首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. V. Burjanadze 《Biopolymers》1982,21(8):1587-1595
An analysis of the available data on the enthalpy (ΔHr) of denaturation (melting) of collagens with different imino acid content in solution and in the aggregated state has shown that ΔHr in solution increases with increasing denaturation temperature, whereas in the aggregated state there is an inverse dependence. ΔHr in solution correlates with the hydroxyproline content but not with that of proline. No correlation between the change of ΔHr and the imino acid content is observed for the aggregated state.  相似文献   

2.
The dependence of denaturation transition thermodynamic parameters in various collagens from imino acid compositions has been analysed. Computational and experimental data suggest independence of the collagen molecule hydration on imino acid composition and sequence in the polypeptide chain. The continuous net of hydrogen bonds is interrupted, if imino acid residues occur in the sequence of amino acid residues, as follows from Monte Carlo computations, because the hydrogen of NH-group plays sufficient role in water shell formation for this conformation. As a consequence, entropy of denatured collagen-water system increases hand by hand with increasing imino acid content and therefore delta S increases. The increase of enthalpy of transition from imino acid content is determined by favorable Van der Waals interactions of pyrrolidine rings in native triple helical collagen structure. It was pointed out that proline role is determined by decreasing hydration in the single stranded polypeptide chain in Polyproline II conformation that leads to an increase of entropy of the polypeptide-water system. Thus, the collagen structure formation by imino acids is promoted in the water media due to single chain left-helical conformation being unfavorable for proline residues as well as due to the enthalpy nature of the triple helix stabilization.  相似文献   

3.
Effects of heat in heated solution of tropocollagens of different origins were calorimetrically studied. It was found that denaturation enthalpy and entropy of different tropocollagens increase with increasing imino acid content and thermostability. It is shown that the value and dependence of denaturational enthalpy and entropy on the denaturation temperature for tropocollagens with different imino acid contents are inconsistent with the assumption that the native structure of tropocollagen is stabilized only by intramolecular hydrogen bonds. A supposition is made that the regular water structure near the macromolecule plays an essential role in stabilizing the structure. From the character of tropocollagen melting curves in salt-free solution it is found that the tropocollagen macromolecule is linearly heterogeneous. It is shown that the complex pattern of thermal absorption observed in tropocollagen salt, solution is connected with pre-denaturational conformational transformation when approaching conditions close to the physiological.  相似文献   

4.
The enthalpy change accompanying the double helix–coil transition of polyriboadenylic acid (poly A) in aqueous solution has been measured optically and calorimetrically in the pH range 5.7–4.5. The course of this cooperative transition was followed optically by measuring changes in ultraviolet absorption as a function of temperature at different pH values, and calorimetrically by determining the heat capacity of the solution through the transition region. From the latter measurements, the enthalpy of transition was calculated. It is shown, that ΔH is dependent on pH as it is expected from the influence of protonation of the double helix of poly A.  相似文献   

5.
Preparations have been made of acid-soluble collagens whose telopeptides have suffered different levels of proteolytic attack. The collagens with more intact telopeptides form fibrils more rapidly than those with degraded telopeptides. In addition, we have shown that a high molecular weight aggregate rich in the carboxyterminal CNBr peptide, α1CB6, can be found in cyanogen bromide digests of fibrils formed from intact collagen. A similar aggregate is found in CNBr digests of native tendons. The aggregate formed in fibrils assembled in vitro can be stabilized by reduction, and its generation is strongly dependent on the presence of intact telopeptides. The latter point is the most objective evidence that to reproduce the characteristics of native fibrils in vitro, the collagen telopeptides must be preserved from proteolysis.  相似文献   

6.
Thermodynamics of barnase unfolding.   总被引:6,自引:5,他引:1       下载免费PDF全文
The thermodynamics of barnase denaturation has been studied calorimetrically over a broad range of temperature and pH. It is shown that in acidic solutions the heat denaturation of barnase is well approximated by a 2-state transition. The heat denaturation of barnase proceeds with a significant increase of heat capacity, which determines the temperature dependencies of the enthalpy and entropy of its denaturation. The partial specific heat capacity of denatured barnase is very close to that expected for the completely unfolded protein. The specific denaturation enthalpy value extrapolated to 130 degrees C is also close to the value expected for the full unfolding. Therefore, the calorimetrically determined thermodynamic characteristics of barnase denaturation can be considered as characteristics of its complete unfolding and can be correlated with structural features--the number of hydrogen bonds, extent of van der Waals contacts, and the surface areas of polar and nonpolar groups. Using this information and thermodynamic information on transfer of protein groups into water, the contribution of various factors to the stabilization of the native structure of barnase has been estimated. The main contributors to the stabilization of the native state of barnase appear to be intramolecular hydrogen bonds. The contributions of van der Waals interactions between nonpolar groups and those of hydration effects of these groups are not as large if considered separately, but the combination of these 2 factors, known as hydrophobic interactions, is of the same order of magnitude as the contribution of hydrogen bonding.  相似文献   

7.
The endotherm enthalpy changes ΔHD and temperatures TD of thermal denaturation of tropocollagen fibers were measured by DSC calorimetry as functions of water content. The denaturation temperatures decrease with increasing water content. The enthalpy change values increase sharply in the range 0–28% of water content, where a maximum of 14.3 cal g?1 is reached. The effect of water uptake on the enthalpy term is explained by water bridge formation within the collagen triple helix. Evidence is given for the existence of approximately three intercatenary water bridges per triplet at the enthalpy maximum, their H-bond energy amounting to approximately 4000 kcal/mol of protein. In the 30–60% range of water content, ΔHD decreases by 2 cal?1 probably due to interactions between secondary water structures and the stabilizing intrahelical water bonds. The influence of two neutral potassium salts, with a structure-stabilizing and a structure-breaking anion (F? and I?), on the hydration dependence of ΔHD and TD was also studied. It was shown that the primary hydration is not influenced by these ions, but that TD and ΔHD are altered in an ion specific way in the presence of interface and bulk water. Hydrophobic interactions do not explain the experimental results. A reaction mechanism of the effects of ions upon the structural stability of collagen is proposed and discussed in terms of interactions of the medium water molecules with the intrahelical water bonds, and in terms of proton-donor/proton-acceptor equilibria between peptide groups, hydrated ions, and intrahelical water molecules.  相似文献   

8.
The thermal triple helix–coil transition of covalently bridged collagenlike peptides with repeating sequences of (Ala-Gly-Pro)n, n = 5–15, was studied optically. The peptides were soluble in water/acetic acid (99:1) and were found to form triple-helical structures in this solvent system beginning with n = 8. The thermodynamic analysis of the transition equilibrium curves for n = 9–13 yielded the parameters ΔH°s = ?7.0 kJ per tripeptide unit, ΔS°s = ?23.1 J deg?1 mol?1 per tripeptide unit for the coil-to-helix transition, and the apparent nucleation parameter σ ? 5 × 10?2. It was suggested through double-jump temperature experiments that the rate-limiting step during refolding is not only influenced by the difficulties of nucleation, but also by cistrans isomerization of the Gly-Pro peptide bond.  相似文献   

9.
The course of the reversible helix formation of poly(γ-benzyl L -glutamate) (PBG) dissolved in a mixture of dichloroacetic acid (DCA) and 1,2-dichloroethane (EDC) was followed by measuring the heat capacity and the optical rotation of the system through the transition region. The results of these measurements indicate that the transition enthalpy ΔH the transition temperature Tc, and the Zimm-Bragg parameter σ depend considerably on the PBG concentration as well as on the composition of the solvent. For the standard state of infinite dilution, however, a linear extrapolation of the measured ΔH if values results in a standard value ΔH° = 950 cal./mole, independent of the solvent composition. The results of the calorimetric measurements are discussed in relationship to changes in optical rotation. Some peculiarities in the measured thermodynamic and optical properties in solutions with relatively high content of dichloroacetic acid are reported.  相似文献   

10.
F Gaskin  J T Yang 《Biopolymers》1971,10(4):631-645
The helix–coil transition of poly-γ-N-carbobenzoxy-L -α,γ-diaminobutyrate (PCLB) and poly-δ-N-carbobenzoxy-L -ornithine (PCLO) in chloroform–dichloroacetic acid mixtures was followed by optical rotatory dispersion. PCLB displays a “normal” temperature-induced transition, but PCLO an “inverse” one. The thermodynamic parameters for helix formation of the two polymers were determined using the Zimm-Bragg theory. The enthalpy for adding an amide residue to a helical region, ΔH, and the initiation factor σ were ΔH = ?180 cal/mole and σ = 9.2 × 10?5 for PCLB and ΔH = +490 cal/mole and σ = 1.9 × 10?5 for PCLO.  相似文献   

11.
The denaturation of beta-lactoglobulin in solution with different content of urea and phosphates has been studied calorimetrically. It has been shown that the increase of phosphate ion concentration in solution leads to an increase of beta-lactoglobulin stability, while increase of urea concentration leads to an opposite effect. The variation of these components in solution practically does not influence the value of the heat capacity increment of beta-lactoglobulin in the considered temperature region. Accordingly the denaturation enthalpy is a linear function of temperature whose slope does not differ for solution with urea concentration less than 4.4 M. However, the absolute value of denaturation enthalpy in these solutions at corresponding temperatures differs significantly due to the heat effect of additional urea solvation during transition to the denatured state. The latter leads to a decrease of the overall denaturation enthalpy and, as a result, a shift of the enthalpy plot to higher temperatures providing conditions for studying the thermodynamic and structural characteristics of the molecule in the cold denatured-state.  相似文献   

12.
The Pressure Dependence of the Helix-Coil Transition Temperature (Tm) of Poly[d(G-C)] was studied as a function of sodium ion concentration in phosphate buffer. The molar volume change of the transition (ΔV) was calculated using the Clapeyron equation and calorimetrically determined enthalpies. The ΔV of the transition increased from +4.80 (±0.56) to +6.03 (±0.76) mL mol?1 as the sodium ion concentration changed from 0.052 to 1.0M. The van't Hoff enthalpy of the transition calculated from the half-width of the differentiated transition displayed negligible pressure dependence: however, the value of this parameter decreased with increasing sodium ion concentration, indicating a decrease in the size of the cooperative unit. The volume change of the transition exhibits the largest magnitude of any double-stranded DNA polymer measured using this technique. For poly[d(G-C)] the magnitude of the change in ΔV with sodium ion concentration (0.94 ± 0.05 mL mol?1) is approximately one-half that observed for either poly[d(A-T)] or poly (dA)·poly(dT). The ΔV values are interpreted as arising from changes in the hydration of the polymer due to the release of counterions and changes in the stacking of the bases of the coil form. As a consequence of solvent electrostriction, the release of counterions makes a net negative contribution to the total ΔV, implying that disruption of the slacking interactions contributes a positive volume change to the total ΔV. The larger magnitude of the ΔV compared with that of other double-stranded polymers may be due in part to the high helix-coil transition temperature of poly[d(G-C)], which will attenuate the contribution of electrostriction to the total volume change. The data in addition show that in the absence of other cellular components, the covalent structure of DNA is stabile under conditions of temperature and pressure more extreme than those experienced by any known organism. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
The collagen-like peptides (L -Pro-L -Pro-Gly)n and (L -Pro-L -Hyp-Gly)n with n = 5 and 10, were examined in terms of their triple helix ? coil transitions in aqueous and nonaqueous solvents. The peptides were soluble in 1,2-propanediol containing 3% acetic acid and they were found to form triple-helical structures in this solvent system. The water content of the solvent system and the amount of water bound to the peptides were assayed by equilibrating the solvent with molecular sieves and carrying out Karl Fischer titrations on the solvent phase. After the solvent was dehydrated, much less than one molecule of water per tripeptide unit was bound to the peptides. Since the peptides remained in a triple-helical conformation, the results indicated that water was not an essential component of the triple-helical structure. Comparison of peptides with the same chain length demonstrated that the presence of hydroxyproline increased the thermal stability of the triple helix even under anhydrous conditions. The results, therefore, did not support recent hypotheses that hydroxyproline stabilizes the triple helix of collagen and collagen-like peptides by a specific interaction with water molecules. Analysis of the thermal transition curves in several solvent systems showed that although the peptides containing hydroxyproline had tm values which were 18.6° to 32.7°C higher, the effect of hydroxyproline on ΔG was only 0.1 to 0.3 kcal per tripeptide unit at 25°C. The results suggested, therefore, that the influence of hydroxyproline on helical stability may be explained by intrinsic effects such as dipole–dipole interactions or by changes in the solvation of the peptides by alcohol, acetic acid, and water. A direct calorimetric measurement of the transition enthalpy for (L -Pro-L -Pro-Gly)n in 3% or 10% acetic acid gave a value of ?1.84 kcal per tripeptide unit for the coil-to-helix transition. From the value for enthalpy and from data on the effects of different chain lengths on the thermal transition, it was calculated that the apparent free energy for nucleation was +5 kcal/mol at 25°C (apparent nucleation parameter = 2 × 10?4 M?2). The value was dependent on solvent and on chemical modification of end groups.  相似文献   

14.
Differential scanning calorimetry and temperature-dependent uv spectroscopy are used to thermodynamically characterize the double-strand to single-strand transition of the self-complementary deoxyribo-oligonucleotide ATGCAT. The calorimetric experiments provide a value of 33.6 kcal (mol of double strand)?1 for the transition between 10 and 90° C. In conjunction with available temperature-dependent nmr data (which reveals terminal base pair fraying), we attempt to define specifically those interactions to which the calorimetrically measured enthalpy change refers.Values of ΔHV.H. (van 't Hoff enthalpy change) are derived from the spectroscopic and calorimetric data and compared with the ΔH obtained directly from the calorimetric experiment. This comparison reveals that the part of the thermally-induced transition that occurs between 10 and 90°C is well represented by a two-state process. It is noted that in assessing the applicability of the two-state model it is best to compare the ΔHcal. with ΔHV.H. obtained from the calorimetric rather than the spectroscopic data.  相似文献   

15.
The changes in structure and thermodynamic parameters of beta-lactoglobulin upon heat and cold denaturation have been studied using both scanning microcalorimetry and circular dichroism spectroscopy methods. It has been shown that in contrast to the heat denaturation process, the cold denaturation of beta-lactoglobulin is accompanied by an opposite heat effect. In all cases, the calorimetrically measured enthalpy of beta-lactoglobulin cold denaturation is higher than it was expected from the two-state model of denaturation transition. It has been concluded that beta-lactoglobulin cold denaturation cannot be represented by a transition between two microscopic states--native and denatured. The latter, is due to the additional process that occurs together with the disruption of the beta-lactoglobulin tertiary structure and is accompanied by increasing heat capacity. Taking into account the heat capacity contribution of this process upon calculation of the enthalpy makes it closer to the enthalpy value calculated for the two-state model of denaturation transition.  相似文献   

16.
The stability of the α-helices of isomeric block copolypeptides is nonequivalent, as reported previously. In order to explore the origin of the nonequivalence, the stability of α-helix of two block copolypeptides, (L -Ala)20-(L -Glu)20-(L -Phe) (designated as AEF) and (L -Glu)20-(L -Ala)20-(L -Phe) (EAF), in aqueous solution was investigated as a function of pH, temperature, and salt concentration by the measurement of the α-helical content using CD at 223 nm. The transition temperature, Tm, as a measure of the stability of the α-helix, decreased with increasing the salt concentration for EAF, while Tm increased for AEF. The results indicate that electrostatic interactions affect the nonequivalence of such helical stability. Thermodynamic quantities, ΔG, ΔH, and ΔS, of the thermal transition from random coil to α-helix were obtained by applying the curve-fitting method to the data. The major contribution to the effects of salts seems to be the entropic term, not the enthalpy term. This is unexpected, since the salt ions would weaken electrostatic interactions between ionized groups and the dipole along the helical axis, which affect the enthalpy term. In addition, the dependence of the electrostatic effect on the salt concentration is different for EAF and AEF. There fore, the nonequivalence cannot be accounted for by only the electrostatic effect, suggesting that it originates from some intrinsic property of the α-helix.  相似文献   

17.
We have measured the thermodynamic parameters of the slow-fast tail-fiber reorientation transition on T2L bateriophage. Proportions of the virus in each form were determined from peak-height measurements in sedimention-velocity runs and from average diffusion coefficients obtained by quasielastic laser light scattering. Computer simulation of sedimentation confirmed that there were no undetected intermediates in the transition, which was analyzed as a two-state process. Van't Hoff-type plots of the apparent equilibrium constant and of the pH midpoint of the transition as function of reciprocal temperature led to the following estimates of the thermodynamic parameters for the transition at pH 6.0 and 20°C: ΔH° = ?139 ± 18Kcal mol?1, ΔS° = ?247 ± 46 cal K?1 mol?1, and ΔG° = ?66 ± 22 kcal mol?1. Per mole of protons taken up in the transition, the analogous quantities were ?15.9 ± 1.7 kcal mol?1, ?26.3 ± 2.2 cal K?1 mol?1, and ?8.22 ± 1.8 kcal mol?1. The net number of protons taken up was about 8.5 ± 1.5. The large values of the thermodynamic functions are consistent with a highly cooperative reaction and with multiple interactions between the fibres and the remainder of the phage. The negative entropy of the transition is probably due to immobilization of the fibres.  相似文献   

18.
R A Haworth  J A Chapman 《Biopolymers》1977,16(9):1895-1906
Electron microscopic autoradiographic observations on collagen fibrils grown in vitro allow growth rates in the N- and C-terminal directions to be measured on individual fibrils. Such observations, made on normal and iodinated collagen, show that normal fibrils grow at both ends (although rather more rapidly at the N-terminal end), whereas fully-iodinated collagen fibrils grow only at the N-terminal end. Measurements of growth rates at different temperatures provide estimates of the activation enthalpy (ΔH) and entropy (ΔS) of precipitation for the two types of collagen. Solubility measurements have also yielded values for the thermodynamic enthalpy (ΔH) and entropy (ΔS) of precipitation. Results show that the activated (rate-limiting) state is characterized by a large positive ΔH and ΔS similar in magnitude to the ΔH and ΔS of transition from solution to fibril. It is also concluded that the different rates of precipitation of normal and iodinated collagen cannot be explained in terms of fibril formation requiring ionization of the tyrosine residues.  相似文献   

19.
Rapana venosa hemocyanin (RvH), a circulating glycoprotein of the marine snail, has a complex structure. To provide details on the stability of the protein, one functional unit, RvH2-e, was compared with the native molecule and the structural subunits, RvH1 and RvH2, via pH–T diagrams, typical phase portraits for stability and denaturation reversibility. By analyzing the T transition curves of RvH2-e at different pH values, several parameters of the thermodynamic functions were obtained. Increasing the temperature from 25 °C to 55 °C, the reversibility of the molecule of protein also increases, opening a reversibility window within the range of pH 4.0–8.0. On analyzing the pH transition curves, the start of the acid denaturation (below pH 6) and alkaline denaturation (above pH 9) was determined to be between 20 °C and 35 °C. For this range, the thermodynamic functions ΔH° and ΔG° for a standard temperature of 25 °C were calculated.  相似文献   

20.
Homogeneous fragment B, obtained through nicking of diphtheria toxin with insoluble trypsin, was cleaved with cyanogen bromide in 70% formic acid. After citraconylation, the cleavage products were separated by gel filtration on Sephadex G--75 and purified by gel filtration, ion-exchange and thin-layer or paper chromatography. Six CNBr peptides were characterized, the composition of which account for the total amino acid content of fragment B. Their apparent molecular weights are: CB 1, 12 000; CB 2, 14 000; CB 3, 8000; CB 4a, 2400; CB 4b, 2200; CB 5, 2200. CB 4a is the NH2--terminal peptide; it contains the cysteine residue of the disulfide bridge linking fragment B to fragment A. CB 3 is the COOH--terminal peptide; it bears the disulfide bridge of fragment B. Characterization of two CNBr--derived overlapping peptides provided the positioning of CB 4b and CB 2 and allowed an alignment of the CNBr peptides of fragment B to be proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号