首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The urea cycle in the liver of adjuvant-induced arthritic rats was investigated using the isolated perfused liver. Urea production in livers from arthritic rats was decreased during substrate-free perfusion and also in the presence of the following substrates: alanine, alanine + ornithine, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine but increased when arginine and citrulline + aspartate were the substrates. No differences were found with ammonia + aspartate, ammonia + aspartate + glutamate, aspartate, aspartate + glutamate and citrulline. Ammonia consumption was smaller in the arthritic condition when the substance was infused together with lactate or pyruvate but higher when the substance was simultaneously infused with aspartate or aspartate + glutamate. Glucose production tended to correlate with the smaller or higher rates of urea synthesis. Blood urea was higher in arthritic rats (+25.6%), but blood ammonia was lower (–32.2%). Critical for the synthesis of urea from various substrates in arthritic rats seems to be the availability of aspartate, whose production in the liver is probably limited by both the reduced gluconeogenesis and aminotransferase activities. This is indicated by urea synthesis which was never inferior in the arthritic condition when aspartate was exogenously supplied, being even higher when both aspartate and citrulline were simultaneously present. Possibly, the liver of arthritic rats has a different substrate supply of nitrogenous compounds. This could be in the form of different concentrations of aspartate or other aminoacids such as citrulline or arginine (from the kidneys) which allow higher rates of hepatic ureogenesis.  相似文献   

2.
Glucose and Synaptosomal Glutamate Metabolism: Studies with [15N]Glutamate   总被引:1,自引:0,他引:1  
The metabolism of [15N]glutamate was studied with gas chromatography-mass spectrometry in rat brain synaptosomes incubated with and without glucose. [15N]Glutamate was taken up rapidly by the preparation, reaching a steady-state level in less than 5 min. 15N was incorporated predominantly into aspartate and, to a much lesser extent, into gamma-aminobutyrate. The amount of [15N]ammonia formed was very small, and the enrichment of 15N in alanine and glutamine was below the level of detection. Omission of glucose substantially increased the rate and amount of [15N]aspartate generated. It is proposed that in synaptosomes (a) the predominant route of glutamate nitrogen disposal is through the aspartate aminotransferase reaction; (b) the aspartate aminotransferase pathway generates 2-oxoglutarate, which then serves as the metabolic fuel needed to produce ATP; (c) utilization of glutamate via transamination to aspartate is greatly accelerated when flux through the tricarboxylic acid cycle is diminished by the omission of glucose; (d) the metabolism of glutamate via glutamate dehydrogenase in intact synaptosomes is slow, most likely reflecting restriction of enzyme activity by some unknown factor(s), which suggests that the glutamate dehydrogenase reaction may not be near equilibrium in neurons; and (e) the activities of alanine aminotransferase and glutamine synthetase in synaptosomes are very low.  相似文献   

3.
This study examines the role of glucagon and insulin in the incorporation of (15)N derived from (15)N-labeled glutamine into aspartate, citrulline and, thereby, [(15)N]urea isotopomers. Rat livers were perfused, in the nonrecirculating mode, with 0.3 mM NH(4)Cl and either 2-(15)N- or 5-(15)N-labeled glutamine (1 mM). The isotopic enrichment of the two nitrogenous precursor pools (ammonia and aspartate) involved in urea synthesis as well as the production of [(15)N]urea isotopomers were determined using gas chromatography-mass spectrometry. This information was used to examine the hypothesis that 5-N of glutamine is directly channeled to carbamyl phosphate (CP) synthesis. The results indicate that the predominant metabolic fate of [2-(15)N] and [5-(15)N]glutamine is incorporation into urea. Glucagon significantly stimulated the uptake of (15)N-labeled glutamine and its metabolism via phosphate-dependent glutaminase (PDG) to form U(m+1) and U(m+2) (urea containing one or two atoms of (15)N). However, insulin had little effect compared with control. The [5-(15)N]glutamine primarily entered into urea via ammonia incorporation into CP, whereas the [2-(15)N]glutamine was predominantly incorporated via aspartate. This is evident from the relative enrichments of aspartate and of citrulline generated from each substrate. Furthermore, the data indicate that the (15)NH(3) that was generated in the mitochondria by either PDG (from 5-(15)N) or glutamate dehydrogenase (from 2-(15)N) enjoys the same partition between incorporation into CP or exit from the mitochondria. Thus, there is no evidence for preferential access for ammonia that arises by the action of PDG to carbamyl-phosphate synthetase. To the contrary, we provide strong evidence that such ammonia is metabolized without any such metabolic channeling. The glucagon-induced increase in [(15)N]urea synthesis was associated with a significant elevation in hepatic N-acetylglutamate concentration. Therefore, the hormonal regulation of [(15)N]urea isotopomer production depends upon the coordinate action of the mitochondrial PDG pathway and the synthesis of N-acetylglutamate (an obligatory activator of CP). The current study may provide the theoretical and methodological foundations for in vivo investigations of the relationship between the hepatic urea cycle enzyme activities, the flux of (15)N-labeled glutamine into the urea cycle, and the production of urea isotopomers.  相似文献   

4.
Tracer quantities (in 0.2 ml) of 13N-labeled glutamate, alanine, or glutamine(amide) were administered rapidly (less than or equal to 2 s) via the portal vein of anesthetized adult male rats. Liver content of tracer at 5 s was 57 +/- 6 (n = 6), 24 +/- 1 (n = 3), and 69 +/- 7 (n = 3)% of the injected dose, respectively. Portal-hepatic vein differences for the corresponding amino acids were 17 +/- 6, 26 +/- 8, and 19 +/- 9% (n = 4), respectively, suggesting some export of glutamate and glutamine, but not of alanine, to the hepatic vein. Following L-[13N]glutamate administration, label rapidly appeared in liver alanine and aspartate (within seconds). The data emphasize the rapidity of nitrogen exchange via linked transaminases. By 30 s following administration of either L-[13N]glutamate or L-[13N]alanine, label in liver glutamate was comparable; yet, by 1 min greater than or equal to 9 times as much label was present in liver glutamine(amine) following L-[13N]glutamate administration than following L-[13N]alanine administration. Conversely, label in liver urea at 1 min was more pronounced in the latter case despite: (a) comparable total pool sizes of glutamate and alanine in liver; and (b) label incorporation from alanine into urea must occur via prior transfer of alanine nitrogen to glutamate. The data provide evidence for zonal differences in uptake of alanine and glutamate from the portal vein in vivo. The rate of turnover of L-[amide-13N]glutamine was considerably slower than that of L-[13N]alanine or of L-[13N]glutamate, presumably due in part to the higher concentration of glutamine in that organ. Nevertheless, it was possible to show that despite occasional suggestions to the contrary, glutamine(amide) is a source of urea nitrogen in vivo. The present findings continue to emphasize the rapidity of nitrogen exchange reactions in vivo.  相似文献   

5.
Effects of ischaemia on metabolite concentrations in rat liver   总被引:24,自引:21,他引:3       下载免费PDF全文
1. Changes in the concentrations of ammonia, glutamine, glutamate, 2-oxoglutarate, 3-hydroxybutyrate, acetoacetate, alanine, aspartate, malate, lactate, pyruvate, NAD(+), NADH and adenine nucleotides were measured in freeze-clamped rat liver during ischaemia. 2. Although the concentrations of most of the metabolites changed rapidly during ischaemia the ratios [glutamate]/[2-oxoglutarate][NH(4) (+)] and [3-hydroxybutyrate]/[acetoacetate] changed equally and the value of the expression [3-hydroxybutyrate][2-oxoglutarate][NH(4) (+)]/[acetoacetate][glutamate] remained approximately constant, indicating that the 3-hydroxybutyrate dehydrogenase and glutamate dehydrogenase systems were at near-equilibrium with the mitochondrial NAD(+) couple. 3. The value of the expression [alanine][oxoglutarate]/[pyruvate][glutamate] was about 0.7 in vivo and remained fairly constant during the ischaemic period of 5min, although the concentrations of alanine and oxoglutarate changed substantially. No explanation can be offered why the value of the ratio differed from that of the equilibrium constant of the alanine aminotransferase reaction, which is 1.48. 4. Injection of l-cycloserine 60min before the rats were killed increased the concentration of alanine in the liver fourfold and decreased the concentration of the other metabolites measured, except that of pyruvate. During ischaemia the concentration of alanine did not change but that of aspartate almost doubled. 5. After treatment with l-cycloserine the value in vivo of the expression [alanine][oxoglutarate]/[pyruvate][glutamate] rose from 0.7 to 2.4. During ischaemia the value returned to 0.8. 6. The effects of l-cycloserine are consistent with the assumption that it specifically inhibits alanine aminotransferase. 7. Most of the alanine formed during ischaemia is probably derived from pyruvate and from ammonia released by the deamination of adenine nucleotides and glutamine. The alanine is presumably formed by the combined action of glutamate dehydrogenase and alanine aminotransferase. 8. The rate of anaerobic glycolysis, calculated from the increase in the lactate concentration, was 1.3mumol/min per g fresh wt. 9. Although the concentrations of the adenine nucleotides changed rapidly during ischaemia, the ratio [ATP][AMP]/[ADP](2) remained constant at 0.54, indicating that adenylate kinase established near-equilibrium under these conditions.  相似文献   

6.
We have utilized [(15)N]alanine or (15)NH(3) as metabolic tracers in order to identify sources of nitrogen for hepatic ureagenesis in a liver perfusion system. Studies were done in the presence and absence of physiologic concentrations of portal venous ammonia in order to test the hypothesis that, when the NH(4)(+):aspartate ratio is >1, increased hepatic proteolysis provides cytoplasmic aspartate in order to support ureagenesis. When 1 mm [(15)N]alanine was the sole nitrogen source, the amino group was incorporated into both nitrogens of urea and both nitrogens of glutamine. However, when studies were done with 1 mm alanine and 0.3 mm NH(4)Cl, alanine failed to provide aspartate at a rate that would have detoxified all administered ammonia. Under these circumstances, the presence of ammonia at a physiologic concentration stimulated hepatic proteolysis. In perfusions with alanine alone, approximately 400 nmol of nitrogen/min/g liver was needed to satisfy the balance between nitrogen intake and nitrogen output. When the model included alanine and NH(4)Cl, 1000 nmol of nitrogen/min/g liver were formed from an intra-hepatic source, presumably proteolysis. In this manner, the internal pool provided the cytoplasmic aspartate that allowed the liver to dispose of mitochondrial carbamyl phosphate that was rapidly produced from external ammonia. This information may be relevant to those clinical situations (renal failure, cirrhosis, starvation, low protein diet, and malignancy) when portal venous NH(4)(+) greatly exceeds the concentration of aspartate. Under these circumstances, the liver must summon internal pools of protein in order to accommodate the ammonia burden.  相似文献   

7.
This mini-review summarizes studies my associates and I carried out that are relevant to the topic of the present volume [i.e. glutamate dehydrogenase (GDH)] using radioactive 13N (t1/2 9.96 min) as a biological tracer. These studies revealed the previously unrecognized rapidity with which nitrogen is exchanged among certain metabolites in vivo. For example, our work demonstrated that (a) the t1/2 for conversion of portal vein ammonia to urea in the rat liver is ∼10-11 s, despite the need for five enzyme-catalyzed steps and two mitochondrial transport steps, (b) the residence time for ammonia in the blood of anesthetized rats is ≤7-8 s, (c) the t1/2 for incorporation of blood-borne ammonia into glutamine in the normal rat brain is <3 s, and (d) equilibration between glutamate and aspartate nitrogen in rat liver is extremely rapid (seconds), a reflection of the fact that the components of the hepatic aspartate aminotransferase reaction are in thermodynamic equilibrium. Our work emphasizes the importance of the GDH reaction in rat liver as a conduit for dissimilating or assimilating ammonia as needed. In contrast, our work shows that the GDH reaction in rat brain appears to operate mostly in the direction of ammonia production (dissimilation). The importance of the GDH reaction as an endogenous source of ammonia in the brain and the relation of GDH to the brain glutamine cycle is discussed. Finally, our work integrates with the increasing use of positron emission tomography (PET) and nuclear magnetic resonance (NMR) to study brain ammonia uptake and brain glutamine, respectively, in normal individuals and in patients with liver disease or other diseases associated with hyperammonemia.  相似文献   

8.
The metabolism of 2.5 mM-[15N]aspartate in cultured astrocytes was studied with gas chromatography-mass spectrometry. Three primary metabolic pathways of aspartate nitrogen disposition were identified: transamination with 2-oxoglutarate to form [15N]glutamate, the nitrogen of which subsequently was transferred to glutamine, alanine, serine and ornithine; condensation with IMP in the first step of the purine nucleotide cycle, the aspartate nitrogen appearing as [6-amino-15N]adenine nucleotides; condensation with citrulline to form argininosuccinate, which is cleaved to yield [15N]arginine. Of these three pathways, the formation of arginine was quantitatively the most important, and net nitrogen flux to arginine was greater than flux to other amino acids, including glutamine. Notwithstanding the large amount of [15N]arginine produced, essentially no [15N]urea was measured. Addition of NaH13CO3 to the astrocyte culture medium was associated with the formation of [13C]citrulline, thus confirming that these cells are capable of citrulline synthesis de novo. When astrocytes were incubated with a lower (0.05 mM) concentration of [15N]aspartate, most 15N was recovered in alanine, glutamine and arginine. Formation of [6-amino-15N]adenine nucleotides was diminished markedly compared with results obtained in the presence of 2.5 mM-[15N]aspartate.  相似文献   

9.
The main goal of the current study was to elucidate the role of mitochondrial arginine metabolism in the regulation of N-acetylglutamate and urea synthesis. We hypothesized that arginine catabolism via mitochondrially bound arginase augments ureagenesis by supplying ornithine for net synthesis of citrulline, glutamate, N-acetylglutamate, and aspartate. [U-(15)N(4)]arginine was used as precursor and isolated mitochondria or liver perfusion as a model system to monitor arginine catabolism and the incorporation of (15)N into various intermediate metabolites of the urea cycle. The results indicate that approximately 8% of total mitochondrial arginase activity is located in the matrix, and 90% is located in the outer membrane. Experiments with isolated mitochondria showed that approximately 60-70% of external [U-(15)N(4)]arginine catabolism was recovered as (15)N-labeled ornithine, glutamate, N-acetylglutamate, citrulline, and aspartate. The production of (15)N-labeled metabolites was time- and dose-dependent. During liver perfusion, urea containing one (U(m+1)) or two (U(m+2)) (15)N was generated from perfusate [U-(15)N(4)]arginine. The output of U(m+2) was between 3 and 8% of total urea, consistent with the percentage of activity of matrix arginase. U(m+1) was formed following mitochondrial production of [(15)N]glutamate from [alpha,delta-(15)N(2)]ornithine and transamination of [(15)N]glutamate to [(15)N]aspartate. The latter is transported to cytosol and incorporated into argininosuccinate. Approximately 70, 75, 7, and 5% of hepatic ornithine, citrulline, N-acetylglutamate, and aspartate, respectively, were derived from perfusate [U-(15)N(4)]arginine. The results substantiate the hypothesis that intramitochondrial arginase, presumably the arginase-II isozyme, may play an important role in the regulation of hepatic ureagenesis by furnishing ornithine for net synthesis of N-acetylglutamate, citrulline, and aspartate.  相似文献   

10.
An alternative route for the primary assimilation of ammonia proceeds via glutamine synthetase-carbamyl phosphate synthetase and its inherent glutaminase activity in Anabaena sp. strain 1F, a marine filamentous, heterocystous cyanobacterium. Evidence for the presence of this possible alternative route to glutamate was provided by the use of amino acid analogs as specific enzyme inhibitors, enzymological studies, and radioistopic labeling experiments. The amino acid pool patterns of continuous cultures of Anabaena sp. strain 1F were markedly influenced by the nitrogen source. A relatively high concentration of glutamate was maintained in the amino acid pools of all cultures irrespective of the nitrogen source, reflecting the central role of glutamate in nitrogen metabolism. The addition of 1.0 microM azaserine increased the intracellular pools of glutamate and glutamine. All attempts to detect any enzymatic activity for glutamate synthase by measuring the formation of L-[14C]glutamate from 2-keto-[1-14C]glutarate and glutamine failed. The addition of 10 microM DL-7-azatryptophan caused a transient accumulation of intracellular citrulline and alanine which was not affected by the presence of chloramphenicol. The in vitro activity of carbamyl phosphate synthetase and glutaminase increased severalfold in the presence of azatryptophan. Results from radioisotopic labeling experiments with [14C]bicarbonate and L-[1-14C]ornithine also indicated that citrulline was formed via carbamyl phosphate synthetase and ornithine transcarbamylase. In addition to its effects on nitrogen metabolism, azatryptophan also affected carbon metabolism by inhibiting photosynthetic carbon assimilation and photosynthetic oxygen evolution.  相似文献   

11.
Our objective was to study brain amino acid metabolism in response to ketosis. The underlying hypothesis is that ketosis is associated with a fundamental change of brain amino acid handling and that this alteration is a factor in the anti-epileptic effect of the ketogenic diet. Specifically, we hypothesize that brain converts ketone bodies to acetyl-CoA and that this results in increased flux through the citrate synthetase reaction. As a result, oxaloacetate is consumed and is less available to the aspartate aminotransferase reaction; therefore, less glutamate is converted to aspartate and relatively more glutamate becomes available to the glutamine synthetase and glutamate decarboxylase reactions. We found in a mouse model of ketosis that the concentration of forebrain aspartate was diminished but the concentration of acetyl-CoA was increased. Studies of the incorporation of 13C into glutamate and glutamine with either [1-(13)C]glucose or [2-(13)C]acetate as precursor showed that ketotic brain metabolized relatively less glucose and relatively more acetate. When the ketotic mice were administered both acetate and a nitrogen donor, such as alanine or leucine, they manifested an increased forebrain concentration of glutamine and GABA. These findings supported the hypothesis that in ketosis there is greater production of acetyl-CoA and a consequent alteration in the equilibrium of the aspartate aminotransferase reaction that results in diminished aspartate production and potentially enhanced synthesis of glutamine and GABA.  相似文献   

12.
《Experimental mycology》1995,19(4):297-304
Chalot, M., Finlay, R. D., Ek, H., and Söderström, B. 1995. Metabolism of [15N]alanine in the ectomycorrhizal fungus Paxillus involutus. Experimental Mycology 19, 297-304. Alanine metabolism in the ectomycorrhizal fungus Paxillus involutus was investigated using [15N]alanine. Short-term exposure of mycelial discs to [15N]alanine showed that the greatest flow of 15N was to glutamate and to aspartate. Levels of enrichment were as high as 15-20% for glutamate and 13-18% for aspartate, whereas that of alanine reached 30%. Label was also detected in the amino-N of glutamine and in serine and glycine, although at lower levels. Preincubation of mycelia with aminooxyacetate, an inhibitor of transamination reactions. resulted in complete inhibition of the flow of the label to glutamate, aspartate, and amino-N of glutamine, whereas [15N]alanine rapidly accumulated. This evidence indicates the direct involvement of alanine aminotransferase for translocation of 15N from alanine to glutamate. Alanine may be a convenient reservoir of both nitrogen and carbon.  相似文献   

13.
1. Rats were infused with 15NH4+ or L-[15N]alanine to induce hyperammonaemia, a potential cause of hepatic encephalopathy. HClO4 extracts of freeze-clamped brain, liver and kidney were analysed by 15N-n.m.r. spectroscopy in combination with biochemical assays to investigate the effects of hyperammonaemia on tissue concentrations of ammonia, glutamine, glutamate and urea. 2. 15NH4+ infusion resulted in a 36-fold increase in the concentration of blood ammonia. Cerebral glutamine concentration increased, with 15NH4+ incorporated predominantly into the gamma-nitrogen atom of glutamine. Incorporation into glutamate was very low. Cerebral ammonia concentration increased 5-10-fold. The results suggest that the capacity of glutamine synthetase for ammonia detoxification was saturated. 3. Pretreatment with the glutamine synthetase inhibitor L-methionine DL-sulphoximine resulted in 84% inhibition of [gamma-15N]glutamine synthesis, but incorporation of 15N into other metabolites was not observed. The result suggests that no major alternative pathway for ammonia detoxification, other than glutamine synthetase, exists in rat brain. 4. In the liver 15NH4+ was incorporated into urea, glutamine, glutamate and alanine. The specific activity of 15N was higher in the gamma-nitrogen atom of glutamine than in urea. A similar pattern was observed when [15N]alanine was infused. The results are discussed in terms of the near-equilibrium states of the reactions involved in glutamate and alanine formation, heterogeneous distribution in the liver lobules of the enzymes involved in ammonia removal and their different affinities for ammonia. 5. Synthesis of glutamine, glutamate and hippurate de novo was observed in kidney. Hippurate, as well as 15NH4+, was contributed by co-extracted urine. 6. The potential utility and limitations of 15N n.m.r. for studies of mammalian metabolism in vivo are discussed.  相似文献   

14.
Kinetic and biochemical parameters of nitrogen-13 flux from L-[13N]-glutamate in myocardium were examined. Tissue radioactivity kinetics and chemical analyses were determined after bolus injection of L-[13N]glutamate into isolated arterially perfused interventricular septa under various metabolic states, which included addition of lactate, pyruvate, aminooxyacetate (a transminase inhibitor), or a combination of aminooxyacetate and pyruvate to the standard perfusate containing insulin and glucose. Chemical analysis of tissue and effluent at 6 min allowed determination of the composition of the slow third kind kinetic component of the time-activity curves. 13N-labeled aspartate, alanine and glutamate accounted for more than 80% of the tissue nitrogen-13 under the experimental conditions used. Specific activities for these amino acids were constant, but not identical to each other, from 6 through 15 min after administration of L-[13N]glutamate. Little labeled ammonia (1.9%) and glutamine (4.7%) were produced, indicating limited accessibility of exogenous glutamate to catabolic mitochondrial glutamate dehydrogenase and glutamine synthetase, under control conditions. Lactate and pyruvate additions did not affect tissue amino acid specific activities. Aminooxyacetate suppressed formation of 13N-labeled alanine and aspartate and increased production of L-[13N]glutamine and [13N]ammonia. Formation of [13N]ammonia was, however, substantially decreased when aminooxyacetate was used in the presence of exogenous pyruvate. The data support a model for glutamate compartmentation in myocardium not affected by increasing the velocity of enzymatic reactions through increased substrate (i.e., lactate or pyruvate) concentrations but which can be altered by competitive inhibition of transaminases (via aminooxyacetate) making exogenous glutamate more available to other compartments.  相似文献   

15.
Chronic ammonia toxicity in experimental mice was induced by exposing them for 2 and 5 days to 5 % (v/v) ammonia solution. The enzymes concerned with glutamate metabolism (aspartate-, alanine- and tyrosine aminotransferases, glutamate dehydrogenase and glutamine synthetase) and (Na+ + K+)-ATPase were estimated in the three regions of brain (cerebellum, cerebral cortex and brain stem) and in liver. Glutamate, aspartate, alanine, glutamine and GABA, RNA and protein were also estimated in the three regions of brain and liver. A significant rise in the activity of (Na+ + K+)-ATPase in all the three regions of brain along with a fall in the activity of alanine aminotransferase was noticed. Changes in the activities of other enzymes were also observed. A significant increase in alanine and a decrease in glutamic acid was observed while no change was observed in the content of other amino acids belonging to the glutamate family. As a result of this, changes in the ratios of glutamate/glutamine and glutamate + aspartate/GABA was observed. The results indicated that the brain was in a state of more depression and less of excitation. Under these conditions the liver tissue was showing a profound rise in the activity of the enzymes of glutamate metabolism. The results are further discussed.  相似文献   

16.
Cerebral Ammonia Metabolism in Hyperammonemic Rats   总被引:7,自引:7,他引:0  
The short-term metabolic fate of blood-borne [13N]ammonia was determined in the brains of chronically (8- or 14-week portacaval-shunted rats) or acutely (urease-treated) hyperammonemic rats. Using a "freeze-blowing" technique it was shown that the overwhelming route for metabolism of blood-borne [13N]ammonia in normal, chronically hyperammonemic and acutely hyperammonemic rat brain was incorporation into glutamine (amide). However, the rate of turnover of [13N]ammonia to L-[amide-13N]glutamine was slower in the hyperammonemic rat brain than in the normal rat brain. The activities of several enzymes involved in cerebral ammonia and glutamate metabolism were also measured in the brains of 14-week portacaval-shunted rats. The rat brain appears to have little capacity to adapt to chronic hyperammonemia because there were no differences in activity compared with those of weight-matched controls for the following brain enzymes involved in glutamate/ammonia metabolism: glutamine synthetase, glutamate dehydrogenase, aspartate aminotransferase, glutamine transaminase, glutaminase, and glutamate decarboxylase. The present findings are discussed in the context of the known deleterious effects on the CNS of high ammonia levels in a variety of diseases.  相似文献   

17.
Carbamyl phosphate synthase-I and glutamate dehydrogenase both form a complex with mitochondrial aspartate aminotransferase. Instead of these two enzymes competing for the aminotransferase, carbamyl phosphate synthase-I enhances glutamate dehydrogenase-aminotransferase interaction. This suggests that a complex can be formed between all three enzymes. Since this complex is stable in the presence of substrates and modifiers of the three enzymes, it could conceivably convert NH4+ produced from aspartate into carbamyl phosphate. Furthermore, since carbamyl phosphate synthase-I is the predominant protein in liver mitochondria, it could play a major role in placing the aminotransferase and glutamate dehydrogenase in close proximity. Malate removes glutamate dehydrogenase from the tri-enzyme complex and thus could play a role in determining whether glutamate dehydrogenase interacts with carbamyl phosphate synthase-I or is available to participate in reactions with the Krebs cycle. Palmitoyl-CoA has a high affinity for both carbamyl phosphate synthase-I and glutamate dehydrogenase. ATP and malate which, respectively, decrease and enhance binding of palmitoyl-CoA to glutamate dehydrogenase, respectively decrease and enhance the ability of this enzyme to compete with carbamyl phosphate synthase-I for palmitoyl-CoA. Since carbamyl phosphate synthase-I is present in high levels in liver mitochondria and has a high affinity for palmitoyl-CoA, it could play a major role as a reservoir for palmitoyl-CoA.  相似文献   

18.
We have studied the relative roles of the glutaminase versus glutamate dehydrogenase (GLDH) and purine nucleotide cycle (PNC) pathways in furnishing ammonia for urea synthesis. Isolated rat hepatocytes were incubated at pH 7.4 and 37 degrees C in Krebs buffer supplemented with 0.1 mM L-ornithine and 1 mM [2-15N]glutamine, [5-15N]glutamine, [15N]aspartate, or [15N]glutamate as the sole labeled nitrogen source in the presence and absence of 1 mM amino-oxyacetate (AOA). A separate series of incubations was carried out in a medium containing either 15N-labeled precursor together with an additional 19 unlabeled amino acids at concentrations similar to those of rat plasma. GC-MS was utilized to determine the precursor product relationship and the flux of 15N-labeled substrate toward 15NH3, the 6-amino group of adenine nucleotides ([6-15NH2]adenine), 15N-amino acids, and [15N]urea. Following 40 min incubation with [15N]aspartate the isotopic enrichment of singly and doubly labeled urea was 70 and 20 atom % excess, respectively; with [15N]glutamate these values were approximately 65 and approximately 30 atom % excess for singly and doubly labeled urea, respectively. In experiments with [15N]aspartate as a sole substrate 15NH3 enrichment exceeded that in [6-NH2]adenine, indicating that [6-15NH2]adenine could not be a major precursor to 15NH3. Addition of AOA inhibited the formation of [15N]glutamate, 15NH3 and doubly labeled urea from [15N]aspartate. However, AOA had little effect on [6-15NH2]adenine production. In experiments with [15N]glutamate, AOA inhibited the formation of [15N]aspartate and doubly labeled urea, whereas 15NH3 formation was increased. In the presence of a physiologic amino acid mixture, [15N]glutamate contributed less than 5% to urea-N. In contrast, the amide and the amino nitrogen of glutamine contributed approximately 65% of total urea-N regardless of the incubation medium. The current data indicate that when glutamate is a sole substrate the flux through GLDH is more prominent in furnishing NH3 for urea synthesis than the flux through the PNC. However, in experiments with medium containing a mixture of amino acids utilized by the rat liver in vivo, the fraction of NH3 derived via GLDH or PNC was negligible compared with the amount of ammonia derived via the glutaminase pathway. Therefore, the current data suggest that ammonia derived from 5-N of glutamine via glutaminase is the major source of nitrogen for hepatic urea-genesis.  相似文献   

19.
Ammonia, the primary product of nitrogen fixation is rapidly incorporated into a number of amino acids such as glutamate and aspartate. A novel enzyme system glutamine: 2-oxoglutarate aminotransferase oxidoreductase, which probably has an important role in ammonia assimilation has been detected, in the present studies, in the rhizobial fraction of soybean root nodules and in Rhizobium japonicum grown in culture. The role of this latter enzyme and other enzymes such as glutamate dehydrogenase, aspartate aminotransferase and alanine aminotransferase in ammonia assimilation by soybean nodules is discussed.  相似文献   

20.
Bolus injection of [13N]ammonia into the femoral vein of pentobarbital-anesthetized rats was followed by rapid clearance from the blood and first-pass extraction of nearly 30% by the lungs. Of the label present in the lungs at 6 s after injection (about 27% of the dose), more than 20% was in metabolized form. Of the label present in the lungs at 2 min after injection (about 10% of the dose), 18-25% was in ammonia, about 75% was in glutamine (amide) and less than 1% was in glutamate and aspartate. Thus, despite the presence of significant amounts of glutamate dehydrogenase, the overwhelming route for metabolism of ammonia entering the rat lung in vivo was the glutamine synthetase reaction. Lung tissue that was removed 6 s after intravenous injection of [13N]ammonia and incubated in Krebs-Ringer glucose medium at 37 degrees C for 20 min, showed a significant increase (more than one-third), compared to unincubated lung tissue in the quantity of label in glutamine. Between 6s and 2 min after injection, during which time the total 13N content of the lungs decreased by more than 60%, the maintenance of a quasi-steady state in the concentration of labeled glutamine suggested a short-term balance between formation from extracted ammonia and loss of glutamine into the circulation. Our data support the concept that the lungs are a source of circulating glutamine in the rat. Despite the large fractional extraction of blood-borne [13N]ammonia by the lungs, only minute amounts of tracer (0.2-0.6 ppm of the injected dose) were detected in the expired air within the first 5 min after administration of [13N]ammonia to anesthetized rats, so that pulmonary excretion was not a significant pathway of ammonia elimination. The present findings emphasize the importance of the lungs in the maintenance of whole-body nitrogen homeostasis and suggest the use of [13N]ammonia and 13N-labeled amino acids as non-invasive probes in the study of normal and diseased lung metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号