首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Two DNA hairpin motifs (5'-GCGAAGC-3' and 5'-ACGA AGT-3'), both stabilized by a 5'-GAA loop, have been used to design novel intramolecular double hairpin structures (5'-GCGAAGCACGAAGT-3' and 5'-ACGAAGTGCG AAGC-3') in which coaxial stacking of the two hairpin components generates a double-stranded stem region effectively with a single-strand break in the middle of the sequence at either the TG or CA step between unconnected 3' and 5' terminal bases. We have investigated by NMR the conformation and dynamics of the DNA at the strand break site. We show that mutual stacking significantly enhances the stability of each hairpin. Further, the anthracycline antibiotic nogalamycin binds cleanly to the 5'-TG (5'-CA) site formed by the mutually stacked hairpins despite the break in the sugar-phosphate backbone on one strand. The complex resembles the structure of nogalamycin-DNA complexes with the drug bound at 5'-TG sites in intact duplex sequences, with pi-stacking interactions probably the single dominant stabilizing interaction.  相似文献   

2.
The hairpin formed by d(ATCCTATTTATAGGAT) was studied by means of two-dimensional NMR spectroscopy and conformational analysis. Almost all 1H resonances of the stem region could be assigned, while the 1H and 31P spectra of the loop region were interpreted completely; this includes the stereospecific assignment of the H5' and H5" resonances. The derivation of the detailed loop structure was carried out in a stepwise fashion including some improved and new methods for structure determination from NMR data. In the first step, the mononucleotide structures were examined. The conformational space available to the mononucleotide was scanned systematically by varying the glycosidic torsion angle and pseudorotational parameters. Each generated conformer was tested against the experimental J coupling constants and NOE parameters. In the following stage, the structures of dinucleotides and longer fragments were derived. Inter-residue distances between protons were calculated by means of a procedure in which the simulated NOEs, obtained via a relaxation-matrix approach, were fitted to the experimental NOEs without the introduction of a molecular model. In addition, the backbone torsion angles beta, gamma and epsilon were deduced from homocoupling and heterocoupling constants. These data served as constraints in the next step, in which the loop sequence was subjected to a multi-conformer generation procedure. The resulting structures were tested against the mentioned constraints and disregarded if these constraints were violated. This yielded a family of structures for the loop region, confined to a relatively narrow conformational space. A representative conformation was subsequently docked on a B-type stem which fulfilled the structural constraints (derived from the NMR experiments for the stem region) to yield the hairpin structure. Results obtained from subsequent restrained-molecular-mechanics as well as free-molecular-mechanics calculations are in accordance with those obtained by means of the analysis described above. The structure of the hairpin loop is a compactly folded conformation and the first base of the central TTTA region forms a Hoogsteen T-A pair with the fourth base. This Hoogsteen base pair is stacked upon the sixth base pair of the B-type double-helical stem. The second base of the loop is folded into the minor groove, whereas the third base of the loop is partly stacked on the first and fourth bases. The phosphate backbone exhibits a sharp turn between the third and fourth nucleotides of the loop. The peculiar structure of this hairpin loop is discussed in relation to loop folding in DNA and RNA hairpins and in relation to a general model for loop folding.  相似文献   

3.
Binding of actinomycin D (ActD) to the seemingly single-stranded DNA (ssDNA) oligomer 5'-CCGTT3 GTGG-3' has been studied in solution using high-resolution nuclear magnetic resonance (NMR) techniques. A strong binding constant (8 x 10(6) M(-1)) and high quality NMR spectra have allowed us to determine the initial DNA structure using distance geometry as well as the final ActD-5'-CCGTT3 GTGG-3' complex structure using constrained molecular dynamics calculations. The DNA oligomer 5'-CCGTT3GTGG-3' in the complex forms a hairpin structure with tandem G.T mismatches at the stem region next to a loop of three stacked thymine bases pointing toward the major groove. Bipartite T2O-GH1 and T2O-G2NH2 hydrogen bonds were detected for the G.T mismatches that further stabilize this unusual DNA hairpin. The phenoxazone chromophore of ActD intercalates nicely between the tandem G.T mismatches in essentially one major orientation. Additional hydrophobic interactions between the ActD quinoid amino acid residues with the loop T5-T6-T7 backbone protons were also observed. The hydrophobic G-phenoxazone-G interaction in the ActD-5'-CCGTT3GTGG-3' complex is more robust than that of the classical ActD- 5'-CCGCT3GCGG-3' complex, consistent with the roughly 2-fold stronger binding of ActD to the 5'-CCGTT3GTGG-3' sequence than to its 5'-CCG CT3GCGG-3' counterpart. Stabilization by ActD of a hairpin containing non-canonical stem base pairs further strengthens the notion that ActD or other related compounds may serve as a sequence- specific ssDNA-binding agent that inhibits human immunodeficiency virus (HIV) and other retroviruses replicating through ssDNA intermediates.  相似文献   

4.
One- and two-dimensional NMR experiments have been undertaken to investigate the structure of DNA hairpins with a five nucleotide loop. Analysis of proton NMR spectra suggests that the four hairpin structures examined have some common structural features; B-type conformation in the stem region and the same stacking pattern, 5' (XXX-turn-XX) 3', in the loop region. The phosphorus NMR spectra suggest that the conformational changes in the loop region affect the backbone conformation of the stem duplex.  相似文献   

5.
Three-dimensional (3D) structure of a hairpin DNA d-CTAGAGGATCCTTTUGGATCCT (22mer; abbreviated as U4-hairpin), which has a uracil nucleotide unit at the fourth position from the 5' end of the tetra-loop has been solved by NMR spectroscopy. The(1)H resonances of this hairpin have been assigned almost completely. NMR restrained molecular dynamics and energy minimisation procedures have been used to describe the 3D structure of the U4 hairpin. This study establishes that the stem of the hairpin adopts a right handed B-DNA conformation while the T(12)and U(15)nucleotide stack upon 3' and 5' ends of the stem, respectively. Further, T(14)stacks upon both T(12)and U(15)while T(13)partially stacks upon T(14). Very weak stacking interaction is observed between T(13)and T(12). All the individual nucleotide bases adopt ' anti ' conformation with respect to their sugar moiety. The turning phosphate in the loop is located between T(13)and T(14). The stereochemistry of U(15)mimics the situation where uracil would stack in a B-DNA conformation. This could be the reason as to why the U4-hairpin is found to be the best substrate for its interaction with uracil DNA glycosylase (UDG) compared to the other substrates in which the uracil is at the first, second and third positions of the tetra-loop from its 5' end, as reported previously.  相似文献   

6.
The 20-nucleotide SL1 VBS RNA, 5'-GGAGACGC[GAUUC]GCGCUCC (bulged A underlined and loop bases in brackets), plays a crucial role in viral particle binding to the plus strand and packaging of the RNA. Its structure was determined by NMR spectroscopy. Structure calculations gave a precisely defined structure, with an average pairwise root mean square deviation (RMSD) of 1.28 A for the entire molecule, 0.57 A for the loop region (C8-G14), and 0.46 A for the bulge region (G4-G7, C15-C17). Base stacking continues for three nucleotides on the 5' side of the loop. The final structure contains a single hydrogen bond involving the guanine imino proton and the carbonyl O(2) of the cytosine between the nucleotides on the 5' and 3' ends of the loop, although they do not form a Watson-Crick base pair. All three pyrimidine bases in the loop point toward the major groove, which implies that Cap-Pol protein may recognize the major groove of the SL1 loop region. The bulged A5 residue is stacked in the stem, but nuclear Overhauser enhancements (NOEs) suggest that A5 spends part of the time in the bulged-out conformation. The rigid conformation of the upper stem and loop regions may allow the SL1 VBS RNA to interact with Cap-Pol protein without drastically changing its own conformation.  相似文献   

7.
J D Puglisi  J R Wyatt  I Tinoco 《Biochemistry》1990,29(17):4215-4226
The hairpin conformation adopted by the RNA sequence 5'GCGAUUUCUGACCGCC3' has been studied by one- and two-dimensional NMR spectroscopy. Exchangeable imino spectra in 60 mM Na+ indicate that the hairpin has a stem of six base pairs (indicated by boldface type) and a loop of three nucleotides. NOESY spectra of nonexchangeable protons confirm the formation of the stem region. The duplex has an A-conformation and contains an A.C apposition; a G.U base pair closes the loop region. The stem nucleotides have C3'-endo sugar conformations, as expected of an A-form duplex, whereas the three loop nucleotides adopt C2'-endo sugar puckers. Stacking within the loop, C8 upon the sugar of U7, stabilizes the structure. The pH dependence of both the exchangeable and nonexchangeable NMR spectra is consistent with the formation of an A+.C base pair, protonated at the N1 position of adenine. The stability of the hairpin was probed by using absorbance melting curves. The hairpin structure with the A+.C base pair is about +2 kcal/mol less stable in free energy at 37 degrees C than the hairpin formed with an A.U pair replacing the A+.C pair.  相似文献   

8.
The solution conformation of three related DNA hairpins, each with five bases in the loop, is investigated by proton and phosphorus 2D NMR methods. The sequences of the three oligomers are d(CGCGTTGTTCGCG), d(CGCGTTTGTCGCG), and d(CTGCTCTTGTTGAGCAG). One pair of hairpins shares the same stem sequence but differs in the loop, and the appearance of an unusual phosphate torsion in the stem is found to depend on the sequence in the loop of the hairpin. The second pair of hairpins shares the same loop region but differs in the stem sequence in that the base pair which closes the loop is a C-G or G-C pair. The pattern of NOEs reveals that the stacking arrangement in the loop region depends on the base pair that closes the stem. These results suggest that hairpin loop conformation and dynamics are sensitive to small changes in the loop and adjacent stem sequences. These findings are discussed in relation to sequence-dependent thermodynamic changes that have been observed in RNA hairpins.  相似文献   

9.
Structural feasibility and conformational requirements for the sequence 5'-d-GGTACIAGTACC-3' to adopt a hairpin loop with I6 and A7 in the loop are studied. It is shown that a hairpin loop containing only two nucleotides can readily be formed without any unusual torsional angles. Stacking is continued on the 5'-side of the loop, with the I6 stacked upon C5. The base A7, on the 3'-side of the loop, can either be partially stacked with I6 or stick outside without stacking. Loop closure can be achieved for both syn and anti conformations of the glycosidic torsions for G8 while maintaining the normal Watson-Crick base pairing with the opposite C5. All torsional angles in the stem fall within the standard B-family of DNA helical structures. The phosphodiesters of the loop have trans,trans conformations. Loop formation might require the torsion about the C4'-C5' bond of G8 to be trans as opposed to the gauche+ observed in B-DNA. These results are discussed in relation to melting temperature studies [Howard et al. (1991) Biochemistry (preceding paper in this issue)] that suggest the formation of very stable hairpin structures for this sequence.  相似文献   

10.
A preferential target of antisense oligonucleotides directed against human PGY/MDR1 mRNA is a hairpin containing a stem with a G*U wobble pair, capped by the purine-rich 5'r(GGGAUG)3' hexaloop. This hairpin is studied by multidimensional NMR and restrained molecular dynamics, with special emphasis on the conformation of south sugars and non-standard phosphate linkages evidenced in both the stem and the loop. The hairpin is found to be highly structured. The G*U wobble pair, a strong counterion binding site, displays structural particularities that are characteristic of this type of mismatch. The upper part of the stem undergoes distortions that optimize its interactions with the beginning of the loop. The loop adopts a new fold in which the single-stranded GGGA purine tract is structured in A-like conformation stacked in continuity of the stem and displays an extensive hydrogen bonding surface for recognition. The remarkable hairpin stability results from classical inter- and intra-strand interactions reinforced by numerous hydrogen bonds involving unusual backbone conformations and ribose 2'-hydroxyl groups. Overall, this work emphasizes numerous features that account for the well-ordered structure of the whole hairpin and highlights the loop properties that facilitate interaction with antisense oligonucleotides.  相似文献   

11.
D R Hare  B R Reid 《Biochemistry》1986,25(18):5341-5350
The three-dimensional structure of d(CGCGTTTTCGCG) in solution has been determined from proton NMR data by using distance geometry methods. The rate of dipolar cross-relaxation between protons close together in space is used to calculate distances between proton pairs within 5 A of each other; these distances are used as input to a distance geometry algorithm that embeds this distance matrix in three-dimensional space. The resulting refined structures that best agree with the input distances are all very similar to each other and show that the DNA sequence forms a hairpin in solution; the bases of the loop region are stacked, and the stem region forms a right-handed helix. The advantages and limitations of the technique, as well as the computer requirements of the algorithm, are discussed.  相似文献   

12.
Characterization of a parallel-stranded DNA hairpin   总被引:3,自引:0,他引:3  
Recently we have shown that synthetic DNA containing homooligomeric A-T base pairs can form a parallel-stranded intramolecular hairpin structure [van de Sande et al. (1988) Science (Washington, D.C.) 241, 551-557]. In the present study, we have employed NMR and optical spectroscopy to investigate the structure of the parallel-stranded (PS) DNA hairpin 3'-d(T)8C4(A)8-3' and the related antiparallel (APS) hairpin 5'-d(T)8C4(A)8-3'. The parallel orientation of the strands in the PS oligonucleotide is achieved by introducing a 5'-5' phosphodiester linkage in the hairpin loop. Ultraviolet spectroscopic and fluorescence data of drug binding are consistent with the formation of PS and APS structures, respectively, in these two hairpins. Vacuum circular dichroism measurements in combination with theoretical CD calculations indicate that the PS structure forms a right-handed helix. 31P NMR measurements indicate that the conformation of the phosphodiester backbone of the PS structure is not drastically different from that of the APS control. The presence of slowly exchanging imino protons at 14 ppm and the observation of nuclear Overhauser enhancement between imino protons and the AH-2 protons demonstrate that similar base pairing and base stacking between T and A residues occur in both hairpins. However, the small chemical shift dispersion observed in proton NMR spectra of the PS hairpin suggests that the stem of this hairpin is more regular than that of the APS hairpin. On the basis of NOESY measurements, we find that the orientation of the bases is in the anti region and that the sugar puckering is in the 2'-endo range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Forty-six RNA hairpins containing combinations of 3' or 5' bulge loops and a 3' or 5' fluorescein label were optically melted in 1 M NaCl, and the thermodynamic parameters ΔH°, ΔS°, ΔG°(37), and T(M) for each hairpin were determined. The bulge loops were of the group I variety, in which the identity of the bulge is known, and the group II variety, in which the bulged nucleotide is identical to one of its nearest neighbors, leading to ambiguity as to the exact position of the bulge. The fluorescein label at either the 3' end or 5' end of the hairpin did not significantly influence the stability of the hairpin. As observed with bulge loops inserted into a duplex motif, the insertion of a bulge loop into the stem of a hairpin loop was destabilizing. The model developed to predict the influence of bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability. Specifically, the influence of the bulge is related to the stability of the hairpin stem distal from the hairpin loop.  相似文献   

14.
Intramolecular dynamics of a 14-mer RNA hairpin including GCAA tetraloop was investigated by (13)C NMR relaxation. R(1) and R(1rho) relaxation rates were measured for all protonated base carbons as well as for C1' carbons of ribose sugars at several magnetic field strengths. The data has been interpreted in the framework of modelfree analysis [G. Lipari and A. Szabo. J Am Chem Soc 104, 4546-4559 (1982); G. Lipari and A. Szabo. J Am Chem Soc 104, 4559-4570 (1982)] characterizing the internal dynamics of the molecule by order parameters and correlation times for fast motions on picosecond to nanosecond time scale and by contributions of the chemical exchange. The fast dynamics reveals a rather rigid stem and a significantly more flexible loop. The cytosine and the last adenine bases in the loop as well as all the loop sugars exhibit a significant contribution of conformational equilibrium on microsecond to millisecond time scale. The high R(1rho) values detected on both base and sugar moieties of the loop indicate coordinated motions in this region. A semiquantitative analysis of the conformational equilibrium suggests the exchange rates on the order of 10(4) s(-1). The results are in general agreement with dynamics studies of GAAA loops by NMR relaxation and fluorescent spectroscopy and support the data on the GCAA loop dynamics obtained by MD simulations.  相似文献   

15.
The structure of the L3 central hairpin loop isolated from the antigenomic sequence of the hepatitis delta virus ribozyme with the P2 and P3 stems from the ribozyme stacked on top of the loop has been determined by NMR spectroscopy. The 26 nt stem-loop structure contains nine base pairs and a 7 nt loop (5'-UCCUCGC-3'). This hairpin loop is critical for efficient catalysis in the intact ribozyme. The structure was determined using homonuclear and heteronuclear NMR techniques on non-labeled and15N-labeled RNA oligonucleotides. The overall root mean square deviation for the structure was 1.15 A (+/- 0.28 A) for the loop and the closing C.G base pair and 0.90 A (+/- 0.18 A) for the loop and the closing C.G base pair but without the lone purine in the loop, which is not well defined in the structure. The structure indicates a U.C base pair between the nucleotides on the 5'- and 3'-ends of the loop. This base pair is formed with a single hydrogen bond involving the cytosine exocyclic amino proton and the carbonyl O4 of the uracil. The most unexpected finding in the loop is a syn cytidine. While not unprecedented, syn pyrimidines are highly unusual. This one can be confidently established by intranucleotide distances between the ribose and the base determined by NMR spectroscopy. A similar study of the structure of this loop showed a somewhat different three-dimensional structure. A discussion of differences in the two structures, as well as possible sites of interaction with the cleavage site, will be presented.  相似文献   

16.
The three-dimensional solution structure of a DNA molecule of the sequence 5'-d(GCATCGAAAAAGCTACG)-3' paired with 5'-d(CGTAGCCGATGC)-3' containing a five-adenine bulge loop (dA(5)-bulge) between two double helical stems was determined by 2D (1)H and (31)P NMR, infrared, and Raman spectroscopy. The DNA in both stems adopt a classical B-form double helical structure with Watson-Crick base pairing and C2'-endo sugar conformation. In addition, the two dG/dC base pairs framing the dA(5)-bulge loop are formed and are stable at least up to 30 degrees C. The five adenine bases of the bulge loop are localized at intrahelical positions within the double helical stems. Stacking on the double helical stem is continued for the first four 5'-adenines in the bulge loop. The total rise (the height) of these four stacked adenines roughly equals the diameter of the double helical stem. The stacking interactions are broken between the last of these four 5'-adenines and the fifth loop adenine at the 3'-end. This 3'-adenine partially stacks on the other stem. The angle between the base planes of the two nonstacking adenines (A10 and A11) in the bulge loop reflects the kinking angle of the global DNA structure. The neighboring cytosines opposite the dA(5)-bulge (being parts of the bulge flanking base pairs) do not stack on one another. This disruption of stacking is characterized by a partial shearing of these bases, such that certain sequential NOEs for this base step are preserved. In the base step opposite the loop, an extraordinary hydrogen bond is observed between the phosphate backbone of the 5'-dC and the amino proton of the 3'-dC in about two-thirds of the conformers. This hydrogen bond probably contributes to stabilizing the global DNA structure. The dA(5)-bulge induces a local kink into the DNA molecule of about 73 degrees (+/-11 degrees ). This kinking angle and the mutual orientation of the two double helical stems agree well with results from fluorescence resonance energy transfer measurements of single- and double-bulge DNA molecules.  相似文献   

17.
The physical properties of the DNA oligomer d(CGCGCGTTTTCGCGCG) in solvents containing 4 M NaClO4 and 0.1 M NaCl were investigated by proton NMR, optical melting, and circular dichroism spectroscopy. Results of these investigations are as follows: (i) The DNA hexadecamer exists as a unimolecular hairpin in either high or low salt. (ii) In high salt the stem region of the hairpin is in the left-handed Z conformation. (iii) In either high or low salt, the duplex stem of the hairpin is stabilized against melting by approximately 40 degrees C compared to the linear core duplex. The added stability of the hairpin is entropic in origin. (iv) In high salt, as the temperature is elevated, the equilibrium structure of the duplex stem of the hairpin shifts from the Z to the B conformation before melting. (v) In low salt, when the DNA duplex exists in the B conformation, attachment of a T4 single-strand loop to one end only slightly decreases (by 14%) the correlation time of the CH5-CH6 interproton vector. In high salt, when the DNA duplex exists in the Z conformation, the correlation time of the CH5-CH6 interproton vector decreases by 51%. Since these viscosity-corrected correlation times are taken to be indicators of duplex motions on the nanosecond time scale, this result directly suggests a larger amplitude of these motions is present in the duplex stem of the hairpin when it exists in the Z conformation.  相似文献   

18.
Anomalous expansion of the DNA triplet (CTG)n causes myotonic dystrophy. Structural studies have been carried out on (CTG)n repeats in an attempt to better understand the molecular mechanism of repeat expansion. NMR and gel electrophoretic studies demonstrate the presence of hairpin structures for (CTG)5 and (CTG)6 in solution. The monomeric hairpin structure remains invariant over a wide range of salt concentrations (10-200 mM NaCl), DNA concentrations (micromolar to millimolar in DNA strand) and pH (6.0-7.5). The (CTG)n hairpin contains three bases in the loop when n is odd and four bases when n is even. For both odd and even n the stacking and pairing in the stem remain the same, i.e, two hydrogen bond T.T pairs stack with the neighboring G.C pairs. All the nucleotides in (CTG)5 and (CTG)6 adopt C2'-endo, anti conformations. Full-relaxation matrix analysis has been performed to derive the NOE distance constraints from NOESY experiments at seven different mixing times (25, 50, 75, 100, 125, 200 and 500 ms). NOESY-derived distance constraints were subsequently used in restrained molecular dynamics simulations to obtain a family of structures consistent with the NMR data. The theoretical order parameters are computed for H5-H6(cytosines) and H2'-H2" dipolar correlations for both (CTG)5 and (CTG)6 by employing the Lipari-Szabo formalism. Experimental data show that the cytosine in the loop of the (CTG)5 hairpin is slightly more flexible than those in the stem. The cytosine in the loop of the (CTG)6 hairpin is extremely flexible, implying that the dynamics of the four base loop is intrinsically different from that of the three base loop.  相似文献   

19.
Stem–loop II of U1 snRNA and Stem–loop IV of U2 snRNA typically have 10 or 11 nucleotides in their loops. The fluorescent nucleobase 2-aminopurine was used as a substitute for the adenines in each loop to probe the local and global structures and dynamics of these unusually long loops. Using steady-state and time-resolved fluorescence, we find that, while the bases in the loops are stacked, they are able to undergo significant local motion on the picosecond/nanosecond timescale. In addition, the loops have a global conformational change at low temperatures that occurs on the microsecond timescale, as determined using laser T-jump experiments. Nucleobase and loop motions are present at temperatures far below the melting temperature of the hairpin stem, which may facilitate the conformational change required for specific protein binding to these RNA loops.  相似文献   

20.
NMR and CD data have previously shown the formation of the T(4) tetraloop hairpin in aqueous solutions, as well as the possibility of the B-to-Z transition in its stem in high salt concentration conditions. It has been shown that the stem B-to-Z transition in T(4) hairpins leads to S (south)- to N (north)-type conformational changes in the loop sugars, as well as anti to syn orientations in the loop bases. In this article, we have compared by means of UV absorption, CD, Raman, and Fourier transform infrared (FTIR), the thermodynamic and structural properties of the T(4) and A(4) tetraloop hairpins formed in 5'-d(CGCGCG-TTTT-CGCGCG)-3' and 5'-d(CGCGCG-AAAA-CGCGCG)-3', respectively. In presence of 5M NaClO(4), a complete B-to-Z transition of the stems is first proved by CD spectra. UV melting profiles are consistent with a higher thermal stability of the T(4) hairpin compared to the A(4) hairpin. Order-to-disorder transition of both hairpins has also been analyzed by means of Raman spectra recorded as a function of temperature. A clear Z-to-B transition of the stem has been confirmed in the T(4) hairpin, and not in the A(4) hairpin. With a right-handed stem, Raman and FTIR spectra have confirmed the C2'-endo/anti conformation for all the T(4) loop nucleosides. With a left-handed stem, a part of the T(4) loop sugars adopt a N-type (C3'-endo) conformation, and the C3'-endo/syn conformation seems to be the preferred one for the dA residues involved in the A(4) tetraloop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号