首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Most anti-cancer agents induce apoptosis, however, a development of multidrug resistance in cancer cells and defects in apoptosis contribute often to treatment failure. Here, the mechanism of curcumin-induced apoptosis was investigated in human leukemia HL60 cells and their HL60/VCR multidrug-resistant counterparts. In both cell lines curcumin induced a bi-phasic ceramide generation with a slow phase until 6 h followed by a more rapid one. The level of the ceramide accumulation correlated inversely with the cell viability. We found that the ceramide elevation resulted from multifarious changes of the activity of sphingolipid-modifying enzymes. In both cell lines curcumin induced relatively fast activation of neutral sphingomyelinase (nSMase), which peaked at 3 h, and was followed by inhibition of sphingomyelin synthase activity. In addition, in HL60/VCR cells the glucosylceramide synthase activity was diminished by curcumin. This process was probably due to curcumin-induced down-regulation of P-gp drug transporter, since cyclosporine A, a P-gp blocker, also inhibited the glucosylceramide synthase activity. Inhibition of nSMase activity with GW4869 or silencing of SMPD3 gene encoding nSMase2 reversed the curcumin-induced inhibition of sphingomyelin synthase without affecting the glucosylceramide synthase activity. The early ceramide generation by nSMase was indispensable for the later lipid accumulation, modulation of Bax, Bcl-2 and caspase 3 levels, and for reduction of cell viability in curcumin-treated cells, as all these events were inhibited by GW4869 or nSMase2 depletion. These data indicate that the early ceramide generation by nSMase2 induced by curcumin intensifies the later ceramide accumulation via inhibition of sphingomyelin synthase, and controls pro-apoptotic signaling.  相似文献   

3.
Sphingomyelin is a major lipid in the bilayer of subcellular membranes of eukaryotic cells. Different sphingomyelinases catalyze the initial step in the catabolism of sphingomyelin, the hydrolysis to phosphocholine and ceramide. Sphingomyelinases have been postulated to generate ceramide as a lipophilic second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. To elucidate the function of the first cloned Mg(2+)-dependent, neutral sphingomyelinase (nSMase 1) in sphingomyelin catabolism and its potential role in signaling processes in a genetic and molecular approach, we have generated an nSMase 1-null mutant mouse line by gene targeting. The nSMase 1-deficient mice show an inconspicuous phenotype and no accumulation or changed metabolism of sphingomyelin or other lipids, despite grossly reduced nSMase activity in all organs except brain. We also addressed the recent proposal that nSMase 1 possesses lysophospholipase C activity. The unaltered metabolism of lysophosphatidylcholine or lyso-platelet-activating factor excludes the proposed role of nSMase 1 as a lysophospholipase C.  相似文献   

4.
We previously showed that ceramide (Cer) formed during the execution phase of apoptosis is derived from plasma membrane sphingomyelin (SM), most likely by a neutral sphingomyelinase activity (Tepper et al., J. Cell Biol. 150, 2000, 155-164). In this study, we investigated the involvement of a cloned putative human neutral sphingomyelinase (nSMase1) in this process. Site-directed mutagenesis of predicted catalytic residues (Glu(49), Asn(180), and His(272)) to Ala residues abolished the catalytic activity of nSMase1. Jurkat cells were retrovirally transduced with either wildtype or inactive (with all three point mutations) Myc-tagged nSMase1. Cells overexpressing wildtype nSMase1 showed dramatically elevated in vitro nSMase activity. However, nSMase1 gene transduction (wildtype or mutant) did not alter steady-state levels of SM, Cer, or glucosylceramide. Moreover, the Cer response and apoptosis sensitivity to ligation of the CD95/Fas receptor in cells overexpressing wildtype or mutant nSMase1 were identical to vector-transduced cells. We conclude that not nSMase1 but a different, yet to be identified, nSMase accounts for the generation of Cer during the execution phase of death receptor-induced apoptosis.  相似文献   

5.
Involvement of the sphingomyelin cascade in Interleukin 1 beta (IL-1) signal transduction pathway in membrane fraction P2 of the murine brain cortex, was found. A key role of the membrane enzyme neutral sphingomyelinase (nSMase) in triggering the sphingomyelin pathway for IL-1 beta, was confirmed. The IL-1 beta was shown to activate in a dose-dependent manner nSMase in the P2 fraction of the brain cortex. Employment of both brain cortex membranes from the mice deficient in the type I IL-1 receptor and of IL-1 receptor antagonist made it possible to obtain evidence on the necessity of the IL-1 beta binding to the type I IL-1 receptor for the nSMase activation. It appears that the IL-1 beta effects on the CNS are realized via IL-1 receptor type I and activation of the nSMase as an initiating enzyme of the sphingomyelin cascade.  相似文献   

6.
Using cross-species sequence homology, we cloned a cDNA for rat neutral sphingomyelinase (nSMase) composed of 422 amino acids that shares 87.6 and 79.0% identity with the mouse and human forms respectively. The rat nSMase expressed in Escherichia coli catalyzed sphingomyelin hydrolysis at neutral pH in a Mg(2+)-dependent manner, and required Triton X-100, dithiothreitol, and KCl for its full activity. The cloned rat enzyme shares conserved sequences with nSMases from both eukaryotes and prokaryotes. Introduction of single mutations into either of the histidine residues at positions 136 and 272, putative active sites, entirely abolished the activity, supporting a common mechanism for the nSMase family independent of the species. However, mutation in histidine 151, conserved only in eukaryotes, also abolished the activity, suggesting eukaryote-specific control of nSMase linked to this histidine 151. This enzyme also catalyzed the hydrolysis of lyso-platelet activating factor to yield 1-alkylglycerol at a rate that is slightly lower than that with sphingomyelin.  相似文献   

7.
Neutral sphingomyelinase (N-SMase) is one of the key enzymes involved in the generation of ceramide; however, the gene(s) encoding for the mammalian N-SMase is still not well defined. Previous studies on the cloned nSMase1 had shown that the protein acts primarily as lyso-platelet-activating factor-phospholipase C. Recently the cloning of another putative N-SMase, nSMase2, was reported. In this study, biochemical characterization of the mouse nSMase2 was carried out using the overexpressed protein in yeast cells in which the inositol phosphosphingolipid phospholipase C (Isc1p) was deleted. N-SMase activity was dependent on Mg(2+) and was activated by phosphatidylserine and inhibited by GW4869. The ability of nSMase2 to recognize endogenous sphingomyelin (SM) as substrate was investigated by overexpressing nSMase2 in MCF7 cells. Mass measurements showed a 40% decrease in the SM levels in the overexpressor cells, and labeling studies demonstrated that nSMase2 accelerated SM catabolism. Accordingly, ceramide measurement showed a 60 +/- 15% increase in nSMase2-overexpressing cells compared with the vector-transfected MCF7. The role of nSMase2 in cell growth was next investigated. Stable overexpression of nSMase2 resulted in a 30-40% decrease in the rate of growth at the late exponential phase. Moreover, tumor necrosis factor induced approximately 50% activation of nSMase2 in MCF7 cells overexpressing the enzyme, demonstrating that nSMase2 is a tumor necrosis factor-responsive enzyme. In conclusion, these results 1) show that nSMase2 is a structural gene for nSMase, 2) suggest that nSMase2 acts as a bona fide N-SMase in cells, and 3) implicate nSMase2 in the regulation of cell growth and cell signaling.  相似文献   

8.
A deletion mutation called fro (fragilitas ossium) in the murine Smpd3 (sphingomyelin phosphodiesterase 3) gene leads to a severe skeletal dysplasia. Smpd3 encodes a neutral sphingomyelinase (nSMase2), which cleaves sphingomyelin to generate bioactive lipid metabolites. We examined endochondral ossification in embryonic day 15.5 fro/fro mouse embryos and observed impaired apoptosis of hypertrophic chondrocytes and severely undermineralized cortical bones in the developing skeleton. In a recent study, it was suggested that nSMase2 activity in the brain regulates skeletal development through endocrine factors. However, we detected Smpd3 expression in both embryonic and postnatal skeletal tissues in wild-type mice. To investigate whether nSMase2 plays a cell-autonomous role in these tissues, we examined the in vitro mineralization properties of fro/fro osteoblast cultures. fro/fro cultures mineralized less than the control osteoblast cultures. We next generated fro/fro;Col1a1-Smpd3 mice, in which osteoblast-specific expression of Smpd3 corrected the bone abnormalities observed in fro/fro embryos without affecting the cartilage phenotype. Our data suggest tissue-specific roles for nSMase2 in skeletal tissues.  相似文献   

9.
The cytokine interleukin 1beta (IL-1beta) plays an important role in host defence reactions and neuro-immune interactions but it is still not clear which of the two interleukin 1 receptor subtypes is coupled to activation of neutral sphingomyelinase (nSMase) by IL-1beta. To investigate involvement of neutral sphingomyelinase (nSMase) in central IL-1beta effects we used P(2)fractions of brain cerebral cortex from wild-type mice and mice deficient in the type 1 IL-1 receptor. IL-1beta (human, recombinant) was shown to activate, in a dose-dependent manner, nSMase in the P(2)brain fraction of the wild-type mice while in the knock-out mice the stimulatory effect of IL-1beta on nSMase was absent. In the presence of an IL-1 receptor antagonist (IL-1ra), IL-1beta did not activate nSMase either in the cortex of wild-type or knock-out mice. These data suggest that nSMase, a key enzyme of the sphingomyelin signal transduction pathway, might be involved in IL-1beta signalling in the brain and that activation of the enzyme requires the IL-1 receptor type 1.  相似文献   

10.
Recently, we reported that neutral sphingomyelinase 2 (nSMase2) functions as a bona fide neutral sphingomyelinase and that overexpression of nSMase2 in MCF7 breast cancer cells caused a decrease in cell growth (Marchesini, N., Luberto, C., and Hannun, Y. A. (2003) J. Biol. Chem. 278, 13775-13783). In this study, the role of endogenous nSMase2 in regulating growth arrest was investigated. The results show that endogenous nSMase2 mRNA was up-regulated approximately 5-fold when MCF7 cells became growth-arrested at confluence, and total neutral SMase activity was increased by 119 +/- 41% with respect to control. Cell cycle analysis showed that up-regulation of endogenous nSMase2 correlated with G(0)/G(1) cell cycle arrest and an increase in total ceramide levels (2.4-fold). Analysis of ceramide species showed that confluence caused selective increases in very long chain ceramide C(24:1) (370 +/- 54%) and C(24:0) (266 +/- 81%) during arrest. The role of endogenous nSMase2 in growth regulation and ceramide metabolism was investigated using short interfering RNA (siRNA)-mediated loss-of-function analysis. Down-regulation of nSMase2 with specific siRNA increased the cell population of cells in S phase of the cell cycle by 59 +/- 14% and selectively reverted the effects of growth arrest on the increase in levels of very long chain ceramides. Mechanistically, confluence arrest also induced hypophosphorylation of the retinoblastoma protein (6-fold) and induction of p21(WAF1) (3-fold). Down-regulation of nSMase2 with siRNA largely prevented the dephosphorylation of the retinoblastoma protein and the induction of p21(WAF1), providing a link between the action of nSMase2 and key regulators of cell cycle progression. Moreover, studies on nSMase2 localization in MCF7 cells showed that nSMase2 distributed throughout the cells in subconfluent, proliferating cultures. In contrast, nSMase2 became nearly exclusively located at the plasma membrane in confluent, contact-inhibited cells. Hence, we demonstrate for the first time that nSMase2 functions as a growth suppressor in MCF7 cells, linking confluence to the G(0)/G(1) cell cycle check point.  相似文献   

11.
There is strong evidence indicating a role for ceramide as a second messenger in processes such as apoptosis, cell growth and differentiation, and cellular responses to stress. Ceramide formation from the hydrolysis of sphingomyelin is considered to be a major pathway of stress-induced ceramide production with magnesium-dependent neutral sphingomyelinase (N-SMase) identified as a prime candidate in this pathway. The recent cloning of a mammalian N-SMase-nSMase2- and generation of nSMase2 knockout/mutant mice have now provided vital tools with which to further study the regulation and roles of this enzyme in both a physiological and pathological context. In the present review, we summarize current knowledge on N-SMase relating this to what is known about nSMase2. We also discuss the future areas of nSMase2 research important for molecular understanding of this enzyme and its physiological roles.  相似文献   

12.
Although accumulating evidence demonstrates that white matter degeneration contributes to pathology in Alzheimer's disease (AD), the underlying mechanisms are unknown. In order to study the roles of the amyloid-beta peptide in inducing oxidative stress damage in white matter of AD, we investigated the effects of amyloid-beta peptide 25-35 (Abeta) on proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha)-induced inducible nitric oxide synthase (iNOS) in cultured oligodendrocytes (OLGs). Although Abeta 25-35 by itself had little effect on iNOS mRNA, protein, and nitrite production, it enhanced TNF-alpha-induced iNOS expression and nitrite generation in OLGs. Abeta, TNF-alpha, or the combination of both, increased neutral sphingomyelinase (nSMase) activity, but not acidic sphingomyelinase (aSMase) activity, leading to ceramide accumulation. Cell permeable C2-ceramide enhanced TNF-alpha-induced iNOS expression and nitrite generation. Moreover, the specific nSMase inhibitor, 3-O-methyl-sphingomyelin (3-OMS), inhibited iNOS expression and nitrite production induced by TNF-alpha or by the combination of TNF-alpha and Abeta. Overexpression of a truncated mutant of nSMase with a dominant negative function inhibited iNOS mRNA production. 3-OMS also inhibited nuclear factor kappaB (NF-kappaB) binding activity induced by TNF-alpha or by the combination of TNF-alpha and Abeta. These results suggest that neutral sphingomyelinase/ceramide pathway is required but may not be sufficient for iNOS expression induced by TNF-alpha and the combination of TNF-alpha and Abeta.  相似文献   

13.
There is strong evidence indicating a role for ceramide as a second messenger in processes such as apoptosis, cell growth and differentiation, and cellular responses to stress. Ceramide formation from the hydrolysis of sphingomyelin is considered to be a major pathway of stress-induced ceramide production with magnesium-dependent neutral sphingomyelinase (N-SMase) identified as a prime candidate in this pathway. The recent cloning of a mammalian N-SMase-nSMase2- and generation of nSMase2 knockout/mutant mice have now provided vital tools with which to further study the regulation and roles of this enzyme in both a physiological and pathological context. In the present review, we summarize current knowledge on N-SMase relating this to what is known about nSMase2. We also discuss the future areas of nSMase2 research important for molecular understanding of this enzyme and its physiological roles.  相似文献   

14.
A novel neutral sphingomyelinase (nSMase) was characterized in Entamoeba histolytica trophozoites. SMase, a sphingomyelin-specific form of phospholipase C, catalyzes the hydrolysis of sphingomyelin to ceramide and phosphorylcholine. Three amebic putative nSMase genes were found to be actively transcribed. Mg2+-independent nSMase activity in the soluble fraction of the trophozoites was stimulated by Mn2+ and partially inhibited by Zn2+. nSMase activity of the recombinant protein EhnSM1, increased 4.5-fold in the presence of 0.5 mM Mn2+, and abolished by 5 mM Zn2+. A dose-dependent inhibition of rEhnSM1 was observed with scyphostatin, a specific inhibitor of nSMases. The EhnSM1 and EhnSM3 were detected in the soluble fraction of the amebic lysate as 35-37 kDa proteins by western blot analysis. Immunofluorescence assay showed that the overexpressed HA-tagged EhnSM1 and EhnSM3 were localized to the cytosol. The biological role of these novel E. histolytica nSMases described in this work remains to be determined.  相似文献   

15.
Ceramide is a bioactive lipid that plays an important role in stress responses leading to apoptosis, cell growth arrest and differentiation. Ceramide production is due in part to sphingomyelin hydrolysis by sphingomyelinases. In brain, neutral sphingomyelinase 2 (nSMase2) is expressed in neurons and increases in its activity and expression have been associated with pro-inflammatory conditions observed in Alzheimer’s disease, multiple sclerosis and human immunodeficiency virus (HIV-1) patients. Increased nSMase2 activity translates into higher ceramide levels and neuronal cell death, which can be prevented by chemical or genetic inhibition of nSMase2 activity or expression. However, to date, there are no soluble, specific and potent small molecule inhibitor tool compounds for in vivo studies or as a starting point for medicinal chemistry optimization. Moreover, the majority of the known inhibitors were identified using bacterial, bovine or rat nSMase2. In an attempt to identify new inhibitor scaffolds, two activity assays were optimized as screening platform using the recombinant human enzyme. First, active hits were identified using a fluorescence-based high throughput compatible assay. Then, hits were confirmed using a 14C sphingomyelin-based direct activity assay. Pharmacologically active compounds and approved drugs were screened using this strategy which led to the identification of cambinol as a novel uncompetitive nSMase2 inhibitor (Ki = 7 μM). The inhibitory activity of cambinol for nSMase2 was approximately 10-fold more potent than for its previously known target, silence information regulator 1 and 2 (SIRT1/2). Cambinol decreased tumor necrosis factor-α or interleukin-1 β-induced increases of ceramide and cell death in primary neurons. A preliminary study of cambinol structure and activity allowed the identification of the main structural features required for nSMase2 inhibition. Cambinol and its analogs may be useful as nSMase2 inhibitor tool compounds to prevent ceramide-dependent neurodegeneration.  相似文献   

16.
Sphingomyelinase (SMase) from Bacillus cereus (Bc-SMase) hydrolyzes sphingomyelin to phosphocholine and ceramide in a divalent metal ion-dependent manner. Bc-SMase is a homologue of mammalian neutral SMase (nSMase) and mimics the actions of the endogenous mammalian nSMase in causing differentiation, development, aging, and apoptosis. Thus Bc-SMase may be a good model for the poorly characterized mammalian nSMase. The metal ion activation of sphingomyelinase activity of Bc-SMase was in the order Co2+ > or = Mn2+ > or = Mg2+ > Ca2+ > or = Sr2+. The first crystal structures of Bc-SMase bound to Co2+, Mg2+, or Ca2+ were determined. The water-bridged double divalent metal ions at the center of the cleft in both the Co2+- and Mg2+-bound forms were concluded to be the catalytic architecture required for sphingomyelinase activity. In contrast, the architecture of Ca2+ binding at the site showed only one binding site. A further single metal-binding site exists at one side edge of the cleft. Based on the highly conserved nature of the residues of the binding sites, the crystal structure of Bc-SMase with bound Mg2+ or Co2+ may provide a common structural framework applicable to phosphohydrolases belonging to the DNase I-like folding superfamily. In addition, the structural features and site-directed mutagenesis suggest that the specific beta-hairpin with the aromatic amino acid residues participates in binding to the membrane-bound sphingomyelin substrate.  相似文献   

17.
Ceramide serves as a second messenger produced from sphingomyelin by the activation of sphingomyelinase (SMase). Here, we suggest that neutral SMase 2 (nSMase2) may regulate dopamine (DA) uptake. nSMase2 siRNA-transfected PC12 cells showed lower levels of nSMase activity and ceramide than scramble siRNA-transfected and control cells. Interestingly, transfection of nSMase2 siRNA or pretreatment with the nSMase2-specific inhibitor GW4869 resulted in decreased DA uptake. Reciprocally, exposure of PC12 cells to cell-permeable C6-ceramide induced a concentration-dependent increase in DA uptake. Removal of extracellular calcium by EGTA increased DA uptake in scramble-transfected and control cells, but not in nSMase2 siRNA-transfected or GW4869-pretreated cells. Moreover, siRNA-transfected cells showed higher levels of intracellular calcium than scramble cells, while C6-ceramide treatment resulted in decreased intracellular calcium compared to vehicle treatment alone. Taken together, these data suggest that nSMase2 may increase DA uptake through inducing ceramide production and thereby decreasing intracellular calcium levels.  相似文献   

18.
Amyloid-beta peptide (Abeta) accumulation in senile plaques, a pathological hallmark of Alzheimer's disease (AD), has been implicated in neuronal degeneration. We have recently demonstrated that Abeta induced oligodendrocyte (OLG) apoptosis, suggesting a role in white matter pathology in AD. Here, we explore the molecular mechanisms involved in Abeta-induced OLG death, examining the potential role of ceramide, a known apoptogenic mediator. Both Abeta and ceramide induced OLG death. In addition, Abeta activated neutral sphingomyelinase (nSMase), but not acidic sphingomyelinase, resulting in increased ceramide generation. Blocking ceramide degradation with N-oleoyl-ethanolamine exacerbated Abeta cytotoxicity; and addition of bacterial sphingomyelinase (mimicking cellular nSMase activity) induced OLG death. Furthermore, nSMase inhibition by 3-O-methyl-sphingomyelin or by gene knockdown using antisense oligonucleotides attenuated Abeta-induced OLG death. Glutathione (GSH) precursors inhibited Abeta activation of nSMase and prevented OLG death, whereas GSH depletors increased nSMase activity and Abeta-induced death. These results suggest that Abeta induces OLG death by activating the nSMase-ceramide cascade via an oxidative mechanism.  相似文献   

19.
Dopamine (DA) reuptake is the primary mechanism to terminate dopaminergic transmission in the synaptic cleft. The dopamine transporter (DAT) has an important role in the regulation of DA reuptake. This study provides anatomical and physiological evidence that DAT recycling is regulated by ceramide kinase via the sphingomyelin pathway. First, the results show that DAT and neutral sphingomyelinase 2 (nSMase2) were successfully co-precipitated from striatal samples and were colocalized in the mouse striatum or PC12 cells. We also identified a protein-protein interaction between nSMase2 and DAT through in situ proximity ligation assay experiments in the mouse striatum. Second, dopamine (DA) stimulated the formation of ceramide and increased nSMase activity in PC12 cells, while treatment with a cell-permeable ceramide-1-phosphate (C1P) increased DA uptake. Third, we used inhibitors and siRNA to inhibit nSMase2 and ceramide kinase and observed the effects on DAT recycling in PC12 cells. Treatment with ceramide kinase inhibitor K1, or nSMase inhibitor GW4869, decreased DA uptake in PC12 cells, although the application of FB1, a ceramide synthase inhibitor, did not affect DA uptake. Transfection of nSMase2 and CERK siRNA decreased DAT surface level in PC12 cells. These results suggested that SM-derived C1P affects cell surface levels of DAT.  相似文献   

20.
Liver regeneration after partial hepatectomy (PH) is achieved through proliferation of hepatocytes and non-parenchymal cells. The nuclear peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in regulation of lipid metabolism and proliferation of hepatic cells. The sphingomyelin signal transduction pathway is involved in the regulation of the cell cycle in eukaryotic organisms. Sphingosine-1-phosphate (S1P) and ceramide (CER)-- the intermediates of the pathway--are known to stimulate and to inhibit cellular proliferation. The aim of the present study was to investigate the effect of PPARalpha activation by bezafibrate on the sphingomyelin signaling pathway during the first 24h of liver regeneration after PH in the rat. The content of sphingomyelin, ceramide, sphingosine, sphinganine, sphingosine-1-phosphate and the activity of sphingomyelinases and ceramidases were determined at various time points after PH. It has been found that the activity of neutral Mg(2+)-dependent sphingomyelinase (nSMase) increased, whereas the activity of acidic sphingomyelinase (aSMase) decreased in the regenerating liver. Activation of PPARalpha by bezafibrate lower the activity of nSMase and increased the activity of aSMase in the regenerating rat liver. The content of ceramide was higher in bezafibrate-treated rats, whereas the content of sphingosine-1-phosphate was markedly lower as compared to the untreated rats. Therefore, it is concluded that activation of PPARalpha by bezafibrate decreases the growth-stimulatory activity of the sphingomyelin pathway in regenerating rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号