首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DOC-2/DAB2 (differentially expressed in ovarian carcinoma-2/disabled 2) appears to be a potential tumor suppressor gene with a growth inhibitory effect on several cancer types. Previously, we have shown that DOC-2/DAB2 suppresses protein kinase C-induced AP-1 activation, which is modulated by serine 24 phosphorylation in the N terminus of DOC-2/DAB2. However, the functional impact of the C terminus of DOC-2/DAB2, containing three proline-rich domains, has not been explored. In this study, we examined this functional role in modulating signaling mediated by peptide growth factor receptor tyrosine kinase, particularly because it involves the interaction with Grb2. Using sequence-specific peptides, we found that the second proline-rich domain of DOC-2/DAB2 is the key binding site to Grb2 in the presence of growth factors. Such elevated binding interrupts the binding between SOS and Grb2, which consequently suppresses downstream ERK phosphorylation. Reduced ERK phosphorylation was restored when the binding between DOC-2/DAB2 and Grb2 was interrupted by a specific peptide or by increasing the expression of Grb2. Furthermore, the C terminus of the DOC-2/DAB2 construct can inhibit the AP-1 activity elicited by growth factors. We conclude that DOC-2/DAB2, a potent negative regulator, can suppress ERK activation by interrupting the binding between Grb2 and SOS that is elicited by peptide growth factors. This study further illustrates that DOC-2/DAB2 has multiple effects on the RAS-mediated signal cascades active in cancer cells.  相似文献   

2.
DOC-2/DAB2 is a potent tumor suppressor in many cancer types including prostate cancer. In prostate cancer, expression of DOC-2/DAB2 can inhibit its growth. Our recent studies demonstrate that DOC-2/DAB2 can suppress both protein kinase C and peptide growth factor-elicited signal pathways via the Ras-mitogen-activated protein kinase pathway. In this study, we further showed that the proline-rich domain of DOC-2/DAB2 could also interact with proteins containing the Src homology 3 domain, such as Src and Fgr. The binding of c-Src to DOC-2/DAB2 was enhanced in cells treated with growth factor, and this interaction resulted in c-Src inactivation. The c-Src inactivation was evidenced by the decreased tyrosine 416 phosphorylation of c-Src and reduced downstream effector activation. It appears that DOC-2/DAB2 can bind to Src homology 3 domain of c-Src and maintain it in an inactive conformation. Thus, this study provides a new mechanism for modulating c-Src in prostatic epithelium and cancer.  相似文献   

3.
4.
The effect of ciprofibrate on early events of signal transduction was previously studied in Fao cells. Protein kinase C (PKC) assays performed on permeabilized cells showed a more than two-fold increase in PKC activity in cells treated for 24 h with 500 microM ciprofibrate. To show the subsequent effect of this increase on protein phosphorylation, the in vitro phosphorylation on particulate fractions obtained from Fao cells was studied. Among several modifications, the phosphorylation of protein(s) with an apparent molecular mass of 85 kDa was investigated. This modification appeared in the first 24 h of treatment with 500 microM ciprofibrate. It was shown to occur on Ser/Thr residue(s). It was calcium but not calmodulin-dependent. The phosphorylation level of this/these protein(s) was reduced with kinase inhibitors and especially with 300 nM GF-109203X, a specific inhibitor of PKC. All these results suggest that the phosphorylation of the 85 kDa protein(s) is due to a PKC or to another Ser/Thr kinase activated via a PKC pathway. A possible biochemical candidate for 85 kDa protein seems to be the beta isoform of phosphatidylinositol 3-kinase regulatory subunit.  相似文献   

5.
6.
Dexmedetomidine (Dexmd), a potent and highly specific α2 adrenoreceptor agonist, is an efficient therapeutic agent for sedation. Dexmd has been recently reported to have a neuroprotective effect. Heat shock protein (HSP) 27, a low-molecular weight HSP has been shown to be expressed following cerebral ischemia in astrocytes but not in neurons. HSP27 expression is involved in ischemic tolerance of the brain. This study investigated the effect of Dexmd on HSP27 in rat C6 glioma cells. 12- O -tetradecanoylphorbol-13-actate (TPA), a direct activator of protein kinase C (PKC), stimulated the phosphorylation of HSP27 at Ser82, but not Ser15 in a time-dependent manner. Prostaglandin (PG) E1 or PGE2 which activates the adenylyl cyclase-cAMP system as well as forskolin and dibutyryl-cAMP, suppressed the TPA-induced phosphorylation of HSP27. Dexmd reversed the suppression of HSP27 phosphorylation by the adenylyl cyclase-cAMP system. Therefore, these results strongly suggest that Dexmd reverses the suppression of HSP27 phosphorylation by the adenylyl cyclase-cAMP system activation through the inhibition of its system in C6 cells. α2 Adrenoreceptor agonists may therefore show a neuroprotective effect through the modification of HSP27 phosphorylation induced by PKC activation.  相似文献   

7.
The mechanism of 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced tumor promotion is still not well understood even though it is thought to be related to the protein kinase C/mitogen-activated protein kinase/AP-1 pathway. Recently, TPA was also found to induce epidermal growth factor receptor (EGFR) activity. Here, we investigated whether the EGFR is a necessary component for TPA-induced signal transduction associated with tumor promotion. We demonstrated that potent inhibitors of the EGFR, PD153035 and AG1478, blocked TPA-induced phosphorylation of extracellular signal-regulated kinases (ERKs), AP-1 activity, and cell transformation. Egfr gene deficiency blocked TPA-induced ERK activity and AP-1 binding activity. The blocking of the ectodomain of the EGFR by a monoclonal antibody depressed TPA-induced ERK activity and AP-1 DNA binding activity. The use of a neutralizing antibody for heparin-binding EGF, one of the ligands of EGFR, blocked TPA-induced phosphorylation of ERKs. BB-94, a potent inhibitor of matrix metalloproteinases, which are activators of ectodomain shedding of EGFR ligands, also blocked TPA-induced ERK activity, AP-1 DNA binding, and cell transformation but had no effect on EGF-induced signal transduction. Anti-EGFR, anti-heparin-binding EGF, and BB-94 each blocked TPA-induced EGFR phosphorylation, but only anti-EGFR could block EGF-induced EGFR phosphorylation. Based on these results, we conclude that the EGFR is required for mediating TPA-induced signal transduction. EGFR transactivation induced by TPA is a mechanism by which the EGFR mediates TPA-induced tumor promotion-related signal transduction.  相似文献   

8.
Treatment of cultured human hepatoma HepG2 cells with the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), results in an increase in tyrosine phosphorylation of several proteins, including the focal adhesion kinase (FAK) and paxillin using anti-phosphotyrosine Western blotting and immunoprecipitation. However, when cells are in suspension or in the presence of cytochalasin D which disrupts the intracellular network of actin microfilaments, TPA loses its ability to stimulate tyrosine phosphorylation of FAK and paxillin but it still activates mitogen-activated protein kinase (MAPK) and induces PKC translocation from cytosol to the membrane in HepG2 cells. On the other hand, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase, blocks TPA-induced MAPK activation but has no effect on TPA-induced tyrosine phosphorylation. Our findings suggest that TPA-induced tyrosine phosphorylation of FAK and paxillin in human hepatoma cells is PKC dependent and requires the integrity of the cell cytoskeleton but is uncoupled to the signal transduction pathway of PKC leading to the translocation of PKC and MAPK activation.  相似文献   

9.
The phorbol ester TPA induces down-regulation of protein kinase C (PKC) in Swiss-3T3 fibroblasts, as determined by the use of an alpha, beta, gamma PKC-specific antiserum. PKC is almost completely degraded 10 hours after TPA treatment of the cells and recovers within 72 hours. The staurosporine derivative K252a, known to inhibit PKC activity, causes strong suppression of TPA-induced (PKC-catalyzed) protein phosphorylation in Swiss-3T3 cells. Inhibition of protein phosphorylation by K252a is still effective when the process of down-regulation is completed. However, K252a does not influence TPA-induced down-regulation of PKC at all. Thus, down-regulation of PKC is not dependent on the enzyme's phosphorylating activity and, therefore, most likely not on its autophosphorylation as has been suggested by Ohno et al. [J. Biol. Chem. 265, 6296-6300 (1990)].  相似文献   

10.
11.
Activation of protein kinase C (PKC) can result from stimulation of the receptor-G protein-phospholipase C (PLCbeta) pathway. In turn, phosphorylation of PLCbeta by PKC may play a role in the regulation of receptor-mediated phosphatidylinositide (PI) turnover and intracellular Ca(2+) release. Activation of endogenous PKC by phorbol 12-myristate 13-acetate inhibited both Galpha(q)-coupled (oxytocin and M1 muscarinic) and Galpha(i)-coupled (formyl-Met-Leu-Phe) receptor-stimulated PI turnover by 50-100% in PHM1, HeLa, COSM6, and RBL-2H3 cells expressing PLCbeta(3). Activation of conventional PKCs with thymeleatoxin similarly inhibited oxytocin or formyl-Met-Leu-Phe receptor-stimulated PI turnover. The PKC inhibitory effect was also observed when PLCbeta(3) was stimulated directly by Galpha(q) or Gbetagamma in overexpression assays. PKC phosphorylated PLCbeta(3) at the same predominant site in vivo and in vitro. Peptide sequencing of in vitro phosphorylated recombinant PLCbeta(3) and site-directed mutagenesis identified Ser(1105) as the predominant phosphorylation site. Ser(1105) is also phosphorylated by protein kinase A (PKA; Yue, C., Dodge, K. L., Weber, G., and Sanborn, B. M. (1998) J. Biol. Chem. 273, 18023-18027). Similar to PKA, the inhibition by PKC of Galpha(q)-stimulated PLCbeta(3) activity was completely abolished by mutation of Ser(1105) to Ala. In contrast, mutation of Ser(1105) or Ser(26), another putative phosphorylation target, to Ala had no effect on inhibition of Gbetagamma-stimulated PLCbeta(3) activity by PKC or PKA. These data indicate that PKC and PKA act similarly in that they inhibit Galpha(q)-stimulated PLCbeta(3) as a result of phosphorylation of Ser(1105). Moreover, PKC and PKA both inhibit Gbetagamma-stimulated activity by mechanisms that do not involve Ser(1105).  相似文献   

12.
13.
BACKGROUND AND AIMS: The expression of osteopontin (OPN), a protein postulated to play a role in tumorigenesis, is induced by the tumor promoter, 12-O-tetradecanoylphorbol-13-acetate (TPA) in vivo and in the in vitro initiation-promotion skin carcinogenesis model (JB6 cells). Although TPA-induced OPN expression in JB6 cells has been suggested to involve protein kinase C (PKC), the PKC isoforms and the downstream pathway mediating OPN expression have not been extensively studied. METHODS: Using the JB6 cell model, we determined the involvement of PKC isoforms, mitogen-activated protein kinase kinase (MAPK kinase/MEK) and MAPK in TPA-induced OPN expression using inhibitors specific to PKC isoforms and MEK and performing Northern blot analyses. Western blot analyses of cells treated with specific inhibitors were also performed to determine whether PKC isoforms or MEK were involved in activation of MAPK. KEY RESULTS: TPA increased the steady-state level of OPN mRNA as early as 2-4h and this expression persisted for at least 4 days. TPA induction of OPN expression in JB6 cells is mediated through PKC epsilon and PKC delta, which also mediated the phosphorylation of MAPK. Additionally, inhibition of MEK activity, which activates MAPK, attenuated TPA-induced OPN expression. These findings suggest that activation of MAPK is important in mediating OPN expression. CONCLUSION: TPA-induced steady-state OPN mRNA expression in mouse JB6 cells involves the activation of MAPK mediated through PKC epsilon and/or PKC delta.  相似文献   

14.
It has been shown that oxidized low-density lipoprotein (ox-LDL), through the activation of glomerular cells, stimulates pathobiological processes involved in monocyte infiltration into the mesangium. The underlying molecular mechanisms are not fully understood. The present study showed that ox-LDL strongly induced AP-1 binding activity in rat mesangial cells (RMCs) in a dose- and time-dependent manner, reaching the maximal activation at 250 microg ml(-1) within 24 h. The results from mobility shift assays and Western blotting analysis revealed that this AP-1 binding increase involved c-Jun, but not c-Fos. Moreover, this ox-LDL-increased AP-1 binding was inhibited by several protein kinase (PK) inhibitors: the protein kinase C (PKC) inhibitor Bisindolylmaleimide I, the cAMP-dependent PK (PKA) inhibitor H89, and the tyrosine PK (PTK) inhibitor genistein. Protein phosphorylation represents mitogen-activated protein kinase (MAPK) activity. Therefore, we examined the role of ox-LDL on the activation of mesangial cell JNK/SAPK, the only recognized protein kinase that catalyses phosphorylation of c-Jun. The incubation of mesangial cells with ox-LDL induced phosphorylation of JNK1/SAPK dose dependently, with the maximal response at 150 microg ml(-1). This study demonstrates that multiple kinase activities are involved in the mechanism of ox-LDL-induced AP-1 activation in mesangial cells, and ox-LDL stimulates AP-1 through JNK-c-Jun other than MEK-c-Fos signalling pathway.  相似文献   

15.
The importance of activation loop phosphorylation in the regulation of protein kinase D (PKD/protein kinase C (PKC) mu) activity has become controversial. In order to clarify the mechanism(s) of PKD activation, we developed a novel phosphospecific antibody recognizing phosphorylated Ser(748) in PKD (pS748). Western blot analysis with the pS748 antibody, carried out with a variety of PKD forms and in a variety of cell types including full-length PKD transfected in COS-7 and HEK 293 cells, a green fluorescent protein-PKD fusion protein transfected in either Swiss 3T3 fibroblasts or Madin-Darby canine kidney epithelial cells, and endogenous PKD expressed in A20 lymphocytes and Rat-1 fibroblasts, indicated that Ser(748) phosphorylation was absent from unstimulated cells. In contrast, dramatic increases in Ser(748) phosphorylation were induced by phorbol esters, bombesin, or cross-linking of B lymphocyte antigen receptors or by cotransfection with active PKCepsilon or PKCeta. Western analysis using a second phosphospecific antibody, which primarily recognizes PKD phosphorylated at Ser(744), revealed that Ser(744) phosphorylation accompanies Ser(748) phosphorylation during PKD activation in vivo. Ser(744)/Ser(748) phosphorylation requires PKC but not PKD activity, indicative of transphosphorylation. Our results provide new experimental evidence indicating that activation loop phosphorylation at Ser(744) and Ser(748) occurs during PKD activation in vivo and support the notion of a PKC-PKD phosphorylation cascade.  相似文献   

16.
17.
A group of potential differentiation-associated genes had been identified by microarray analysis as c-Jun/AP-1 target genes essential for epithelial differentiation program. Our previous study showed that c-Jun/AP-1 could bind and activate these gene promoters in vivo using chromatin immunoprecipitation. To further understand how the mitogen-activated protein kinase signaling pathways regulate AP-1 activity and expression of c-Jun target genes, our strategy was based on the use of 12-o-tetradecanoylophorbol-13-acetate (TPA) and pharmacological reagents to induce or block c-Jun expression. The mRNA and protein expression of these genes increased in response to TPA-induced c-Jun/AP-1 expression. Inhibitors of JNK (SP600125) and PKC (GF109203X) mainly blocked expression and phosphorylation of c-Jun, while inhibition of MEK-ERK activity with PD98059 (an inhibitor of MEK) had little effect. Expression of involucrin and keratin 4 in response to TPA was attenuated by pretreatments with GF109203X and SP600125, but not PD98059, suggesting involvement of PKC and JNK in this response. Taken together, these results suggested that differentiation-associated genes were regulated by TPA-induced c-Jun/AP-1 mainly via a PKC/JNK pathway in esophageal cancer cell line KYSE450.  相似文献   

18.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is known to be controlled acutely (minutes) by phosphorylation and chronically (days) by protein synthesis. Using bovine adrenal chromaffin cells we found that nicotine, acting via nicotinic receptors, sustained the phosphorylation of TH at Ser40 for up to 48 h. Nicotine also induced sustained activation of TH, which for the first 24 h was completely independent of TH protein synthesis, and the phosphorylation of TH at Ser31. Imipramine did not inhibit the acute phosphorylation of TH at Ser40 or TH activation induced by nicotine, but did inhibit the sustained responses to nicotine seen at 24 h. The protein kinase(s) responsible for TH phosphorylation at Ser40 switched from being protein kinase C (PKC) independent in the acute phase to PKC dependent in the sustained phase. Sustained phosphorylation and activation of TH were also observed with histamine and angiotensin II. Sustained phosphorylation of TH at Ser40 provides a novel mechanism for increasing TH activity and this leads to increased catecholamine synthesis. Sustained phosphorylation of TH may be a selective target for drugs or pathology in neurons that contain TH and synthesize dopamine, noradrenaline or adrenaline.  相似文献   

19.
We examined whether protein kinase C activation plays a modulatory or an obligatory role in exocytosis of catecholamines from chromaffin cells by using PKC(19-31) (a protein kinase C pseudosubstrate inhibitory peptide), Ca/CaM kinase II(291-317) (a calmodulin-binding peptide), and staurosporine. In permeabilized cells, PKC (19-31) inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion as much as 90% but had no effect on Ca2(+)-dependent secretion in the absence of phorbol ester. The inhibition of the phorbol ester-induced enhancement of secretion by PKC (19-31) was correlated closely with the ability of the peptide to inhibit in situ phorbol ester-stimulated protein kinase C activity. PKC(19-31) also blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of numerous endogenous proteins in permeabilized cells but had no effect on Ca2(+)-stimulated phosphorylation of tyrosine hydroxylase. Ca/CaM kinase II(291-317), derived from the calmodulin binding region of Ca/calmodulin kinase II, had no effect on Ca2(+)-dependent secretion in the presence or absence of phorbol ester. The peptide completely blocked the Ca2(+)-dependent increase in tyrosine hydroxylase phosphorylation but had no effect on TPA-induced phosphorylation of endogenous proteins in permeabilized cells. To determine whether a long-lived protein kinase C substrate might be required for secretion, the lipophilic protein kinase inhibitor, staurosporine, was added to intact cells for 30 min before permeabilizing and measuring secretion. Staurosporine strongly inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion. It caused a small inhibition of Ca2(+)-dependent secretion in the absence of phorbol ester which could not be readily attributed to inhibition of protein kinase C. Staurosporine also inhibited the phorbol ester-mediated enhancement of elevated K(+)-induced secretion from intact cells while it enhanced 45Ca2+ uptake. Staurosporine inhibited to a small extent secretion stimulated by elevated K+ in the absence of TPA. The data indicate that activation of protein kinase C is modulatory but not obligatory in the exocytotoxic pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号