共查询到20条相似文献,搜索用时 15 毫秒
1.
F. Débarre 《Journal of evolutionary biology》2012,25(12):2651-2660
Can speciation occur in a single population when different types of resources are available, in the absence of any geographical isolation, or any spatial or temporal variation in selection? The controversial topics of sympatric speciation and ecological speciation have already stimulated many theoretical studies, most of them agreeing on the fact that mechanisms generating disruptive selection, some level of assortment, and enough heterogeneity in the available resources, are critical for sympatric speciation to occur. Few studies, however, have combined the three factors and investigated their interactions. In this article, I analytically derive conditions for sympatric speciation in a general model where the distribution of resources can be uni‐ or bimodal, and where a parameter controls the range of resources that an individual can exploit. This approach bridges the gap between models of a unimodal continuum of resources and Levene‐type models with discrete resources. I then test these conditions against simulation results from a recently published article (Thibert‐Plante & Hendry, 2011, J. Evol. Biol. 24 : 2186–2196) and confirm that sympatric ecological speciation is favoured when (i) selection is disruptive (i.e. individuals with an intermediate trait are at a local fitness minimum), (ii) resources are differentiated enough and (iii) mating is assortative. I also discuss the role of mating preference functions and the need (or lack thereof) for bimodality in resource distributions for diversification. 相似文献
2.
Cooper IA Gilman RT Boughman JW 《Evolution; international journal of organic evolution》2011,65(9):2553-2571
Adaptive divergence of phenotypes, such as sexual dimorphism or adaptive speciation, can result from disruptive selection via competition for limited resources. Theory indicates that speciation and sexual dimorphism can result from identical ecological conditions, but co-occurrence is unlikely because whichever evolves first should dissipate the disruptive selection necessary to drive evolution of the other. Here, we consider ecological conditions in which disruptive selection can act along multiple ecological axes. Speciation in lake populations of threespine sticklebacks (Gasterosteus aculeatus) has been attributed to disruptive selection due to competition for resources. Head shape in sticklebacks is thought to reflect adaptation to different resource acquisition strategies. We measure sexual dimorphism and species variation in head shape and body size in stickleback populations in two lakes in British Columbia, Canada. We find that sexual dimorphism in head shape is greater than interspecific differences. Using a numerical simulation model that contains two axes of ecological variation, we show that speciation and sexual dimorphism can readily co-occur when the effects of loci underlying sexually dimorphic traits are orthogonal to those underlying sexually selected traits. 相似文献
3.
Michael Doebeli Ulf Dieckmann Johan A. J. Metz Diethard Tautz 《Evolution; international journal of organic evolution》2005,59(3):691-695
Abstract A recent Perspectives article by Gavrilets (2003) on the theory of speciation ignored advances in understanding processes of adaptive speciation, in which the splitting of lineages is an adaptation caused by frequency‐dependent selection. Adaptive, or sympatric, speciation has been modeled since the 1960s, but the large amount of attention from both empirical and theoretical biologists that adaptive speciation has received in recent years goes far beyond what was described in Gavrilets' paper. Due to conceptual advances based on the theory of adaptive dynamics, adaptive speciation has emergedj as a theoretically plausible evolutionary process that can occur in many different ecological settings. 相似文献
4.
Theoretical models suggest that resource competition can lead to the adaptive splitting of consumer populations into diverging lineages, that is, to adaptive diversification. In general, diversification is likely if consumers use only a narrow range of resources and thus have a small niche width. Here we use analytical and numerical methods to study the consequences for diversification if the niche width itself evolves. We found that the evolutionary outcome depends on the inherent costs or benefits of widening the niche. If widening the niche did not have costs in terms of overall resource uptake, then the consumer evolved a niche that was wide enough for disruptive selection on the niche position to vanish; adaptive diversification was no longer observed. However, if widening the niche was costly, then the niche widths remained relatively narrow, allowing for adaptive diversification in niche position. Adaptive diversification and speciation resulting from competition for a broadly distributed resource is thus likely if the niche width is fixed and relatively narrow or free to evolve but subject to costs. These results refine the conditions for adaptive diversification due to competition and formulate them in a way that might be more amenable for experimental investigations. 相似文献
5.
Karin S. Pfennig David W. Pfennig Cody Porter Ryan A. Martin 《Proceedings. Biological sciences / The Royal Society》2015,282(1807)
In many species, individuals specialize on different resources, thereby reducing competition. Such ecological specialization can promote the evolution of alternative ecomorphs—distinct phenotypes adapted for particular resources. Elucidating whether and how this process is influenced by sexual selection is crucial for understanding how ecological specialization promotes the evolution of novel traits and, potentially, speciation between ecomorphs. We evaluated the population-level effects of sexual selection (as mediated by mate choice) on ecological specialization in spadefoot toad tadpoles that express alternative ecomorphs. We manipulated whether sexual selection was present or reversed by mating females to their preferred versus non-preferred males, respectively. We then exposed their tadpoles to resource competition in experimental mesocosms. The resulting distribution of ecomorphs was similar between treatments, but sexual selection generated poorer trait integration in, and lower fitness of, the more specialized carnivore morph. Moreover, disruptive and directional natural selection were weaker in the sexual selection present treatment. Nevertheless, this effect on disruptive selection was smaller than previously documented effects of ecological opportunity and competitor density. Thus, sexual selection can inhibit adaptation to resource competition and thereby hinder ecological specialization, particularly when females obtain fitness benefits from mate choice that offset the cost of producing competitively inferior offspring. 相似文献
6.
从生物学、生态和遗传的角度阐述昆虫同域物种形成过程中涉及到的可能性机制。昆虫同域种的分化与作用于同域初始种群的歧化选择密切相关,歧化选择间接导致种群生态特征和遗传特征的分化,促进同域近缘种群间的生殖隔离。同域物种形成的过程中涉及到性状替换、性选择、同型交配等机制。寄主专化型多见于昆虫同域种的分化过程中,一般以植食性昆虫为主。有关昆虫同域物种形成的检验机制有多种,归纳起来主要包括同型交配的检验、遗传漂流的量化、遗传分化程度和连锁不平衡(LD)的检测、杂交后代适合度的估算等。目前发现在许多昆虫种类中存在同域物种形成的可能性,但是有关其隔离机制并没有得到充分的解释。 相似文献
7.
We investigate how costs of choosiness affect the evolution of assortative mating in a simple model of competitive speciation. The model allows for a comprehensive analysis by analytical and numerical techniques. We obtain results for two types of costs: mating costs, which restrict the number of males a choosy female can evaluate, and viability costs, which decrease a choosy female's survival. Mating costs significantly reduce the range of parameters for which speciation is possible, but only if the number of males a female can evaluate is small (less than 10). This type of costs can be eliminated if females are allowed to mate randomly at the end of the mating period. Although, in this case, it is not possible to achieve complete reproductive isolation, our results show partial isolation with strong phenotypic clustering. Viability costs counteract selection for assortative mating. As this selection is typically weak, speciation is possible only if viability costs, too, are weak. The above restrictions are less severe if extreme phenotypes have an intrinsically higher carrying capacity. 相似文献
8.
Recent findings on clathrin-dependent and non clathrin-dependent endocytic routes are currently changing our classical view of endocytosis. Originally seen as a way for the cell to internalize membrane, receptors or various soluble molecules, this process is in fact directly linked to complex signaling pathways. Here, we review new insights in endocytosis and present latest development in imaging techniques that allow us to visualize and follow the dynamics of membrane-associated signaling events at the plasma membrane and other intracellular compartments. The immune synapse is taken as an illustration of the importance of membrane reorganization and proteins clustering to initiate and maintain signaling. Future challenges include understanding the crosslink between traffic and signaling and how all compartmentalized signals are integrated inside the cell at a higher level. 相似文献
9.
10.
11.
Chklovskii DB 《Neuron》2004,43(5):609-617
Neurons often possess elaborate axonal and dendritic arbors. Why do these arbors exist and what determines their form and dimensions? To answer these questions, I consider the wiring up of a large highly interconnected neuronal network, such as the cortical column. Implementation of such a network in the allotted volume requires all the salient features of neuronal morphology: the existence of branching dendrites and axons and the presence of dendritic spines. Therefore, the requirement of high interconnectivity is, in itself, sufficient to account for the existence of these features. Moreover, the actual lengths of axons and dendrites are close to the smallest possible length for a given interconnectivity, arguing that high interconnectivity is essential for cortical function. 相似文献
12.
13.
Mayr's best recognized scientific contributions include the biological species concept and the theory of geographic speciation. In the latter, reproductive isolation evolves as an incidental by‐product of genetic divergence between allopatric populations. Mayr noted that divergent natural selection could accelerate speciation, but also argued that gene flow so strongly retards divergence that, even with selection, non‐allopatric speciation is unlikely. However, current theory and data demonstrate that substantial divergence, and even speciation, in the face of gene flow is possible. Here, I attempt to connect some opposing views about speciation by integrating Mayr's ideas about the roles of ecology and geography in speciation with current data and theory. My central premise is that the speciation process (i.e. divergence) is often continuous, and that the opposing processes of selection and gene flow interact to determine the degree of divergence (i.e. the degree of progress towards the completion of speciation). I first establish that, in the absence of gene flow, divergent selection often promotes speciation. I then discuss how population differentiation in the face of gene flow is common when divergent selection occurs. However, such population differentiation does not always lead to the evolution of discontinuities, strong reproductive isolation, and thus speciation per se. I therefore explore the genetic and ecological circumstances that facilitate speciation in the face of gene flow. For example, particular genetic architectures or ecological niches may tip the balance between selection and gene flow strongly in favour of selection. The circumstances allowing selection to overcome gene flow to the extent that a discontinuity develops, and how often these circumstances occur, are major remaining questions in speciation research. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 26–46. 相似文献
14.
The utility of traits involved in resource exploitation is a central criterion for the adaptive character of radiations. Here, we test for differentiation in morphology, jaw mechanics and nutrition among species and sexes of Lake Matano's sympatric 'roundfin' sailfin silversides. The three incipient fish species differ significant in several candidate traits for adaptation following ecological selection pressure, corresponding to contrasting jaw mechanics and distinct patterns in food resource use. These findings are consistent with functional adaptation and suggest divergence following alternative modes of feeding specialization. Further, intersexual resource partitioning and corresponding adaptation in jaw mechanics is evident in two of the three incipient species, demonstrating that sexual dimorphism contributes to the ecomorphological and trophic diversity of the emerging radiation. This is, to the best of our knowledge, the first study reporting interspecific as well as intersexual adaptation by alternative modes of form and function in an evolving fish species flock. 相似文献
15.
16.
Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest 总被引:1,自引:1,他引:0
Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals. 相似文献
17.
A variety of methods have been described in the literature for assigning statistical significance to peptides identified via tandem mass spectrometry. Here, we explain how two types of scores, the q-value and the posterior error probability, are related and complementary to one another. 相似文献
18.
Gladieux P Guérin F Giraud T Caffier V Lemaire C Parisi L Didelot F LE Cam B 《Molecular ecology》2011,20(21):4521-4532
Expanding global trade and the domestication of ecosystems have greatly accelerated the rate of emerging infectious fungal diseases, and host-shift speciation appears to be a major route for disease emergence. There is therefore an increased interest in identifying the factors that drive the evolution of reproductive isolation between populations adapting to different hosts. Here, we used genetic markers and cross-inoculations to assess the level of gene flow and investigate barriers responsible for reproductive isolation between two sympatric populations of Venturia inaequalis, the fungal pathogen causing apple scab disease, one of the fungal populations causing a recent emerging disease on resistant varieties. Our results showed the maintenance over several years of strong and stable differentiation between the two populations in the same orchards, suggesting ongoing ecological divergence following a host shift. We identified strong selection against immigrants (i.e. host specificity) from different host varieties as the strongest and likely most efficient barrier to gene flow between local and emerging populations. Cross-variety disease transmission events were indeed rare in the field and cross-inoculation tests confirmed high host specificity. Because the fungus mates within its host after successful infection and because pathogenicity-related loci prevent infection of nonhost trees, adaptation to specific hosts may alone maintain both genetic differentiation between and adaptive allelic combinations within sympatric populations parasitizing different apple varieties, thus acting as a 'magic trait'. Additional intrinsic and extrinsic postzygotic barriers might complete reproductive isolation and explain why the rare migrants and F1 hybrids detected do not lead to pervasive gene flow across years. 相似文献
19.
We present a general framework for modelling adaptive trait dynamics in which we integrate various concepts and techniques from modern ESS-theory. The concept of evolutionarily singular strategies is introduced as a generalization of the ESS-concept. We give a full classification of the singular strategies in terms of ESS-stability, convergence stability, the ability of the singular strategy to invade other populations if initially rare itself, and the possibility of protected dimorphisms occurring within the singular strategy's neighbourhood. Of particular interest is a type of singular strategy that is an evolutionary attractor from a great distance, but once in its neighbourhood a population becomes dimorphic and undergoes disruptive selection leading to evolutionary branching. Modelling the adaptive growth and branching of the evolutionary tree can thus be considered as a major application of the framework. A haploid version of Levene's soft selection model is developed as a specific example to demonstrate evolutionary dynamics and branching in monomorphic and polymorphic populations. 相似文献
20.
Taylor EB Lowery E Lilliestråle A Elz A Quinn TP 《Journal of evolutionary biology》2008,21(6):1609-1625
The North Pacific Ocean has been of great significance to understanding biogeography and speciation in temperate faunas, including for two species of char (Salmonidae: Salvelinus) whose evolutionary relationship has been controversial. We examined the morphology and genetics (microsatellite and mitochondrial DNA) of Arctic char (Salvelinus alpinus) and Dolly Varden char (Salvelinus malma) in lake systems in western Alaska, the eastern and western Arctic, and south of the Alaskan Peninsula. Morphologically, each lake system contained two forms: one (Arctic char) largely confined to lake habitats and characterized by greater numbers of pyloric caeca, gill rakers, and shallower bodies, and another (Dolly Varden) predominated in adjacent stream habitats and was characterized by fewer pyloric caeca, gill rakers, and deeper bodies. MtDNA partial (550 bp) d-loop sequences of both taxa were interspersed with each other within a single 'Bering' clade and demographic inferences suggested historical gene flow from Dolly Varden to Arctic char had occurred. By contrast, the taxa were strongly differentiated in sympatry across nine microsatellite loci in both lakes. Our data show that the two taxa are highly genetically distinct in sympatry, supporting their status as valid biological species, despite occasional hybridization. The interaction between these species highlights the importance of the North Pacific, and Beringia in particular, as an evolutionary wellspring of biodiversity. 相似文献