首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
李歆  渠成名  韩英伦  刘欣  李庆伟 《遗传》2020,(2):183-193,I0004,I0005
高等脊椎动物的蛋白酪氨酸磷酸酶SHP2(SH2 domain-containing protein-tyrosine phosphatase-2)由ptpn11基因编码,催化酪氨酸残基去磷酸化,与其他能催化酪氨酸磷酸化的蛋白酪氨酸激酶共同调节机体内多种信号通路的信号传导。以往研究表明,SHP2在高等脊椎动物T细胞和B细胞的激活与信号转导过程中起着重要作用。为了研究无颌类脊椎动物日本七鳃鳗(Lampetra japonica)中与SHP2同源的分子——Lja-SHP2在免疫应答反应中的作用,本研究通过PCR扩增获取其Lja-SHP2开放阅读框序列,并构建到原核表达载体pET-32a中,成功在大肠杆菌中实现重组蛋白表达并制备了其兔源多克隆抗体。用混合菌免疫刺激日本七鳃鳗后,通过实时荧光定量PCR和免疫印迹方法检测了Lja-SHP2在日本七鳃鳗免疫相关组织中mRNA和蛋白水平表达谱。结果显示,混合菌免疫刺激后,Lja-SHP2 mRNA和蛋白表达在外周血白细胞和髓样小体中无显著变化,而在鳃组织中显著性上调(P<0.05),说明Lja-SHP2在混合菌刺激后主要参与了鳃组织的免疫应答反应。为了进一步探究Lja-SHP2与淋巴细胞亚群免疫应答反应的相关性,本研究分别使用B细胞有丝分裂原脂多糖(lipopolysaccharide,LPS)和T细胞的有丝分裂原植物凝集素(phytohemagglutinin,PHA)免疫刺激日本七鳃鳗。经LPS免疫刺激后,与对照组相比,白细胞中Lja-SHP2蛋白表达显著上调,鳃组织和髓样小体没有显著性差异表达;但经PHA免疫刺激后,与对照组相比,白细胞、鳃组织和髓样小体3种组织中Lja-SHP2均有上调,尤其在白细胞中上调最为显著,大约是对照组的2.5倍,说明Lja-SHP2参与了日本七鳃鳗由PHA介导的免疫应答反应。由于PHA能刺激日本七鳃鳗鳃组织中VLRA+淋巴细胞的活化,这表明Lja-SHP2可能参与了PHA介导的VLRA+淋巴细胞亚群的免疫应答反应。上述研究结果为进一步探索Lja-SHP2在七鳃鳗免疫应答过程中的功能奠定了基础,也为揭示SHP2分子家族的系统发生及探索高等脊椎动物适应性免疫系统的早期发生及其进化历程提供一定的线索。  相似文献   

2.
刘欣  宋雪萤  张晓萍  韩英伦  朱婷  肖蓉  李庆伟 《遗传》2015,37(11):1149-1159
近年来,在无颌类脊椎动物七鳃鳗体内发现了以可变淋巴细胞受体(Variable lymphocyte receptors, VLR)为基础的抗原识别机制。为揭示七鳃鳗鳃黏膜免疫系统中类淋巴细胞适应性免疫应答的遗传基础,探索无颌类与有颌类脊椎动物在适应性免疫应答机制上的进化关系,本文构建了日本七鳃鳗(Lampetra japonica)鳃囊组织免疫前后cDNA文库并进行了高通量转录组测序及分析。通过对组装得到的88 525个独立基因(Unigene)进行功能注释,分别有21 704和9769个unigene在GO(Gene Ontology)和KEGG(Kyoto Encyclopedia of Genes and Genomes)数据库得到注释。999个unigene参与免疫系统的多个通路,其中184个与高等脊椎动物TCR(T cell receptor)和BCR(B cell receptor)信号通路的51个分子具有较高的同源关系,说明七鳃鳗体内存在高等脊椎动物适应性免疫应答信号通路的相关分子。本文还发现5个VLRA、7个VLRB和4个VLRC分子,说明七鳃鳗鳃黏膜免疫组织内至少分布3种类淋巴细胞亚群。实时荧光定量PCR结果显示,Lck、Fyn和Zap70基因在免疫激发后表达量显著上调,而Syk、Btk和Blnk基因表达没有显著变化,说明七鳃鳗鳃组织受到抗原刺激后,类似T淋巴细胞的信号转导途径被激活。本研究初步证明,尽管无颌类和有颌类脊椎动物的适应性免疫系统在抗原识别机制上存在不同,但具有共同的遗传基础。研究结果为探讨七鳃鳗VLRA+、VLRB+和VLRC+淋巴细胞免疫应答信号传导过程提供了有价值的线索。  相似文献   

3.
吴芬芳  马宁  陈立勇  苏鹏  李庆伟 《遗传》2012,34(4):87-93
七鳃鳗(Lampetra japonica)和盲鳗(Hyperotreti)作为现存的无颌类脊椎动物的代表,其适应性免疫系统中的受体分子与哺乳动物的抗原受体分子不同,这种独特的受体分子称为可变淋巴细胞受体VLRs(Variable lym-phocyte receptors)。目前VLRs分为3类,分别是VLRA、VLRB、VLRC,而VLRB由七鳃鳗类B淋巴细胞产生,是其体液免疫中主要成分,与IgM结构和功能类似。文章对日本七鳃鳗VLRB基因保守的C末端进行克隆、原核表达和重组蛋白纯化后,免疫Balb/c小鼠,通过细胞融合及间接酶联免疫吸附实验(Enzyme-linked immu-nosorbent assay,ELISA)筛选技术得到针对VLRB保守区的单克隆抗体细胞株。将杂交瘤细胞接种小鼠腹腔得到大量的单抗腹水,经Protein G亲和纯化后的单抗进行ELISA与Western blotting检测。经ELISA检测抗体效价为1:40000。Western blotting结果显示该单克隆抗体能够特异的检测重组VLRB蛋白及七鳃鳗血清中分泌型VLRB。流式细胞实验证明该单抗能特异识别七鳃鳗类淋巴细胞表面表达的膜型VLRB。VLRB单克隆抗体的成功制备和建株,为研究日本七鳃鳗基于VLR的适应性免疫系统提供了重要的工具。  相似文献   

4.
p38MAPK是丝裂原活化蛋白激酶(mitogen activated protein kinases,MAPK)家族的一个亚类,在高等脊椎动物免疫应答的信号转导过程中扮演着非常重要的角色。在日本七鳃鳗(Lampetra japonica)中发现,p38MAPK以两种异构体的形式存在。通过克隆它们的开放阅读框并进行同源序列比对和系统发育分析,鉴定它们分别为p38α(Lja-mapk14)和p38β(Lja-mapk11)。用混合菌刺激七鳃鳗,利用免疫印迹方法,检测Lja-mapk14在外周血类淋巴细胞、鳃组织和髓样小体中,分别在加强免疫36 h、24 h和24 h后,表达量达到峰值,分别为对照组的2.9、2.1和2.6倍;而Lja-mapk11在以上组织中,都在加强免疫36 h后达到表达量峰值,分别为对照组的2.2、2.5和6.3倍。实时荧光定量PCR检测发现,Lja-mapk14的mRNA表达水平在混合菌加强免疫36 h后,分别在类淋巴细胞、鳃组织和髓样小体中,上调2.3、1.5和3.4倍;而Lja-mapk11的则分别在类淋巴细胞、鳃组织和心肌中,上调1.3、2.6和1.6倍。以上结果在mRNA和蛋白质水平证明,Lja-mapk14和Lja-mapk11均参与七鳃鳗的免疫应答反应。采用B细胞和T细胞丝裂原LPS和PHA分别对七鳃鳗进行刺激,免疫印迹结果显示,Lja-mapk14和Lja-mapk11蛋白质表达量经LPS加强免疫36 h后,在类淋巴细胞、鳃组织和髓样小体中,上调表达1.3 ~ 4.1倍;而经PHA加强免疫36 h后,Lja-mapk14和Lja-mapk11在上述组织中表达量均不存在显著变化。以上结果说明,Lja-mapk14和Lja-mapk11可能参与了B细胞丝裂原LPS介导的VLRB类淋巴细胞亚群的免疫应答反应。  相似文献   

5.
p38MAPK是丝裂原活化蛋白激酶(mitogen activated protein kinases,MAPK)家族的一个亚类,在高等脊椎动物免疫应答的信号转导过程中扮演着非常重要的角色。在日本七鳃鳗(Lampetra japonica)中发现,p38MAPK以两种异构体的形式存在。通过克隆它们的开放阅读框并进行同源序列比对和系统发育分析,鉴定它们分别为p38α(Lja-mapk14)和p38β(Lja-mapk11)。用混合菌刺激七鳃鳗,利用免疫印迹方法,检测Lja-mapk14在外周血类淋巴细胞、鳃组织和髓样小体中,分别在加强免疫36 h、24 h和24 h后,表达量达到峰值,分别为对照组的2.9、2.1和2.6倍;而Lja-mapk11在以上组织中,都在加强免疫36 h后达到表达量峰值,分别为对照组的2.2、2.5和6.3倍。实时荧光定量PCR检测发现,Lja-mapk14的mRNA表达水平在混合菌加强免疫36 h后,分别在类淋巴细胞、鳃组织和髓样小体中,上调2.3、1.5和3.4倍;而Lja-mapk11的则分别在类淋巴细胞、鳃组织和心肌中,上调1.3、2.6和1.6倍。以上结果在mRNA和蛋白质水平证明,Lja-mapk14和Lja-mapk11均参与七鳃鳗的免疫应答反应。采用B细胞和T细胞丝裂原LPS和PHA分别对七鳃鳗进行刺激,免疫印迹结果显示,Lja-mapk14和Lja-mapk11蛋白质表达量经LPS加强免疫36 h后,在类淋巴细胞、鳃组织和髓样小体中,上调表达1.3 ~ 4.1倍;而经PHA加强免疫36 h后,Lja-mapk14和Lja-mapk11在上述组织中表达量均不存在显著变化。以上结果说明,Lja-mapk14和Lja-mapk11可能参与了B细胞丝裂原LPS介导的VLRB类淋巴细胞亚群的免疫应答反应。  相似文献   

6.
无颌类脊椎动物适应性免疫系统的进化   总被引:1,自引:0,他引:1  
刘岑杰  黄惠芳  马飞  刘欣  李庆伟 《遗传》2008,30(1):13-19
适应性免疫系统的起源与进化问题一直是人们研究的热点, 以七鳃鳗为代表的无颌类脊椎动物, 被普遍认为处在进化出适应性免疫系统的边缘。因此, 研究无颌类脊椎动物适应性免疫的机制, 对揭示适应性免疫系统的起源与进化具有重要意义。研究表明, 无颌类在一定范围内具有高等脊椎动物特有的适应性免疫特征, 并发现了一些在结构或功能上与高等脊椎动物免疫相关基因同源的免疫因子。文章就近年来对无颌类脊椎动物适应性免疫系统机制的研究进展作一概述, 为进一步深入研究脊椎动物适应性免疫系统的起源与进化提供有益的参考。  相似文献   

7.
日本七鳃鳗(Lampetra japonica)属最原始的无颌类脊椎动物,是研究免疫起源与进化的重要模式生物。七鳃鳗血清中C3分子(L-C3)是其含量最高的补体成分,在补体经典激活途径和旁路激活途径中均发挥重要作用。本文通过PCR扩增获取C3分子α-γ链的基因序列,构建到原核表达载体pET-28a,成功在大肠杆菌中表达C3部分蛋白质并制备多克隆抗体。利用流式细胞术和激光共聚焦证明,L-C3分布在神经轴体的胞浆中。免疫共沉淀及细胞沉积结果显示,七鳃鳗血清中,VLRB与L-C3蛋白相互作用并共沉积于靶细胞膜表面。天然L-C3和VLRB清除实验,验证其在参与七鳃鳗血清杀伤靶细胞时发挥重要作用。本研究为七鳃鳗补体系统的研究奠定了基础,为七鳃鳗免疫起源与进化提供重要资料。  相似文献   

8.
动物肠道中寄生的微生物与宿主的营养、免疫及防御功能密切相关。本研究在东北七鳃鳗肠道中分离获得一株优势细菌,并鉴定为气单胞菌属(Aeromonads sp.)。建立了荧光定量PCR快速检测气单胞菌拷贝数的方法,经poly(I∶C)刺激后,气单胞菌数量下降1.15倍。因此,该肠道气单胞菌被认为是七鳃鳗肠道适应性免疫系统进化的关键菌群之一。为了进一步分析气单胞菌对东北七鳃鳗肠道适应性免疫影响的分子机制,将分离菌株腹腔注射七鳃鳗,利用双向电泳技术鉴定了七鳃鳗肠道应答气单胞菌免疫刺激的相关蛋白。共鉴定19个差异表达蛋白质,其中12个蛋白质表达上调,5个蛋白质表达下调,1个蛋白质刺激后消失,1个新增蛋白质,并对蛋白质功能进行分类。七鳃鳗肠道应答气单胞菌免疫刺激的差异表达蛋白分别参与了七鳃鳗适应性免疫调控、信号转导及能量代谢等。该研究可拓宽对七鳃鳗免疫研究的途径,为深入探讨适应性免疫系统发育提供理论基础和新的研究思路。  相似文献   

9.
朱医高  李军  逄越  李庆伟 《遗传》2020,(9):847-857
七鳃鳗是现存的无颌类脊椎动物代表之一,距今已有5亿多年的历史,素有"活化石"之称。古老的七鳃鳗凭借独特的功能特征和进化地位吸引了众多学者的注意:在免疫系统方面,七鳃鳗具有不同于有颌类脊椎动物的适应性免疫系统和免疫分子;基于进化地位,七鳃鳗作为一种重要的发育进化模式动物可以解析脊椎动物进化保守性和衍生的特点,七鳃鳗大脑皮层为哺乳动物大脑皮层的进化提供蓝图;在疾病研究中,七鳃鳗作为脊髓损伤功能再生和胆道闭锁病理模型取得了阶段性成果。本文结合国内外相关报道,详细介绍了七鳃鳗的免疫分子、发育进化以及生理结构的研究进展,以期为深入开展七鳃鳗在动物遗传发育和生物医学领域的研究产生积极地推动作用。  相似文献   

10.
动物肠道中寄生的微生物与宿主的营养、免疫及防御功能密切相关。本研究在东北七鳃鳗肠道中分离获得一株优势细菌,并鉴定为气单胞菌属(Aeromonads sp.)。建立了荧光定量PCR快速检测气单胞菌拷贝数的方法,经poly(I∶C)刺激后,气单胞菌数量下降115倍。因此,该肠道气单胞菌被认为是七鳃鳗肠道适应性免疫系统进化的关键菌群之一。为了进一步分析气单胞菌对东北七鳃鳗肠道适应性免疫影响的分子机制,将分离菌株腹腔注射七鳃鳗,利用双向电泳技术鉴定了七鳃鳗肠道应答气单胞菌免疫刺激的相关蛋白。共鉴定19个差异表达蛋白质,其中12个蛋白质表达上调,5个蛋白质表达下调,1个蛋白质刺激后消失,1个新增蛋白质,并对蛋白质功能进行分类。七鳃鳗肠道应答气单胞菌免疫刺激的差异表达蛋白分别参与了七鳃鳗适应性免疫调控、信号转导及能量代谢等。该研究可拓宽对七鳃鳗免疫研究的途径,为深入探讨适应性免疫系统发育提供理论基础和新的研究思路。  相似文献   

11.
Toll样受体是高等脊椎动物(包含无颌类到哺乳类)先天性免疫防卫系统中的必要元件,它们负责识别病原微生物,并最终引起宿主动物体内的免疫应答反应。通过研究TLR家族基因的遗传多样性是如何被保留和维持的,有利于了解动物免疫系统在病原微生物选择压力下的适应性进化。第2代测序技术的发展为TLR基因的分子进化模式提供了更丰富的资源。介绍TLR家族基因的结构及功能,着重于该受体基因在高等脊椎动物中的进化模式,从而揭示TLR家族基因在脊椎动物先天性免疫系统的适应性进化中的重要性,并进一步阐明宿主与病原微生物之间的协同进化模式。  相似文献   

12.
梁佼  刘欣  吴芬芳  李庆伟 《遗传》2009,31(10):969-976
在以七鳃鳗和盲鳗为代表的无颌类脊椎动物中, 虽然发现了与有颌类脊椎动物T细胞受体(T-cell receptors, TLRs)、B细胞受体 (B-cell receptors, BCRs)可变区具有相似结构的先天性免疫受体, 却从未发现有颌类脊椎动物适应性免疫系统的核心组分: TCRs、BCRs、组织相容性复合体 (Major histocompatibility complex, MHC)。因此, 长期以来, 人们一直认为适应性免疫系统只存在于有颌类脊椎动物中。但最近的一项发现彻底改变了这一传统观念, 即在无颌类脊椎动物中, 存在一种新型可变淋巴细胞受体VLRs(Variable lymphocyte receptors), VLRs通过改变亮氨酸富集序列LRRs(Leucine-rich repeats)的插入情况, 实现对特异性抗原的高效识别。晶体衍射分析发现, 盲鳗的VLRs呈现一种“马蹄”型结构, 抗原结合位点则位于“马蹄”的凹面区。分泌型的VLRs以四聚体或五聚体的形式识别、结合特异性抗原。综上所述, 无颌类和有颌类脊椎动物应用不同的抗原识别系统完成适应性免疫反应。文章对近年来无颌类脊椎动物适应性免疫系统相关分子的研究进展加以概述, 为揭示适应性免疫系统起源与进化问题提供有益参考。  相似文献   

13.
钙调蛋白(calmodulin,CaM)是高度保守的钙离子结合蛋白质,可形成Ca 2+-CaM复合体,从而调节细胞代谢以及靶酶的功能。日本七鳃鳗(Lampetra japonica)作为原始的无颌类脊椎动物,对研究脊椎动物分子起源进化及器官发育分化具有重要的研究价值。通过提取日本七鳃鳗髓组织总RNA,利用RT-PCR方法获得日本七鳃鳗CaM(简称Lj-CaM)基因并进行生物信息学分析。将Lj-CaM基因分别构建到原核表达载体pColdⅠ和真核表达载体pEGFP-N1中,利用亲和层析技术纯化得到Lj-CaM蛋白。圆二色谱分析结果表明,Lj-CaM属于典型的α-螺旋结构型蛋白质。免疫印迹和免疫组化结果表明,CaM主要存在于日本七鳃鳗的肠、鳃、髓、肾组织中,在心和肝组织中几乎不表达。细胞免疫荧光结果显示,CaM定位于细胞核中。qPCR和免疫印迹方法检测发现,当293T细胞中Lj-CaM过表达时,对下游靶基因CaMKⅡ作用不明显,但促进PLA2G2A表达。本研究报道了日本七鳃鳗CaM结构、细胞组织定位分布以及基因调控研究,对其结构、分子起源与进化、分子调控及功能方面的研究奠定了基础。  相似文献   

14.
树突细胞(DC)是已知功能最强大的专职抗原呈递细胞(APC),能高效摄取、加工并呈递抗原给T细胞,同时上调表达主要组织相容性复合物(MHC)Ⅰ、Ⅱ类分子,协同刺激分子和黏附分子,为T细胞激活提供协同刺激信号,从而启动适应性免疫应答.近年来对DC表面标记的研究揭示了更为细致的DC亚群分类,也推动了不同亚群DC生物学功能的研究进展.DC启动免疫应答具有双重作用,一方面能促进适应性免疫应答的激活,清除病原体;另一方面又能诱导调节性T细胞的产生,导致免疫耐受.DC在启动保护性免疫反应的同时,还可能因捕获、传递入侵的病毒而促进某些病毒感染.DC因其复杂的生物学功能而成为研究免疫应答的热点.本文主要对上述内容的研究进展作一简要综述.  相似文献   

15.
髓样分化因子88 (Myeloid differentiation factor 88, MYD88)是Toll样受体(Toll-like receptor, TLR)信号通路的关键接头分子, 在先天性免疫和适应性免疫中都起到重要作用。为了揭示七鳃鳗Myd88的生物学功能, 研究首次从七鳃鳗(Lampetra japonica)中克隆了myd88基因, 其ORF为852 bp, 共编码283个氨基酸, 推测的分子量为32.432 kD, 等电点为6.25, 无信号肽。多重序列比对表明七鳃鳗Myd88的氨基酸序列与其他物种同源性较高, 具有高度保守的N端死亡结构域和C端的TIR结构域的Box1、Box2和Box3基序。实时荧光定量PCR分析表明: myd88基因在七鳃鳗各组织中均有低水平转录表达, 鳃中表达量最高, 其次是肌肉、髓和肾。脂多糖(LPS)体内刺激七鳃鳗后, 七鳃鳗myd88在白细胞中表达量升高最显著, 其次是在鳃中的表达量也明显升高, 表明七鳃鳗Myd88参与七鳃鳗的抗菌免疫过程。此外, LPS刺激七鳃鳗还能诱导TLR信号通路Myd88依赖途径的下游信号分子Irak1、Traf6、Ikkβ和Nfkb在各组织中的转录表达。研究结果表明七鳃鳗中可能存在TLR/Myd88信号通路, 为进一步探究该信号通路参与免疫应答的起源与进化奠定了基础。  相似文献   

16.
党一璞  肖佳妮  王颖 《生命科学》2020,32(4):335-342
固有免疫和适应性免疫是高等脊椎动物中相对独立又互相协同的两类免疫应答。经典的免疫学理论认为免疫记忆是适应性免疫区别于固有免疫的重要特征之一。然而,近年来发现的"驯化免疫"(trained immunity)现象显示,固有免疫细胞在接受病原体、细胞因子或其他代谢产物刺激后,可以通过表观遗传和代谢重编程等方式改变细胞表型,使其在再次活化时产生更强的非特异性免疫应答。驯化免疫现象的存在一方面使机体受到再次感染时,固有免疫系统可以同样发挥重要的保护作用;另一方面,过度激活的驯化免疫应答则可能导致炎症性疾病的发生发展。该文主要介绍了以卡介苗(Bacillus Calmette-Guérin, BCG)和β-葡聚糖为代表的驯化免疫应答特征及调控机制,并综述了驯化免疫这一新概念在疾病治疗和预防中的最新研究。  相似文献   

17.
钙调蛋白(calmodulin,CaM)是高度保守的钙离子结合蛋白质,可形成Ca2+-CaM复合体,从而调节细胞代谢以及靶酶的功能。日本七鳃鳗(Lampetra japonica)作为原始的无颌类脊椎动物,对研究脊椎动物分子起源进化及器官发育分化具有重要的研究价值。通过提取日本七鳃鳗髓组织总RNA,利用RT-PCR方法获得日本七鳃鳗CaM(简称Lj-CaM)基因并进行生物信息学分析。将LjCaM基因分别构建到原核表达载体p ColdⅠ和真核表达载体p EGFP-N1中,利用亲和层析技术纯化得到Lj-CaM蛋白。圆二色谱分析结果表明,Lj-CaM属于典型的α-螺旋结构型蛋白质。免疫印迹和免疫组化结果表明,CaM主要存在于日本七鳃鳗的肠、鳃、髓、肾组织中,在心和肝组织中几乎不表达。细胞免疫荧光结果显示,CaM定位于细胞核中。q PCR和免疫印迹方法检测发现,当293T细胞中Lj-CaM过表达时,对下游靶基因CaMKⅡ作用不明显,但促进PLA2G2A表达。本研究报道了日本七鳃鳗CaM结构、细胞组织定位分布以及基因调控研究,对其结构、分子起源与进化、分子调控及功能方面的研究奠定了基础。  相似文献   

18.
《遗传》2016,(11)
正2016年9月19~21日,"首届七鳃鳗免疫系统研究国际会议"在辽宁省大连市召开。本次会议主办方为辽宁师范大学七鳃鳗研究中心。会议主题为"七鳃鳗适应性免疫系统发育和进化研究"。会议邀请到包括国际著名免疫学家、美国科学院院士Max D.Cooper教授,北京中医药大学校长徐安龙教授在内的来自美国、德国、加拿大、俄罗斯、日本的12位从事七鳃鳗免疫系统研究的顶级科学家,以及多名从事比较免疫研究的国内知名学者。辽  相似文献   

19.
多样化的免疫受体是适应性免疫系统“以万变应万变”识别外界各种各样抗原的分子基础。脊椎动物进化出V(D)J重排、抗体类型转换、体细胞高频突变及基因转换等多种受体基因多样化策略,构筑了全面的免疫屏障。在免疫细胞中,程序性DNA损伤在特定发育阶段集中发生并伴随多套应答通路的协同合作,最终将单一的抗体基因转变为无穷尽的DNA编码序列组合。  相似文献   

20.
免疫共刺激分子OX40L对乙型肝炎核酸疫苗的免疫佐剂作用   总被引:1,自引:0,他引:1  
[目的]为了进一步增强HBV DNA疫苗的免疫反应,本研究将共刺激分子OX40L 作为HBV DNA疫苗的分子佐剂免疫小鼠,旨在探讨共刺激分子OX40L对HBV DNA疫苗诱导体液和细胞免疫应答的影响.[方法]我们将HBV DNA疫苗(pcDS2)单独或联合共刺激分子质粒pOX40L免疫C57BL/6小鼠;分别在第0,2,4周进行免疫,在第6周检测抗-HBs IgG、IgG1和IgG2a,T淋巴细胞增殖指数,细胞因子表达水平和体内细胞毒性T淋巴细胞杀伤作用(CTL)等免疫学指标.[结果]pceDS2联合pOX40L免疫组小鼠的抗-HBs水平显著提高,抗-HBs IgG亚类以IgG2a占优;免疫小鼠的T淋巴细胞体外经乙型肝炎表面抗原(HBsAg)刺激后,联合免疫组刺激指数(SI)明显高于pcDS2组;联合免疫组CD4 + T淋巴细胞的IL-4和IFN-γ表达水平及CD8 + T淋巴细胞的IFN-γ表达水平显著升高;DNA疫苗免疫的各组小鼠,HBsAg特异性体内CTL高于对照组,其中联合免疫组小鼠的体内CTL杀伤作用最强.[结论]共刺激分子OX40L不仅能增强HBV DNA疫苗诱导特异性体液免疫应答,还能增强特异性细胞免疫反应,尤其增强体内CTL的杀伤活性,为HBV DNA疫苗的研究奠定了基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号