 sequences could be attributed to 34 different strains from 10 taxonomical groups. Independent of the primer pairs, we found proteobacteria (alpha, beta, and gamma subgroups) and members of the genus Paenibacillus (low G+C gram-positive) to be the dominant organisms. Other groups, however, were only detected with single primer pairs. This study gives an example of how much the selection of different variable regions combined with different specificities of the flanking "universal" primers can affect a PCR-based microbial community analysis.  相似文献   

4.
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database.  相似文献   

5.
D H Lee  Y G Zo    S J Kim 《Applied microbiology》1996,62(9):3112-3120
We describe a new method for studying the structure and diversity of bacterial communities in the natural ecosystem. Our approach is based on single-strand-conformation polymorphism (SSCP) analysis of PCR products of 16S rRNA genes from complex bacterial populations. A pair of eubacterial universal primers for amplification of the variable V3 region were designed from the 16S rRNA sequences of 1,262 bacterial strains. The PCR conditions were optimized by using genomic DNAs from five gram-positive and seven gram-negative strains. The SSCP analysis of the PCR products demonstrated that a bacterial strain generated its characteristic band pattern and that other strains generated other band patterns, so that the relative diversity in bacterial communities could be measured. In addition, this method was sensitive enough to detect a bacterial population that made up less than 1.5% of a bacterial community. The distinctive differences between bacterial populations were observed in an oligotrophic lake and a eutrophic pond in a field study. The method presented here, using combined PCR amplification and SSCP pattern analyses of 16S rRNA genes, provides a useful tool to study bacterial community structures in various ecosystems.  相似文献   

6.
Genetic profiling techniques of microbial communities based on PCR-amplified signature genes, such as denaturing gradient gel electrophoresis or single-strand-conformation polymorphism (SSCP) analysis, are normally done with PCR products of less than 500-bp. The most common target for diversity analysis, the small-subunit rRNA genes, however, are larger, and thus, only partial sequences can be analyzed. Here, we compared the results obtained by PCR targeting different variable (V) regions (V2 and V3, V4 and V5, and V6 to V8) of the bacterial 16S rRNA gene with primers hybridizing to evolutionarily conserved flanking regions. SSCP analysis of single-stranded PCR products generated from 13 different bacterial species showed fewer bands with products containing V4-V5 (average, 1.7 bands per organism) than with V2-V3 (2.2 bands) and V6-V8 (2.3 bands). We found that the additional bands (>1 per organism) were caused by intraspecies operon heterogeneities or by more than one conformation of the same sequence. Community profiles, generated by PCR-SSCP from bacterial-cell consortia extracted from rhizospheres of field-grown maize (Zea mays), were analyzed by cloning and sequencing of the dominant bands. A total of 48 sequences could be attributed to 34 different strains from 10 taxonomical groups. Independent of the primer pairs, we found proteobacteria (α, β, and γ subgroups) and members of the genus Paenibacillus (low G+C gram-positive) to be the dominant organisms. Other groups, however, were only detected with single primer pairs. This study gives an example of how much the selection of different variable regions combined with different specificities of the flanking “universal” primers can affect a PCR-based microbial community analysis.  相似文献   

7.
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database.  相似文献   

8.
《Ecological Indicators》2008,8(5):442-453
Five water samples from three sources, two municipal reservoirs in central North Carolina and Toolik Lake in Alaska, were processed to conduct a comparative survey of microbial small subunit rDNA sequences. Genomic DNA was extracted and amplified by PCR using universal SSU rDNA primers to generate 16S and 18S rDNA clone libraries and 50 clones from each library were sequenced and placed in operational taxonomic units (OTUs). Through this recovery and analysis of SSU rRNA genes, a metagenomic profile of the microbial community emerged for each environmental sample. Analyses of these profiles, including species diversity estimates and rank-abundance curves, revealed that approximately 64% of prokaryotic OTUs and 80% of eukaryotic OTUs were novel. Diversity estimates were consistent with predicted ecosystem characteristics: they were greater for the mesotrophic to eutrophic temperate lakes, than for the oligotrophic arctic lake. Sample comparisons showed that community similarity declined as geographic distance between sites increased. Real-time quantitative PCR results showed that OTUs which had been recovered from only one library were actually present in other samples, but at much lower frequencies, suggesting that many, if not most, microorganisms are cosmopolitan. Together, these results support the potential value of using the microbial community as an indicator of local environmental conditions. In other words, it may be realistic to monitor water quality using a single, comprehensive suite of microorganisms by analyzing patterns of relative abundance.  相似文献   

9.
The microbial communities in milks from one herd were evaluated during 1-year of lactation, using molecular methods to evaluate their stability and the effect of breeding conditions on their composition. The diversity of microbial communities was measured using two approaches: molecular identification by 16S and 18S rDNA sequencing of isolates from counting media (two milks), and direct identification using 16S rDNA from clone libraries (six milks). The stability of these communities was evaluated by counting on selective media and by Single Strand Conformation Polymorphism (SSCP) analysis of variable region V3 of the 16S rRNA gene and variable region V4 of the 18S rRNA gene. One hundred and eighteen milk samples taken throughout the year were analyzed. Wide diversity among bacteria and yeasts in the milk was revealed. In addition to species commonly encountered in milk, such as Lactococcus lactis, Lactococcus garvieae, Enterococcus faecalis, Lactobacillus casei, Leuconostoc mesenteroides, Staphylococcus epidermidis, Staphylococcus simulans, Staphylococcus caprae, Staphylococcus equorum, Micrococcus sp., Kocuria sp., Pantoea agglomerans and Pseudomonas putida, sequences were affiliated to other species only described in cheeses, such as Corynebacterium variabile, Arthrobacter sp., Brachybacterium paraconglomeratum, Clostridium sp. and Rothia sp. Several halophilic species atypical in milk were found, belonging to Jeotgalicoccus psychrophilus, Salinicoccus sp., Dietza maris, Exiguobacterium, Ornithinicoccus sp. and Hahella chejuensis. The yeast community was composed of Debaryomyces hansenii, Kluyveromyces lactis, Trichosporon beigelii, Rhodotorula glutinis, Rhodotorula minuta, Candida pararugosa, Candida intermedia, Candida inconspicua, Cryptococcus curvatus and Cryptococcus magnus. The analyses of microbial counts and microbial SSCP profiles both distinguished four groups of milks corresponding to four periods defined by season and feeding regime. The microbial community was stable within each period. Milks from winter were characterized by Lactococcus and Pseudomonas, those from summer by P. agglomerans and Klebsiella and those from autumn by Chryseobacterium indologenes, Acinetobacter baumanii, Staphylococcus, Corynebacteria and yeasts. However, the composition of the community can vary according to factors other than feeding. This study opens new investigation fields in the field of raw milk microbial ecology.  相似文献   

10.
Characterization of microbial communities using single-strand conformation polymorphism (SSCP) was compared with that using denaturing gradient gel electrophoresis (DGGE). This comparison was based on the V3-4 region (Escherichia coli positions: 341-806) of 16S rRNA gene of bacterial or archaeal communities obtained from a methanogenic bioreactor. Significant differences in the bacterial banding profiles were observed while attempting to detect the diversity of the community and its succession during the reactor operation. The SSCP produced a number of sharp bands and differentiated the bacterial community structures to which the DGGE gave an identical pattern. On the other hand, the SSCP and DGGE provided similar succession patterns for archaeal community.  相似文献   

11.
AIM: To evaluate the rpoB gene as a biomarker for PCR-DGGE microbial analyses using soil DNA from the Cerrado, Brazil. METHODS: DNA extraction from soil was followed by Polymerase Chain Reaction (PCR) amplification of rpoB and 16S rRNA genes. PCR products were compared by Denaturing Gradient Gel Electrophoresis (DGGE) to compare gene/community profiles. RESULTS: The rpoB DGGE profiles comprised fewer bands than the 16S rDNA profiles and were easier to delineate and therefore to analyse. Comparison of the community profiles revealed that the methods were complementary. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The gene for the beta subunit of the RNA polymerase, rpoB, is a single copy gene unlike 16S rDNA. Multiple copies of 16S rRNA genes in bacterial genomes complicate diversity assessments made from DGGE profiles. Using the rpoB gene offers a better alternative to the commonly used 16S rRNA gene for microbial community analyses based on DGGE.  相似文献   

12.
Temperature gradient gel electrophoresis (TGGE) is well suited for fingerprinting bacterial communities by separating PCR-amplified fragments of 16S rRNA genes (16S ribosomal DNA [rDNA]). A strategy was developed and was generally applicable for linking 16S rDNA from community fingerprints to pure culture isolates from the same habitat. For this, digoxigenin-labeled polynucleotide probes were generated by PCR, using bands excised from TGGE community fingerprints as a template, and applied in hybridizations with dot blotted 16S rDNA amplified from bacterial isolates. Within 16S rDNA, the hypervariable V6 region, corresponding to positions 984 to 1047 (Escherichia coli 16S rDNA sequence), which is a subset of the region used for TGGE (positions 968 to 1401), best met the criteria of high phylogenetic variability, required for sufficient probe specificity, and closely flanking conserved priming sites for amplification. Removal of flanking conserved bases was necessary to enable the differentiation of closely related species. This was achieved by 5' exonuclease digestion, terminated by phosphorothioate bonds which were synthesized into the primers. The remaining complementary strand was removed by single-strand-specific digestion. Standard hybridization with truncated probes allowed differentiation of bacteria which differed by only two bases within the probe target site and 1.2% within the complete 16S rDNA. However, a truncated probe, derived from an excised TGGE band of a rhizosphere community, hybridized with three phylogenetically related isolates with identical V6 sequences. Only one of the isolates comigrated with the excised band in TGGE, which was shown to be due to identical sequences, demonstrating the utility of a combined TGGE and V6 probe approach.  相似文献   

13.
Experiments were performed to determine the influence of three DNA extraction methods (i.e. lysozyme, sonication and CTAB methods) from kefir on the microbial diversity analysis by PCR-single strand conformation polymorphism (PCR-SSCP). The results showed that the band of DNA extracted using CTAB was clearer than that using other methods. In addition, the yield and purity of DNA extracted using CTAB were the highest and reached, respectively, 915 μg/ml and 1.694.The results from the experiments indicated that the CTAB-based DNA extraction method was the most efficient method for DNA extraction from kefir. The heterogeneity of PCR products, amplified from community DNA with universal primers spanning the V3 region of 16S rRNA genes, was analysed by using SSCP. The results showed that the SSCP profile based on the sonication method gave the highest microbial diversity of kefir. One conclusion from these results was that the DNA extraction method was an important factor affecting the SSCP-based microbial diversity analysis of kefir.  相似文献   

14.
Rice field soil with a nonsaturated water content induced CH4 consumption activity when it was supplemented with 5% CH4. After a lag phase of 3 days, CH4 was consumed rapidly until the concentration was less than 1.8 parts per million by volume (ppmv). However, the soil was not able to maintain the oxidation activity at near-atmospheric CH4 mixing ratios (i.e., 5 ppmv). The soil microbial community was monitored by performing denaturing gradient gel electrophoresis (DGGE) during the oxidation process with different PCR primer sets based on the 16S rRNA gene and on functional genes. A universal small-subunit (SSU) ribosomal DNA (rDNA) primer set and 16S rDNA primer sets specifically targeting type I methylotrophs (members of the gamma subdivision of the class Proteobacteria [gamma-Proteobacteria]) and type II methylotrophs (members of the alpha-Proteobacteria) were used. Functional PCR primers targeted the genes for particulate methane monooxygenase (pmoA) and methanol dehydrogenase (mxaF), which code for key enzymes in the catabolism of all methanotrophs. The yield of PCR products amplified from DNA in soil that oxidized CH4 was the same as the yield of PCR products amplified from control soil when the universal SSU rDNA primer set was used but was significantly greater when primer sets specific for methanotrophs were used. The DGGE patterns and the sequences of major DGGE bands obtained with the universal SSU rDNA primer set showed that the community structure was dominated by nonmethanotrophic populations related to the genera Flavobacterium and Bacillus and was not influenced by CH4. The structure of the methylotroph community as determined with the specific primer sets was less complex; this community consisted of both type I and type II methanotrophs related to the genera Methylobacter, Methylococcus, and Methylocystis. DGGE profiles of PCR products amplified with functional gene primer sets that targeted the mxaF and pmoA genes revealed that there were pronounced community shifts when CH4 oxidation began. High CH4 concentrations stimulated both type I and II methanotrophs in rice field soil with a nonsaturated water content, as determined with both ribosomal and functional gene markers.  相似文献   

15.
不同紫花苜蓿品种根瘤菌遗传多样性的PCR-SSCP分析   总被引:1,自引:0,他引:1  
用PCR-SSCP方法对分离自23个紫花苜蓿品种的42株供试根瘤菌和2株苜蓿根瘤菌参比菌株Sinorhi-zobium meliloti、Sinorhizobium medica进行遗传多样性分析.结果表明,供试的紫花苜蓿根瘤菌存在丰富的遗传多样性,在16S rDNA的V2~V3区段中有12种不同的等位基因,V4~V5区段有13种不同的等位基因,基因型27个;大部分供试菌株的基因型各不相同,来自同一品种菌株之间表现出不同的基因型,来自不同品种的菌株却表现出相同的基因型;9株供试菌株在V2~V3区段的基因型与参比菌株S.meliloti相同,所有供试菌株的基因型与参比菌株S.medica都不同.  相似文献   

16.
Current elevated concentrations of ozone in the atmosphere, as they are observed during summer seasons, can cause severe effects on plant vegetation. This study was initiated to analyze whether ozone-stressed plants also transfer signals below ground and thereby alter the bacterial community composition in their rhizospheres. Herbaceous plants, native to Germany, with tolerance (Anthoxanthum odoratum, Achillea millefolium, Poa pratensis, Rumex acetosa, and Veronica chamaedrys) and sensitivity (Matricaria chamomilla, Sonchus asper, and Tanacetum vulgare) to ozone, raised in the greenhouse, were exposed in open-top chambers to two different ozone regimes, i.e., "summer stress" and a normal ozone background. DNA of bacterial cells from the rhizospheres was directly extracted, and partial sequences of the 16S rRNA genes were PCR amplified with primers targeting the following phylogenetic groups: Bacteria, alpha-Proteobacteria, Actinobacteria, and Pseudomonas, respectively. The diversity of the amplified products was analyzed by genetic profiling based on single-strand conformation polymorphism (SSCP). Neither the tolerant nor the sensitive plants, the latter with visible above-ground damage, showed ozone-induced differences in any of the SSCP profiles, with the single exception of Actinobacteria-targeted profiles from S. asper. To increase the stress, S. asper was germinated and raised in the continuous presence of an elevated level of ozone. SSCP profiles with Bacteria-specific primers combined with gene probe hybridizations indicated an ozone-related increase in a Xanthomonas-related 16S rRNA gene and a decrease in the respective gene from the plant plastids. The fact that only this latter unrealistic scenario caused a detectable effect demonstrated that ozone stress has a surprisingly small effect on the structural diversity of the bacterial community in rhizospheres.  相似文献   

17.
垃圾填埋场渗滤液中古细菌群落16S rRNA基因的ARDRA分析   总被引:10,自引:0,他引:10  
利用特异性的引物对,选择性扩增垃圾填埋场渗滤液中古细菌群落的18S rRNA基因片断,在此基础上建立16S rDNA克隆文库,经古细菌通用寡核苷酸探针的原位杂交筛选后,克隆文库内古细菌16S rDNA扩增片断的多样性通过ARDRA分析(amplified rDNA restriction analysis)而获得,利用PCR将各组重克隆子内的16S rDNA外源片断再扩增出来后,两种限制性内切酶-Hha I和HaeⅢ-被分别用于16S rDNA克隆片断的限制酶切分析,结果表明,随机选出的70个古细菌16S rDNA克隆片断被妥为21个不同的ARDRA型(组),其中的两个优势型总共占了所有被分析克隆子的60%,而其余19个型的相对丰度均处于较低的水平,当中的14个型更仅含有1个克隆子,通过对16S rRNA基因的PCR扩增,克隆及其ARDRA分析,能快速地获得有关填埋场渗滤液中古细菌群落的结构及其多样性的初步信息。  相似文献   

18.
19.
PCR primers targeting conserved regions of the SSU rRNA gene are commonly used in bacterial community studies. For microbes associated with eukaryotes, co-amplification of eukaryotic DNA may preclude the analysis. We present a simple and efficient PCR strategy to obtain pure bacterial rDNA amplicons from samples predominated by eukaryotic DNA.  相似文献   

20.
目的16SrRNA和16S-23SrRNA间区片段是常用细菌分类鉴定靶点,本研究探讨人工神经原网络(ANN)对上述位点PCR扩增产物数据分析在细菌快速鉴定方面的价值。方法2对15SrRNA基因荧光引物和1对16S-23SrRNA区间基因引物用于扩增血液标本中分离出的317株细菌。相关毛细管电泳(CE)限制性片段长度多态性(RFLP)和单链构象多态性(SSCP)数据进行人工神经原网络分析。结果16S-23SrRNA基因的RFLP数据对未知菌鉴定的准确率高于16SrRNA基因的SSCP数据,分别为98.0%和79.6%。结论实验证明了人工神经原网络作为一种模式识别方法对于简化细菌鉴定十分有价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号