首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iron-sulfur [Fe-S] clusters are inorganic prosthetic groups that play essential roles in all living organisms. In vivo [Fe-S] cluster biogenesis requires enzymes involved in iron and sulfur mobilization, assembly of clusters, and delivery to their final acceptor. In these systems, a cysteine desulfurase is responsible for the release of sulfide ions, which are incorporated into a scaffold protein for subsequent [Fe-S] cluster assembly. Although three machineries have been shown to be present in Proteobacteria for [Fe-S] cluster biogenesis (NIF, ISC, and SUF), only the SUF machinery has been found in Firmicutes. We have recently described the structural similarities and differences between Enterococcus faecalis and Escherichia coli SufU proteins, which prompted the proposal that SufU is the scaffold protein of the E. faecalis sufCDSUB system. The present work aims at elucidating the biological roles of E. faecalis SufS and SufU proteins in [Fe-S] cluster assembly. We show that SufS has cysteine desulfurase activity and cysteine-365 plays an essential role in catalysis. SufS requires SufU as activator to [4Fe-4S] cluster assembly, as its ortholog, IscU, in which the conserved cysteine-153 acts as a proximal sulfur acceptor for transpersulfurization reaction.  相似文献   

2.
Iron-sulphur ([Fe-S]) clusters are simple inorganic prosthetic groups that are contained in a variety of proteins having functions related to electron transfer, gene regulation, environmental sensing and substrate activation. In spite of their simple structures, biological [Fe-S] clusters are not formed spontaneously. Rather, a consortium of highly conserved proteins is required for both the formation of [Fe-S] clusters and their insertion into various protein partners. Among the [Fe-S] cluster biosynthetic proteins are included a pyridoxal phosphate-dependent enzyme (NifS) that is involved in the activation of sulphur from l-cysteine, and a molecular scaffold protein (NifU) upon which [Fe-S] cluster precursors are formed. The formation or transfer of [Fe-S] clusters appears to require an electron-transfer step. Another complexity is that molecular chaperones homologous to DnaJ and DnaK are involved in some aspect of the maturation of [Fe-S]-cluster-containing proteins. It appears that the basic biochemical features of [Fe-S] cluster formation are strongly conserved in Nature, since organisms from all three life Kingdoms contain the same consortium of homologous proteins required for [Fe-S] cluster formation that were discovered in the eubacteria.  相似文献   

3.
Numerous iron-sulfur (Fe-S) proteins with diverse functions are present in the matrix and respiratory chain complexes of mitochondria. Although [4Fe-4S] clusters are the most common type of Fe-S cluster in mitochondria, the molecular mechanism of [4Fe-4S] cluster assembly and insertion into target proteins by the mitochondrial iron-sulfur cluster (ISC) maturation system is not well-understood. Here we report a detailed characterization of two late-acting Fe-S cluster-carrier proteins from Arabidopsis thaliana, NFU4 and NFU5. Yeast two-hybrid and bimolecular fluorescence complementation studies demonstrated interaction of both the NFU4 and NFU5 proteins with the ISCA class of Fe-S carrier proteins. Recombinant NFU4 and NFU5 were purified as apo-proteins after expression in Escherichia coli. In vitro Fe-S cluster reconstitution led to the insertion of one [4Fe-4S]2+ cluster per homodimer as determined by UV-visible absorption/CD, resonance Raman and EPR spectroscopy, and analytical studies. Cluster transfer reactions, monitored by UV-visible absorption and CD spectroscopy, showed that a [4Fe-4S]2+ cluster-bound ISCA1a/2 heterodimer is effective in transferring [4Fe-4S]2+ clusters to both NFU4 and NFU5 with negligible back reaction. In addition, [4Fe-4S]2+ cluster-bound ISCA1a/2, NFU4, and NFU5 were all found to be effective [4Fe-4S]2+ cluster donors for maturation of the mitochondrial apo-aconitase 2 as assessed by enzyme activity measurements. The results demonstrate rapid, unidirectional, and quantitative [4Fe-4S]2+ cluster transfer from ISCA1a/2 to NFU4 or NFU5 that further delineates their respective positions in the plant ISC machinery and their contributions to the maturation of client [4Fe-4S] cluster-containing proteins.  相似文献   

4.
Iron-sulfur [Fe-S] clusters are ubiquitous ancient prosthetic groups that are required to sustain fundamental life processes. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Different types of [Fe-S] cluster assembly systems have been discovered. All of them have in common the requirement of a cysteine desulfurase and the participation of [Fe-S] scaffold proteins. The purpose of this review is to discuss various aspects of the molecular mechanisms of [Fe-S] cluster assembly in living organisms: (i) mechanism of sulfur donor enzymes, namely the cysteine desulfurases; (ii) mechanism by which clusters are preassembled on scaffold proteins and (iii) mechanism of [Fe-S] cluster transfer from scaffold to target proteins.  相似文献   

5.
The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.  相似文献   

6.
It was recently shown that macromolecular serum proteins [1-3] as well as some of their hydrolyzed products, especially peptides of molecular weight around 5000[4] and even much less[5,6], are able to promote the growth of cells. This paper describes how the serum proteins were separated by salt precipitation and polyacrylamide electrophoresis into various albumin and globulin fractions and their growth-promoting activities ascertained. Subsequently, these macromolecules were treated with alkali, acids or proteolytic enzymes, and the activity of the products obtained was determined. We also isolated growth-promoting peptides from the liver by enzymatic hydrolysis, followed by gel filtration, or by ultrafiltration through Diaflo membranes.  相似文献   

7.
Biogenesis of iron-sulfur ([Fe-S]) proteins in eukaryotes requires the function of complex proteinaceous machineries in both mitochondria and cytosol. In contrast to the mitochondrial pathway, little is known about [Fe-S] protein assembly in the cytosol. So far, four highly conserved proteins (Cfd1, Nbp35, Nar1 and Cia1) have been identified as members of the cytosolic [Fe-S] protein assembly machinery, but their molecular function is unresolved. Using in vivo and in vitro approaches, we found that the soluble P-loop NTPases Cfd1 and Nbp35 form a complex and bind up to three [4Fe-4S] clusters, one at the N terminus of Nbp35 and one each at a new C-terminal cysteine-rich motif present in both proteins. These labile [Fe-S] clusters can be rapidly transferred and incorporated into target [Fe-S] apoproteins in a Nar1- and Cia1-dependent fashion. Our data suggest that the Cfd1-Nbp35 complex functions as a novel scaffold for [Fe-S] cluster assembly in the eukaryotic cytosol.  相似文献   

8.
Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins   总被引:1,自引:0,他引:1  
Cobalt is toxic for cells, but mechanisms of this toxicity are largely unknown. The biochemical and genetic experiments reported here demonstrate that iron-sulfur proteins are greatly affected in cobalt-treated Escherichia coli cells. Exposure of a wild-type strain to intracellular cobalt results in the inactivation of three selected iron-sulfur enzymes, the tRNA methylthio-transferase, aconitase, and ferrichrome reductase. Consistently, mutant strains lacking the [Fe-S] cluster assembly SUF machinery are hypersensitive to cobalt. Last, expression of iron uptake genes is increased in cells treated with cobalt. In vitro studies demonstrated that cobalt does not react directly with fully assembled [Fe-S] clusters. In contrast, it reacts with labile ones present in scaffold proteins (IscU, SufA) involved in iron-sulfur cluster biosynthesis. We propose a model wherein cobalt competes out iron during synthesis of [Fe-S] clusters in metabolically essential proteins.  相似文献   

9.
Iron-sulfur (Fe-S) clusters are ubiquitous cofactors that are crucial for many physiological processes in all organisms. In Escherichia coli, assembly of Fe-S clusters depends on the activity of the iron-sulfur cluster (ISC) assembly and sulfur mobilization (SUF) apparatus. However, the underlying molecular mechanisms and the mechanisms that control Fe-S cluster biogenesis and iron homeostasis are still poorly defined. In this study, we performed a global screen to identify the factors affecting Fe-S cluster biogenesis and iron homeostasis using the Keio collection, which is a library of 3,815 single-gene E. coli knockout mutants. The approach was based on radiolabeling of the cells with [2-14C]dihydrouracil, which entirely depends on the activity of an Fe-S enzyme, dihydropyrimidine dehydrogenase. We identified 49 genes affecting Fe-S cluster biogenesis and/or iron homeostasis, including 23 genes important only under microaerobic/anaerobic conditions. This study defines key proteins associated with Fe-S cluster biogenesis and iron homeostasis, which will aid further understanding of the cellular mechanisms that coordinate the processes. In addition, we applied the [2-14C]dihydrouracil-labeling method to analyze the role of amino acid residues of an Fe-S cluster assembly scaffold (IscU) as a model of the Fe-S cluster assembly apparatus. The analysis showed that Cys37, Cys63, His105, and Cys106 are essential for the function of IscU in vivo, demonstrating the potential of the method to investigate in vivo function of proteins involved in Fe-S cluster assembly.  相似文献   

10.
Proteins containing [Fe-S] clusters perform essential functions in all domains of life. Previously, we identified the sufABCDSE operon as being necessary for virulence of the plant pathogen Erwinia chrysanthemi. In addition, we collected preliminary evidence that the sufABCDSE operon might be involved in the assembly of [Fe-S] clusters. Of particular interest are the sufB, sufC and sufD genes, which are conserved among Eubacteria, Archaea, plants and parasites. The present study establishes SufC as an unorthodox ATPase of the ABC superfamily that is located in the cytosol, wherein it interacts with both SufB and SufD. Moreover, under oxidative stress conditions, SufC was found to be necessary for the activity of enzymes containing oxygen-labile [Fe-S] clusters, but dispensable for glutamate synthase, which contains an oxidatively stable [Fe-S] cluster. Lastly, we have shown SufBCD to be essential for iron acquisition via chrysobactin, a siderophore of major importance in virulence. We discuss a model wherein the SufBCD proteins contribute to bacterial pathogenicity via their role in the assembly of [Fe-S] clusters under oxidative stress and iron limitation.  相似文献   

11.
We have previously reported that mutant strains of Rhodobacter capsulatus that have alanine insertions (+nAla mutants) in the hinge region of the iron sulfur (Fe-S) containing subunit of the bc(1) complex have increased redox midpoint potentials (E(m)) for their [2Fe2S] clusters. The alteration of the E(m) in these strains, which contain mutations far from the metal binding site, implied that the local environment of the metal center is indirectly altered by a change in the interaction of this subunit with the hydroquinone oxidizing (Q(o)) site [Darrouzet, E., Valkova-Valchanova, M., and Daldal, F. (2002) J. Biol. Chem. 277, 3464-3470]. Subsequently, the E(m) changes have been proposed to be predominantly due to a stronger or more stabilized hydrogen bonding between the reduced [2Fe2S] cluster and the Q(o) site inhabitant ubiquinone (Q) [Shinkarev, V. P., Kolling, D. R. J., Miller, T. J., and Crofts, A. R. (2002) Biochemistry 41, 14372-14382]. To further investigate this issue, Fe-S protein-Q interactions were monitored by electron paramagnetic resonance (EPR) spectroscopy and the findings indicated that the wild type and mutant proteins interactions with Q are similar. Moreover, when the Q(pool) was chemically depleted, the E(m) of the [2Fe2S] cluster in mutant bc(1) complexes remained more positive than a similarly treated native enzyme (e.g., the [2Fe2S] E(m) of the +2Ala mutant was 55 mV more positive than the wild type). These data suggest that the increased E(m) of the [2Fe2S] cluster in the +nAla mutants is in part due to the cluster's interaction with Q, and in part to additional factors that are independent of hydrogen bonding to Q. One such factor, the possibility of a different position of the Fe-S at the Q(o) site of the mutant proteins versus the native enzyme, was addressed by determining the orientation of the [2Fe2S] cluster in the membrane using EPR spectroscopy. In the case of the +2Ala mutant, the [2Fe2S] cluster orientation in the absence of inhibitor is different than that seen in the native enzyme. However, the +2Ala mutant cluster shared a similar orientation with the native enzyme when both samples were exposed to either stigmatellin or myxothiazol. In addition, Q(pool) extracted membranes of +2Ala mutant exhibited fewer overall orientations, with the predominant one being more similar to that observed in the non-Q-depleted membranes of the +2Ala mutant than the Q-depleted membranes of a wild-type strain. Therefore, additional component(s) that are independent of Q(o) site inhabitants and that originate from the newly observed orientations of the [2Fe2S] clusters in the +nAla mutants also contribute to the increased midpoint potentials of their [2Fe2S] clusters. While the molecular basis of these components remains to be determined, salient implications of these findings in terms of Q(o) site catalysis are discussed.  相似文献   

12.
The viral protein HBx is the key regulatory factor of the hepatitis B virus (HBV) and the main etiology for HBV-associated liver diseases, such as cirrhosis and hepatocellular carcinoma. Historically, HBx has defied biochemical and structural characterization, deterring efforts to understand its molecular mechanisms. Here we show that soluble HBx fused to solubility tags copurifies with either a [2Fe-2S] or a [4Fe-4S] cluster, a feature that is shared among five HBV genotypes. We show that the O2-stable [2Fe-2S] cluster form converts to an O2-sensitive [4Fe-4S] state when reacted with chemical reductants, a transformation that is best described by a reductive coupling mechanism reminiscent of Fe-S cluster scaffold proteins. In addition, the Fe-S cluster conversions are partially reversible in successive reduction–oxidation cycles, with cluster loss mainly occurring during (re)oxidation. The considerably negative reduction potential of the [4Fe-4S]2+/1+ couple (−520 mV) suggests that electron transfer may not be likely in the cell. Collectively, our findings identify HBx as an Fe-S protein with striking similarities to Fe-S scaffold proteins both in cluster type and reductive transformation. An Fe-S cluster in HBx offers new insights into its previously unknown molecular properties and sets the stage for deciphering the roles of HBx-associated iron (mis)regulation and reactive oxygen species in the context of liver tumorigenesis.  相似文献   

13.
In photosynthetic eukaryotes assembly components of iron-sulfur (Fe-S) cofactors have been studied in plastids and mitochondria, but how cytosolic and nuclear Fe-S cluster proteins are assembled is not known. We have characterized a plant P loop NTPase with sequence similarity to Nbp35 of yeast and mammals, a protein of the cytosolic Cfd1-Nbp35 complex mediating Fe-S cluster assembly. Genome analysis revealed that NBP35 is conserved in the green lineage but that CFD1 is absent. Moreover, plant and algal NBP35 proteins lack the characteristic CXXC motif in the C terminus, thought to be required for Fe-S cluster binding. Nevertheless, chemical reconstitution and spectroscopy showed that Arabidopsis (At) NBP35 bound a [4Fe-4S] cluster in the C terminus as well as a stable [4Fe-4S] cluster in the N terminus. Holo-AtNBP35 was able to transfer an Fe-S cluster to an apoprotein in vitro. When expressed in yeast, AtNBP35 bound 55Fe dependent on the cysteine desulfurase Nfs1 and was able to partially rescue the growth of a cfd1 mutant but not of an nbp35 mutant. The AtNBP35 gene is constitutively expressed in planta, and its disruption was associated with an arrest of embryo development. These results show that despite considerable divergence from the yeast Cfd1-Nbp35 Fe-S scaffold complex, AtNBP35 has retained similar Fe-S cluster binding and transfer properties and performs an essential function.  相似文献   

14.
Godman J  Balk J 《Genetics》2008,179(1):59-68
The unicellular green alga Chlamydomonas reinhardtii is used extensively as a model to study eukaryotic photosynthesis, flagellar functions, and more recently the production of hydrogen as biofuel. Two of these processes, photosynthesis and hydrogen production, are highly dependent on iron-sulfur (Fe-S) enzymes. To understand how Fe-S proteins are assembled in Chlamydomonas, we have analyzed its recently sequenced genome for orthologs of genes involved in Fe-S cluster assembly. We found a total of 32 open reading frames, most single copies, that are thought to constitute a mitochondrial assembly pathway, mitochondrial export machinery, a cytosolic assembly pathway, and components for Fe-S cluster assembly in the chloroplast. The chloroplast proteins are also expected to play a role in the assembly of the H-cluster in [FeFe]-hydrogenases, together with the recently identified HydEF and HydG proteins. Comparison with the higher plant model Arabidopsis indicated a strong degree of conservation of Fe-S cofactor assembly pathways in the green lineage, the pathways being derived from different origins during the evolution of the photosynthetic eukaryote. As a haploid, unicellular organism with available forward and reverse genetic tools, Chlamydomonas provides an excellent model system to study Fe-S cluster assembly and its regulation in photosynthetic eukaryotes.  相似文献   

15.
Dihydroxy acid dehydratase from spinach contains a [2Fe-2S] cluster   总被引:3,自引:0,他引:3  
Dihydroxy acid dehydratase, the third enzyme in the branched-chain amino acid biosynthetic pathway, has been purified to homogeneity (5000-fold) from spinach leaves. The molecular weights of dihydroxy acid dehydratase as determined by sodium dodecyl sulfate and native gel electrophoresis are 63,000 and 110,000, respectively, suggesting the native enzyme is a dimer. 2 moles of iron were found per mol of protein monomer. Chemical analyses of iron and labile sulfide gave an Fe/S2- ratio of 0.95. The EPR spectrum of dithionite-reduced enzyme (gavg = 1.91) is similar to spectra characteristic of Rieske Fe-S proteins and has a spin concentration of 1 spin/1.9 irons. These results strongly suggest that dihydroxy acid dehydratase contains a [2Fe-2S] cluster, a novel finding for enzymes of the hydrolyase class. In contrast to the Rieske Fe-S proteins, the redox potential of the Fe-S cluster is quite low (-470 mV). Upon addition of substrate, the EPR signal of the reduced enzyme changes to one typical of 2Fe ferredoxins (gavg = 1.95), and the visible absorption spectrum of the native enzyme shows substantial changes between 400 and 600 nm. Reduction of the Fe-S cluster decreases the enzyme activity by 6-fold under Vmax conditions. These results suggest the direct involvement of the [2Fe-2S] cluster of dihydroxy acid dehydratase in catalysis. Similar conclusions have been reached for the catalytic involvement of the [4Fe-4S] cluster of the hydrolyase aconitase (Emptage, M. H., Kent, T. A., Kennedy, M. C., Beinert, H., and Münck, E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 4674-4678).  相似文献   

16.
Tong WH  Rouault T 《The EMBO journal》2000,19(21):5692-5700
Iron-sulfur (Fe-S) clusters are cofactors found in many proteins that have important redox, catalytic or regulatory functions. In mammalian cells, almost all known Fe-S proteins are found in the mitochondria, but at least one is found in the cytosol. Here we report cloning of the human homologs to IscU and NifU, iron-binding proteins that play a critical role in Fe-S cluster assembly in bacteria. In human cells, alternative splicing of a common pre-mRNA results in synthesis of two proteins that differ at the N-terminus and localize either to the cytosol (IscU1) or to the mitochondria (IscU2). Biochemical analyses demonstrate that IscU proteins specifically associate with IscS, a cysteine desulfurase that is proposed to sequester inorganic sulfur for Fe-S cluster assembly. Protein complexes containing IscU and IscS can be found in the mitochondria as well as in the cytosol, implying that Fe-S cluster assembly takes place in multiple subcellular compartments in mammalian cells. The possible roles of the IscU proteins in mammalian cells and the potential implications of compartmentalization of Fe-S cluster assembly are discussed.  相似文献   

17.
During the purification of recombinant Bacillus thermoproteolyticus ferredoxin (BtFd) from Escherichia coli, we have noted that some Fe-S proteins were produced in relatively small amounts compared to the originally identified BtFd carrying a [4Fe-4S] cluster. These variants could be purified into three Fe-S protein components (designated as V-I, V-II, and V-III) by standard chromatography procedures. UV-vis and EPR spectroscopic analyses indicated that each of these variants accommodates a [3Fe-4S] cluster. From mass spectrometric and protein sequence analyses together with native and SDS gel electrophoresis, we established that V-I and V-II contain the polypeptide of BtFd associated with acyl carrier protein (ACP) and with coenzyme A (CoA), respectively, and that V-III is a BtFd dimer linked by a disulfide bond. The crystal structure of the BtFd-CoA complex (V-II) determined at 1.6 A resolution revealed that each of the four complexes in the crystallographic asymmetric unit possesses a [3Fe-4S] cluster that is coordinated by Cys(11), Cys(17), and Cys(61). The polypeptide chain of each complex is superimposable onto that of the original [4Fe-4S] BtFd except for the segment containing Cys(14), the fourth ligand to the [4Fe-4S] cluster of BtFd. In the variant molecules, the side chain of Cys(14) is rotated away to the molecular surface, forming a disulfide bond with the terminal sulfhydryl group of CoA. This covalent modification may have occurred in vivo, thereby preventing the assembly of the [4Fe-4S] cluster as observed previously for Desulfovibrio gigas ferredoxin. Possibilities concerning how the variant molecules are formed in the cell are discussed.  相似文献   

18.
Iron-sulfur (Fe-S) clusters are essential cofactors, and mitochondria contain several Fe-S proteins, including the [4Fe-4S] protein aconitase and the [2Fe-2S] protein ferredoxin. Fe-S cluster assembly of these proteins occurs within mitochondria. Although considerable data exist for yeast mitochondria, this biosynthetic process has never been directly demonstrated in mammalian mitochondria. Using [35S]cysteine as the source of sulfur, here we show that mitochondria isolated from Cath.A-derived cells, a murine neuronal cell line, can synthesize and insert new Fe-35S clusters into aconitase and ferredoxins. The process requires GTP, NADH, ATP, and iron, and hydrolysis of both GTP and ATP is necessary. Importantly, we have identified the 35S-labeled persulfide on the NFS1 cysteine desulfurase as a genuine intermediate en route to Fe-S cluster synthesis. In physiological settings, the persulfide sulfur is released from NFS1 and transferred to a scaffold protein, where it combines with iron to form an Fe-S cluster intermediate. We found that the release of persulfide sulfur from NFS1 requires iron, showing that the use of iron and sulfur for the synthesis of Fe-S cluster intermediates is a highly coordinated process. The release of persulfide sulfur also requires GTP and NADH, probably mediated by a GTPase and a reductase, respectively. ATP, a cofactor for a multifunctional Hsp70 chaperone, is not required at this step. The experimental system described here may help to define the biochemical basis of diseases that are associated with impaired Fe-S cluster biogenesis in mitochondria, such as Friedreich ataxia.  相似文献   

19.
Increased [3H]palmitate incorporation into specific cellular proteins has been reported to occur in Chinese hamster ovary (Wellner, R. B., Ray, B., Ghosh, P. C., and Wu, H. C. (1984) J. Biol. Chem. 259, 12788-12793) and yeast (Wen, D., and Schlesinger, M. J. (1984) Mol. Cell. Biol. 4, 688-694) mutant cells. In this paper we report studies concerning the relationship between N-linked oligosaccharide structure and [3H]palmitate incorporation into proteins of Chinese hamster ovary (CHO) cells. We have compared the incorporation of [3H]palmitate into proteins of wild-type and four different mutant CHO cell lines defective in various steps of N-linked protein glycosylation. Sodium dodecyl sulfate-gel electrophoretic analysis showed that three of the mutants exhibited increased [3H]palmitate incorporation into several CHO cellular proteins (approximately 30,000-38,000 molecular weight) as compared to the wild-type cells. One of the affected mutants which accumulates the Man5Gn2Asn intermediate structure was examined in detail. In agreement with earlier reports, virtually all of the [3H] palmitate-labeled proteins of both wild-type and mutant cell lines are membrane-bound. Pretreatment of the mutant cell line with tunicamycin blocked the increased [3H]palmitate incorporation into the two specific proteins (both of approximately 30,000 molecular weight) observed in untreated cells; the decreased incorporation of [3H]palmitate into the 30,000 molecular weight species was accompanied by a concomitant increase in the incorporation of [3H]palmitate into two proteins of approximately 20,000 molecular weight. Pretreatment of wild-type cells with tunicamycin also caused increased [3H]palmitate incorporation into the 20,000 molecular weight species. Endoglycosidase H treatment of [3H]palmitate-labeled extracts from the mutant cell line resulted in the disappearance of the heavily labeled 30,000 molecular weight species and the appearance of intensely labeled 20,000 molecular weight species. Pretreatment of the mutant cell line with either castanospermine or deoxynojirimycin reduced the [3H]palmitate incorporation in to the 30,000 molecular weight species increased in untreated cells, but did not cause increased [3H]palmitate incorporation into the 20,000 molecular weight species. Our results indicate that perturbation of N-linked oligosaccharide structure results in altered incorporation of [3H]palmitate into specific proteins in CHO cells.  相似文献   

20.
Iron-sulfur clusters ([Fe-S] clusters) are assembled on molecular scaffolds and subsequently used for maturation of proteins that require [Fe-S] clusters for their functions. Previous studies have shown that Azotobacter vinelandii produces at least two [Fe-S] cluster assembly scaffolds: NifU, required for the maturation of nitrogenase, and IscU, required for the general maturation of other [Fe-S] proteins. A. vinelandii also encodes a protein designated NfuA, which shares amino acid sequence similarity with the C-terminal region of NifU. The activity of aconitase, a [4Fe-4S] cluster-containing enzyme, is markedly diminished in a strain containing an inactivated nfuA gene. This inactivation also results in a null-growth phenotype when the strain is cultivated under elevated oxygen concentrations. NifU has a limited ability to serve the function of NfuA, as its expression at high levels corrects the defect of the nfuA-disrupted strain. Spectroscopic and analytical studies indicate that one [4Fe-4S] cluster can be assembled in vitro within a dimeric form of NfuA. The resultant [4Fe-4S] cluster-loaded form of NfuA is competent for rapid in vitro activation of apo-aconitase. Based on these results a model is proposed where NfuA could represent a class of intermediate [Fe-S] cluster carriers involved in [Fe-S] protein maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号