首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为在斑马鱼中获得特异且高效的基因敲除,多个实验室独立人工合成了序列彼此不一的Cas9 cDNA序列,并克隆入不同的体外转录载体。本文选取两种斑马鱼密码子优化的Cas9编码序列(zCas9_bz和zCas9_wc),对斑马鱼胚胎中的7个基因(外源egfp及内源chd、hbegfa、th、eef1a1b、tyr、tcf7l1a)分别进行敲除,通过PCR产物测序、克隆测序和表型分析比较了两种Cas9的敲除效率。结果发现,zCas9_wc在各种情况下都显现出较高的敲除效率,而zCas9_bz的效率相对较低。  相似文献   

2.
Studies of gene function in non-model animals have been limited by the approaches available for eliminating gene function. The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated) system has recently become a powerful tool for targeted genome editing. Here, we report the use of the CRISPR/Cas9 system to disrupt selected genes, including nanos2, nanos3, dmrt1, and foxl2, with efficiencies as high as 95%. In addition, mutations in dmrt1 and foxl2 induced by CRISPR/Cas9 were efficiently transmitted through the germline to F1. Obvious phenotypes were observed in the G0 generation after mutation of germ cell or somatic cell-specific genes. For example, loss of Nanos2 and Nanos3 in XY and XX fish resulted in germ cell-deficient gonads as demonstrated by GFP labeling and Vasa staining, respectively, while masculinization of somatic cells in both XY and XX gonads was demonstrated by Dmrt1 and Cyp11b2 immunohistochemistry and by up-regulation of serum androgen levels. Our data demonstrate that targeted, heritable gene editing can be achieved in tilapia, providing a convenient and effective approach for generating loss-of-function mutants. Furthermore, our study shows the utility of the CRISPR/Cas9 system for genetic engineering in non-model species like tilapia and potentially in many other teleost species.  相似文献   

3.
The CRISPR/Cas9 system has been adapted as an efficient genome editing tool in laboratory animals such as mice, rats, zebrafish and pigs. Here, we report that CRISPR/Cas9 mediated approach can efficiently induce monoallelic and biallelic gene knockout in goat primary fibroblasts. Four genes were disrupted simultaneously in goat fibroblasts by CRISPR/Cas9-mediated genome editing. The single-gene knockout fibroblasts were successfully used for somatic cell nuclear transfer (SCNT) and resulted in live-born goats harboring biallelic mutations. The CRISPR/Cas9 system represents a highly effective and facile platform for targeted editing of large animal genomes, which can be broadly applied to both biomedical and agricultural applications.  相似文献   

4.
Although CRISPR/Cas, a new versatile genome-editing tool, has been widely used in a variety of species including zebrafish, an important vertebrate model animal for biomedical research, the low efficiency of germline transmission of induced mutations and particularly knockin alleles made subsequent screening for heritable offspring tedious, time-consuming, expensive and at times impossible. In this study, we reported a method for improving the efficiency of germline transmission screening for generation of genome-edited zebrafish mutants. Co-microinjecting yfp-nanos3 mRNA with Cas9 mRNA, sgRNA and single strand DNA donor to label the distribution of microinjected nucleotides in PGCs (primordial germ cells), we demonstrated that founders carrying labeled PGCs produced much higher numbers of knockin and knockout progeny. In comparison with the common practice of selecting founders by genotyping fin clips, our new strategy of selecting founders with tentatively fluorescent-labeled PGCs significantly increase the ease and speed of generating heritable knocking and knockout animals with CRISPR/Cas9.  相似文献   

5.
The CRISPR–Cas system is the newest targeted nuclease for genome engineering. In less than 1 year, the ease, robustness and efficiency of this method have facilitated an immense range of genetic modifications in most model organisms. Full and conditional gene knock-outs, knock-ins, large chromosomal deletions and subtle mutations can be obtained using combinations of clustered regularly interspaced short palindromic repeats (CRISPRs) and DNA donors. In addition, with CRISPR–Cas compounds, multiple genetic modifications can be introduced seamlessly in a single step. CRISPR–Cas not only brings genome engineering capacities to species such as rodents and livestock in which the existing toolbox was already large, but has also enabled precise genetic engineering of organisms with difficult-to-edit genomes such as zebrafish, and of technically challenging species such as non-human primates. The CRISPR–Cas system allows generation of targeted mutations in mice, even in laboratories with limited or no access to the complex, time-consuming standard technology using mouse embryonic stem cells. Here we summarize the distinct applications of CRISPR–Cas technology for obtaining a variety of genetic modifications in different model organisms, underlining their advantages and limitations relative to other genome editing nucleases. We will guide the reader through the many publications that have seen the light in the first year of CRISPR–Cas technology.  相似文献   

6.
Clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been widely used for precise gene editing in plants. However, simultaneous gene editing of multiple homoeoalleles remains challenging, especially in self-incompatible polyploid plants. Here, we simultaneously introduced targeted mutations in all three homoeoalleles of two genes in the self-incompatible allohexaploid tall fescue, using both CRISPR/Cas9 and LbCas12a (LbCpf1) systems. Loss-of-function mutants of FaPDS exhibited albino leaves, while knockout of FaHSP17.9 resulted in impaired heat resistance in T0 generation of tall fescue. Moreover, these mutations were inheritable. Our findings demonstrate the feasibility of generating loss-of-function mutants in T0 generation polyploid perennial grasses using CRISPR/Cas systems.  相似文献   

7.
Processing of double‐stranded RNA precursors into small RNAs is an essential regulator of gene expression in plant development and stress response. Small RNA processing requires the combined activity of a functionally diverse group of molecular components. However, in most of the plant species, there are insufficient mutant resources to functionally characterize each encoding gene. Here, mutations in loci encoding protein machinery involved in small RNA processing in soya bean and Medicago truncatula were generated using the CRISPR/Cas9 and TAL‐effector nuclease (TALEN) mutagenesis platforms. An efficient CRISPR/Cas9 reagent was used to create a bi‐allelic double mutant for the two soya bean paralogous Double‐stranded RNA‐binding2 (GmDrb2a and GmDrb2b) genes. These mutations, along with a CRISPR/Cas9‐generated mutation of the M. truncatula Hua enhancer1 (MtHen1) gene, were determined to be germ‐line transmissible. Furthermore, TALENs were used to generate a mutation within the soya bean Dicer‐like2 gene. CRISPR/Cas9 mutagenesis of the soya bean Dicer‐like3 gene and the GmHen1a gene was observed in the T0 generation, but these mutations failed to transmit to the T1 generation. The irregular transmission of induced mutations and the corresponding transgenes was investigated by whole‐genome sequencing to reveal a spectrum of non‐germ‐line‐targeted mutations and multiple transgene insertion events. Finally, a suite of combinatorial mutant plants were generated by combining the previously reported Gmdcl1a, Gmdcl1b and Gmdcl4b mutants with the Gmdrb2ab double mutant. Altogether, this study demonstrates the synergistic use of different genome engineering platforms to generate a collection of useful mutant plant lines for future study of small RNA processing in legume crops.  相似文献   

8.
目的:CRISPR/Cas9系统在斑马鱼的反向遗传学中的到了广泛应用,但突变基因的表型观察往往需要在突变鱼系的F1中进行,费时较长。LHX9作为LIM家族的一种转录因子,在胚胎早期的泌尿生殖嵴中有广泛分布;且LHX9基因敲除的小鼠存在性腺发育不良。本研究拟通过一种新的CRISPR/Cas9基因编辑技术,采用四条sgRNA对LHX9基因进行VASA转基因斑马鱼的基因敲除,以观察该基因缺陷对斑马鱼性腺发育的影响。方法:利用新的CRISPR/Cas9技术,设计四条针对斑马鱼LHX9基因3号外显子的20bp的sgRNA,通过非克隆体外转录得到靶位点的四条sgRNA。将以上靶位点的四条sgRNA与Cas9核酸酶蛋白同时注射入单细胞期的斑马鱼胚胎内,利用PCR鉴定突变型类型和突变比例。通过对LHX9基因突变体的VASA转基因斑马鱼进行荧光观察,发现LHX9基因缺陷的斑马鱼性腺发育的情况。结果:靶向Exon 3的四条sgRNA可成功编辑斑马鱼LHX9基因,敲除效率高达82%,Sanger测序发现产生10种不同的移码突变类型。通过该方法对VASA转基因斑马鱼的LHX9基因进行编辑,发现LHX9基因突变导致dph6的的斑马鱼原始生殖细胞增殖和迁移受到影响。结论:基于4条sgRNA注射的CRISPR/Cas9技术,可以快速地产生具有突变表型的G0斑马鱼,具有应用潜力。LHX9基因敲除导致原始生殖细胞的发育和迁移受到影响,提示该基因参与了斑马鱼早期性腺的发育。  相似文献   

9.
10.
CRISPR/Cas9基因组编辑技术是一项对基因组进行精准修饰的技术,可实现对靶标基因的碱基插入、缺失或DNA片段替换。随着人们对CRISPR/Cas9系统的了解逐渐加深,其在科研、农业和医疗等领域的应用也越来越广泛。该文简要介绍了CRISPR/Cas9基因组编辑技术的发展以及工作原理,总结了近几年对该技术进行优化与改进的研究进展,包括基因组编辑效率的提升、基因组编辑范围的扩展、单碱基精准编辑以及多基因同时编辑、基因组编辑安全性的提升以及基因片段替换与基因靶向转录调控,以期为深入开展这一领域的研究提供参考。  相似文献   

11.
The CRISPR/Cas9 system has been demonstrated to efficiently induce targeted gene editing in a variety of organisms including plants. Recent work showed that CRISPR/Cas9‐induced gene mutations in Arabidopsis were mostly somatic mutations in the early generation, although some mutations could be stably inherited in later generations. However, it remains unclear whether this system will work similarly in crops such as rice. In this study, we tested in two rice subspecies 11 target genes for their amenability to CRISPR/Cas9‐induced editing and determined the patterns, specificity and heritability of the gene modifications. Analysis of the genotypes and frequency of edited genes in the first generation of transformed plants (T0) showed that the CRISPR/Cas9 system was highly efficient in rice, with target genes edited in nearly half of the transformed embryogenic cells before their first cell division. Homozygotes of edited target genes were readily found in T0 plants. The gene mutations were passed to the next generation (T1) following classic Mendelian law, without any detectable new mutation or reversion. Even with extensive searches including whole genome resequencing, we could not find any evidence of large‐scale off‐targeting in rice for any of the many targets tested in this study. By specifically sequencing the putative off‐target sites of a large number of T0 plants, low‐frequency mutations were found in only one off‐target site where the sequence had 1‐bp difference from the intended target. Overall, the data in this study point to the CRISPR/Cas9 system being a powerful tool in crop genome engineering.  相似文献   

12.
CRISPR/Cas9‐based strategies are widely used for genome editing in many organisms, including zebrafish. Although most applications consist in introducing double strand break (DSB)‐induced mutations, it is also possible to use CRISPR/Cas9 to enhance homology directed repair (HDR) at a chosen genomic location to create knock‐ins with optimally controlled precision. Here, we describe the use of CRISPR/Cas9‐targeted DSB followed by HDR to generate zebrafish transgenic lines where exogenous coding sequences are added in the nefma gene, in frame with the endogenous coding sequence. The resulting knock‐in embryos express the added gene (fluorescent reporter or KalTA4 transactivator) specifically in the populations of neurons that express nefma, making them convenient tools for research on these populations.  相似文献   

13.
CRISPR/Cas9基因组编辑技术是一项对基因组进行精准修饰的技术, 可实现对靶标基因的碱基插入、缺失或DNA片段替换。随着人们对CRISPR/Cas9系统的了解逐渐加深, 其在科研、农业和医疗等领域的应用也越来越广泛。该文简要介绍了CRISPR/Cas9基因组编辑技术的发展以及工作原理, 总结了近几年对该技术进行优化与改进的研究进展, 包括基因组编辑效率的提升、基因组编辑范围的扩展、单碱基精准编辑以及多基因同时编辑、基因组编辑安全性的提升以及基因片段替换与基因靶向转录调控, 以期为深入开展这一领域的研究提供参考。  相似文献   

14.
Genome editing, which is an unprecedented technological breakthrough, has provided a valuable means of creating targeted mutations in plant genomes. In this study, we developed a genomic web tool to identify all gRNA target sequences in the coffee genome, along with potential off-targets. In all, 8,145,748 CRISPR guides were identified in the draft genome of Coffea canephora corresponding to 5,338,568 different sequences and, of these, 4,655,458 were single, and 514,591 were covering exons. The proof of concept was established by targeting the phytoene desaturase gene (CcPDS) using the Agrobacterium tumefaciens transformation technique and somatic embryogenesis as the plant regeneration method. An analysis of the RNA-guided genome-editing events showed that 22.8% of the regenerated plants were heterozygous mutants and 7.6% were homozygous mutants. Mutation efficiency at the target site was estimated to be 30.4%. We demonstrated that genome editing by the CRISPR/Cas9 method is an efficient and reliable way of knocking out genes of agronomic interest in the coffee tree, opening up the way for coffee molecular breeding. Our results also showed that the use of somatic embryogenesis, as the method for regenerating genome-edited plants, could restrict the choice of targeted genes to those that are not essential to the embryo development and germination steps.  相似文献   

15.
The Streptococcus‐derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single‐guide RNA (sgRNA) for target DNA recognition and the CRISPR‐associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ‐line‐specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ‐line‐specific promoters (pDD45‐GT and pLAT52‐GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population.  相似文献   

16.
Zebrafish embryonic slow muscle cells, with their superficial localization and clear sarcomere organization, provide a useful model system for genetic analysis of muscle cell differentiation and sarcomere assembly. To develop a quick assay for testing CRISPR-mediated gene editing in slow muscles of zebrafish embryos, we targeted a red fluorescence protein (RFP) reporter gene specifically expressed in slow muscles of myomesin-3-RFP (Myom3-RFP) zebrafish embryos. We demonstrated that microinjection of RFP-sgRNA with Cas9 protein or Cas9 mRNA resulted in a mosaic pattern in loss of RFP expression in slow muscle fibers of the injected zebrafish embryos. To uncover gene functions in sarcomere organization, we targeted two endogenous genes, slow myosin heavy chain-1 (smyhc1) and heat shock protein 90 α1 (hsp90α1), which are specifically expressed in zebrafish muscle cells. We demonstrated that injection of Cas9 protein or mRNA with respective sgRNAs targeted to smyhc1 or hsp90a1 resulted in a mosaic pattern of myosin thick filament disruption in slow myofibers of the injected zebrafish embryos. Moreover, Myom3-RFP expression and M-line localization were also abolished in these defective myofibers. Given that zebrafish embryonic slow muscles are a rapid in vivo system for testing genome editing and uncovering gene functions in muscle cell differentiation, we investigated whether microinjection of Natronobacterium gregoryi Argonaute (NgAgo) system could induce genetic mutations and muscle defects in zebrafish embryos. Single-strand guide DNAs targeted to RFP, Smyhc1, or Hsp90α1 were injected with NgAgo mRNA into Myom3-RFP zebrafish embryos. Myom3-RFP expression was analyzed in the injected embryos. The results showed that, in contrast to the CRISPR/Cas9 system, injection of the NgAgo-gDNA system did not affect Myom3-RFP expression and sarcomere organization in myofibers of the injected embryos. Sequence analysis failed to detect genetic mutations at the target genes. Together, our studies demonstrate that zebrafish embryonic slow muscle is a rapid model for testing gene editing technologies in vivo and uncovering gene functions in muscle cell differentiation.  相似文献   

17.
Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.  相似文献   

18.
The clustered regularly interspaced short palindromic repeats(CRISPR)-associated endonuclease 9(CRISPR/Cas9) system has emerged as a promising technology for specific genome editing in many species. Here we constructed one vector targeting eight agronomic genes in rice using the CRISPR/Cas9 multiplex genome editing system. By subsequent genetic transformation and DNA sequencing, we found that the eight target genes have high mutation efficiencies in the T_0 generation. Both heterozygous and homozygous mutations of all editing genes were obtained in T_0 plants. In addition, homozygous sextuple, septuple, and octuple mutants were identified. As the abundant genotypes in T_0 transgenic plants, various phenotypes related to the editing genes were observed. The findings demonstrate the potential of the CRISPR/Cas9 system for rapid introduction of genetic diversity during crop breeding.  相似文献   

19.
刘改改  李爽  韦余达  张永贤  丁秋蓉 《遗传》2015,37(11):1167-1173
CRISPR/Cas9技术提供了一个全新的基因组编辑体系。本文利用CRISPR/Cas9平台,在人胚胎干细胞株中对选取的一段特定基因组区域进行了多种基因组编辑:通过在基因编码框中引入移码突变进行基因敲除;通过单链DNA提供外源模板经由同源重组定点敲入FLAG序列;通过同时靶向多个位点诱导基因组大片段删除。研究结果表明CRISPR/Cas9可以对多能干细胞进行高效基因编辑,获得的突变干细胞株有助于对基因和基因组区域的功能进行分析和干细胞疾病模型的建立。  相似文献   

20.
CRISPR/Cas9-Mediated Genome Editing in Soybean Hairy Roots   总被引:1,自引:0,他引:1  
As a new technology for gene editing, the CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) system has been rapidly and widely used for genome engineering in various organisms. In the present study, we successfully applied type II CRISPR/Cas9 system to generate and estimate genome editing in the desired target genes in soybean (Glycine max (L.) Merrill.). The single-guide RNA (sgRNA) and Cas9 cassettes were assembled on one vector to improve transformation efficiency, and we designed a sgRNA that targeted a transgene (bar) and six sgRNAs that targeted different sites of two endogenous soybean genes (GmFEI2 and GmSHR). The targeted DNA mutations were detected in soybean hairy roots. The results demonstrated that this customized CRISPR/Cas9 system shared the same efficiency for both endogenous and exogenous genes in soybean hairy roots. We also performed experiments to detect the potential of CRISPR/Cas9 system to simultaneously edit two endogenous soybean genes using only one customized sgRNA. Overall, generating and detecting the CRISPR/Cas9-mediated genome modifications in target genes of soybean hairy roots could rapidly assess the efficiency of each target loci. The target sites with higher efficiencies can be used for regular soybean transformation. Furthermore, this method provides a powerful tool for root-specific functional genomics studies in soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号