首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Current methods for automatically classifying protein sequences into structure/function groups, based on their hydrophobicity profiles, have typically required large training sets. The most successful of these methods are based on hidden Markov models, but may require hundreds of exemplars for training in order to obtain consistent results. In this paper, we describe a new approach, based on nonlinear system identification, which appears to require little training data to achieve highly promising results. Received: 16 March 1998 / Accepted in revised form: 2 June 1999  相似文献   

3.
Modeling splice sites with Bayes networks   总被引:6,自引:0,他引:6  
  相似文献   

4.
MOTIVATION: Cellular processes cause changes over time. Observing and measuring those changes over time allows insights into the how and why of regulation. The experimental platform for doing the appropriate large-scale experiments to obtain time-courses of expression levels is provided by microarray technology. However, the proper way of analyzing the resulting time course data is still very much an issue under investigation. The inherent time dependencies in the data suggest that clustering techniques which reflect those dependencies yield improved performance. RESULTS: We propose to use Hidden Markov Models (HMMs) to account for the horizontal dependencies along the time axis in time course data and to cope with the prevalent errors and missing values. The HMMs are used within a model-based clustering framework. We are given a number of clusters, each represented by one Hidden Markov Model from a finite collection encompassing typical qualitative behavior. Then, our method finds in an iterative procedure cluster models and an assignment of data points to these models that maximizes the joint likelihood of clustering and models. Partially supervised learning--adding groups of labeled data to the initial collection of clusters--is supported. A graphical user interface allows querying an expression profile dataset for time course similar to a prototype graphically defined as a sequence of levels and durations. We also propose a heuristic approach to automate determination of the number of clusters. We evaluate the method on published yeast cell cycle and fibroblasts serum response datasets, and compare them, with favorable results, to the autoregressive curves method.  相似文献   

5.
Hidden Markov Models (HMMs) are practical tools which provide probabilistic base for protein secondary structure prediction. In these models, usually, only the information of the left hand side of an amino acid is considered. Accordingly, these models seem to be inefficient with respect to long range correlations. In this work we discuss a Segmental Semi Markov Model (SSMM) in which the information of both sides of amino acids are considered. It is assumed and seemed reasonable that the information on both sides of an amino acid can provide a suitable tool for measuring dependencies. We consider these dependencies by dividing them into shorter dependencies. Each of these dependency models can be applied for estimating the probability of segments in structural classes. Several conditional probabilities concerning dependency of an amino acid to the residues appeared on its both sides are considered. Based on these conditional probabilities a weighted model is obtained to calculate the probability of each segment in a structure. This results in 2.27% increase in prediction accuracy in comparison with the ordinary Segmental Semi Markov Models, SSMMs. We also compare the performance of our model with that of the Segmental Semi Markov Model introduced by Schmidler et al. [C.S. Schmidler, J.S. Liu, D.L. Brutlag, Bayesian segmentation of protein secondary structure, J. Comp. Biol. 7(1/2) (2000) 233-248]. The calculations show that the overall prediction accuracy of our model is higher than the SSMM introduced by Schmidler.  相似文献   

6.
Chromosomal aberrations in solid tumors appear in complex patterns. It is important to understand how these patterns develop, the dynamics of the process, the temporal or even causal order between aberrations, and the involved pathways. Here we present network models for chromosomal aberrations and algorithms for training models based on observed data. Our models are generative probabilistic models that can be used to study dynamical aspects of chromosomal evolution in cancer cells. They are well suited for a graphical representation that conveys the pathways found in a dataset. By allowing only pairwise dependencies and partition aberrations into modules, in which all aberrations are restricted to have the same dependencies, we reduce the number of parameters so that datasets sizes relevant to cancer applications can be handled.We apply our framework to a dataset of colorectal cancer tumor karyotypes. The obtained model explains the data significantly better than a model where independence between the aberrations is assumed. In fact, the obtained model performs very well with respect to several measures of goodness of fit and is, with respect to repetition of the training, more or less unique.  相似文献   

7.
Array-based comparative genomic hybridization (Array-CGH) is an important technology in molecular biology for the detection of DNA copy number polymorphisms between closely related genomes. Hidden Markov Models (HMMs) are popular tools for the analysis of Array-CGH data, but current methods are only based on first-order HMMs having constrained abilities to model spatial dependencies between measurements of closely adjacent chromosomal regions. Here, we develop parsimonious higher-order HMMs enabling the interpolation between a mixture model ignoring spatial dependencies and a higher-order HMM exhaustively modeling spatial dependencies. We apply parsimonious higher-order HMMs to the analysis of Array-CGH data of the accessions C24 and Col-0 of the model plant Arabidopsis thaliana. We compare these models against first-order HMMs and other existing methods using a reference of known deletions and sequence deviations. We find that parsimonious higher-order HMMs clearly improve the identification of these polymorphisms. Moreover, we perform a functional analysis of identified polymorphisms revealing novel details of genomic differences between C24 and Col-0. Additional model evaluations are done on widely considered Array-CGH data of human cell lines indicating that parsimonious HMMs are also well-suited for the analysis of non-plant specific data. All these results indicate that parsimonious higher-order HMMs are useful for Array-CGH analyses. An implementation of parsimonious higher-order HMMs is available as part of the open source Java library Jstacs (www.jstacs.de/index.php/PHHMM).  相似文献   

8.

Background:  

Baum-Welch training is an expectation-maximisation algorithm for training the emission and transition probabilities of hidden Markov models in a fully automated way. It can be employed as long as a training set of annotated sequences is known, and provides a rigorous way to derive parameter values which are guaranteed to be at least locally optimal. For complex hidden Markov models such as pair hidden Markov models and very long training sequences, even the most efficient algorithms for Baum-Welch training are currently too memory-consuming. This has so far effectively prevented the automatic parameter training of hidden Markov models that are currently used for biological sequence analyses.  相似文献   

9.
MOTIVATION: Analyses of genomic signatures are gaining attention as they allow studies of species-specific relationships without involving alignments of homologous sequences. A na?ve Bayesian classifier was built to discriminate between different bacterial compositions of short oligomers, also known as DNA words. The classifier has proven successful in identifying foreign genes in Neisseria meningitis. In this study we extend the classifier approach using either a fixed higher order Markov model (Mk) or a variable length Markov model (VLMk). RESULTS: We propose a simple algorithm to lock a variable length Markov model to a certain number of parameters and show that the use of Markov models greatly increases the flexibility and accuracy in prediction to that of a na?ve model. We also test the integrity of classifiers in terms of false-negatives and give estimates of the minimal sizes of training data. We end the report by proposing a method to reject a false hypothesis of horizontal gene transfer. AVAILABILITY: Software and Supplementary information available at www.cs.chalmers.se/~dalevi/genetic_sign_classifiers/.  相似文献   

10.
Complex biological dynamics often generate sequences of discrete events which can be described as a Markov process. The order of the underlying Markovian stochastic process is fundamental for characterizing statistical dependencies within sequences. As an example for this class of biological systems, we investigate the Markov order of sequences of microsaccadic eye movements from human observers. We calculate the integrated likelihood of a given sequence for various orders of the Markov process and use this in a Bayesian framework for statistical inference on the Markov order. Our analysis shows that data from most participants are best explained by a first-order Markov process. This is compatible with recent findings of a statistical coupling of subsequent microsaccade orientations. Our method might prove to be useful for a broad class of biological systems.  相似文献   

11.
Markov models of ion channel dynamics have evolved as experimental advances have improved our understanding of channel function. Past studies have examined limited sets of various topologies for Markov models of channel dynamics. We present a systematic method for identification of all possible Markov model topologies using experimental data for two types of native voltage-gated ion channel currents: mouse atrial sodium currents and human left ventricular fast transient outward potassium currents. Successful models identified with this approach have certain characteristics in common, suggesting that aspects of the model topology are determined by the experimental data. Incorporating these channel models into cell and tissue simulations to assess model performance within protocols that were not used for training provided validation and further narrowing of the number of acceptable models. The success of this approach suggests a channel model creation pipeline may be feasible where the structure of the model is not specified a priori.  相似文献   

12.
In this article, we present a likelihood-based framework for modeling site dependencies. Our approach builds upon standard evolutionary models but incorporates site dependencies across the entire tree by letting the evolutionary parameters in these models depend upon the ancestral states at the neighboring sites. It thus avoids the need for introducing new and high-dimensional evolutionary models for site-dependent evolution. We propose a Markov chain Monte Carlo approach with data augmentation to infer the evolutionary parameters under our model. Although our approach allows for wide-ranging site dependencies, we illustrate its use, in two non-coding datasets, in the case of nearest-neighbor dependencies (i.e., evolution directly depending only upon the immediate flanking sites). The results reveal that the general time-reversible model with nearest-neighbor dependencies substantially improves the fit to the data as compared to the corresponding model with site independence. Using the parameter estimates from our model, we elaborate on the importance of the 5-methylcytosine deamination process (i.e., the CpG effect) and show that this process also depends upon the 5' neighboring base identity. We hint at the possibility of a so-called TpA effect and show that the observed substitution behavior is very complex in the light of dinucleotide estimates. We also discuss the presence of CpG effects in a nuclear small subunit dataset and find significant evidence that evolutionary models incorporating context-dependent effects perform substantially better than independent-site models and in some cases even outperform models that incorporate varying rates across sites.  相似文献   

13.
Cook RJ  Ng ET  Meade MO 《Biometrics》2000,56(4):1109-1117
We describe a method for making inferences about the joint operating characteristics of multiple diagnostic tests applied longitudinally and in the absence of a definitive reference test. Log-linear models are adopted for the classification distributions conditional on the latent state, where inclusion of appropriate interaction terms accommodates conditional dependencies among the tests. A marginal likelihood is constructed by marginalizing over a latent two-state Markov process. Specific latent processes we consider include a first-order Markov model, a second-order Markov model, and a time-nonhomogeneous Markov model, although the method is described in full generality. Adaptations to handle missing data are described. Model diagnostics are considered based on the bootstrap distribution of conditional residuals. The methods are illustrated by application to a study of diffuse bilateral infiltrates among patients in intensive care wards in which the objective was to assess aspects of validity and clinical agreement.  相似文献   

14.
In order to determine the rules of sequencing of songs used by American redstarts, we related Markovian and hierarchical models to recordings obtained from free-living males. In the smaller repertoires of three or four songs, low order Markov chain models fitted the data. 9 of the 10 sequences so examined were first-order, and the last was second-order. Larger repertoires of 6 and 8 songs were hierarchical in organization with subsets of songs having independent sequencing rules. Most samples of singing were stationary in their transition rules over periods of several days: non-stationarity was sometimes associated with a change in the number of songs forming the sequence, or in repetitions of songs. We examine causal models of song sequencing and conclude that our results generally favor competition models, although some sequential dependencies may also apply. Hierarchical organization in the serial repertoires of American redstarts may reflect developmental influences rather than effects of repertoire size itself.  相似文献   

15.
MOTIVATION: Our goal is to construct a model for genetic regulatory networks such that the model class: (i) incorporates rule-based dependencies between genes; (ii) allows the systematic study of global network dynamics; (iii) is able to cope with uncertainty, both in the data and the model selection; and (iv) permits the quantification of the relative influence and sensitivity of genes in their interactions with other genes. RESULTS: We introduce Probabilistic Boolean Networks (PBN) that share the appealing rule-based properties of Boolean networks, but are robust in the face of uncertainty. We show how the dynamics of these networks can be studied in the probabilistic context of Markov chains, with standard Boolean networks being special cases. Then, we discuss the relationship between PBNs and Bayesian networks--a family of graphical models that explicitly represent probabilistic relationships between variables. We show how probabilistic dependencies between a gene and its parent genes, constituting the basic building blocks of Bayesian networks, can be obtained from PBNs. Finally, we present methods for quantifying the influence of genes on other genes, within the context of PBNs. Examples illustrating the above concepts are presented throughout the paper.  相似文献   

16.
Gene-Gene dependency plays a very important role in system biology as it pertains to the crucial understanding of different biological mechanisms. Time-course microarray data provides a new platform useful to reveal the dynamic mechanism of gene-gene dependencies. Existing interaction measures are mostly based on association measures, such as Pearson or Spearman correlations. However, it is well known that such interaction measures can only capture linear or monotonic dependency relationships but not for nonlinear combinatorial dependency relationships. With the invocation of hidden Markov models, we propose a new measure of pairwise dependency based on transition probabilities. The new dynamic interaction measure checks whether or not the joint transition kernel of the bivariate state variables is the product of two marginal transition kernels. This new measure enables us not only to evaluate the strength, but also to infer the details of gene dependencies. It reveals nonlinear combinatorial dependency structure in two aspects: between two genes and across adjacent time points. We conduct a bootstrap-based test for presence/absence of the dependency between every pair of genes. Simulation studies and real biological data analysis demonstrate the application of the proposed method. The software package is available under request.  相似文献   

17.
C Fuchs 《Gene》1980,10(4):371-373
Several Markov chain models (up to fourth order) have been fitted to the sequences of the seven DNAs presented in Fuchs et al. (1980). Two methods for determining the order of Markov chain are applied to the data. The two methods lead to different conclusions and we dicuss these discrepancies. When the distribution of the nucleotides in a DNA sequence is investigated, it is suggested that the study on the order of the Markov model should be supplemented with additional analysis.  相似文献   

18.
Several Markov chain models (up to fourth order) have been fitted to the sequences of the seven DNAs presented in Fuchs et al. (1980). Two methods for determining the order of Markov chain are applied to the data. The two methods lead to different conclusions and we dicuss these discrepancies. When the distribution of the nucleotides in a DNA sequence is investigated, it is suggested that the study on the order of the Markov model should be supplemented with additional analysis.  相似文献   

19.
Some time ago, the Markov processes were introduced in biomedical sciences in order to study disease history events. Homogeneous and Non-homogeneous Markov processes are an important field of research into stochastic processes, especially when exact transition times are unknown and interval-censored observations are present in the analysis. Non-homogeneous Markov process should be used when the homogeneous assumption is too strong. However these sorts of models increase the complexity of the analysis and standard software is limited. In this paper, some methods for fitting non-homogeneous Markov models are reviewed and an algorithm is proposed for biomedical data analysis. The method has been applied to analyse breast cancer data. Specific software for this purpose has been implemented.  相似文献   

20.
Most ab initio gene predictors use a probabilistic sequence model, typically a hidden Markov model, to combine separately trained models of genomic signals and content. By combining separate models of relevant genomic features, such gene predictors can exploit small training sets and incomplete annotations, and can be trained fairly efficiently. However, that type of piecewise training does not optimize prediction accuracy and has difficulty in accounting for statistical dependencies among different parts of the gene model. With genomic information being created at an ever-increasing rate, it is worth investigating alternative approaches in which many different types of genomic evidence, with complex statistical dependencies, can be integrated by discriminative learning to maximize annotation accuracy. Among discriminative learning methods, large-margin classifiers have become prominent because of the success of support vector machines (SVM) in many classification tasks. We describe CRAIG, a new program for ab initio gene prediction based on a conditional random field model with semi-Markov structure that is trained with an online large-margin algorithm related to multiclass SVMs. Our experiments on benchmark vertebrate datasets and on regions from the ENCODE project show significant improvements in prediction accuracy over published gene predictors that use intrinsic features only, particularly at the gene level and on genes with long introns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号