首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid, systematic and reliable approach for identifying lactic acid bacteria associated with meat was developed, allowing for detection of Carnobacterium spp., Lactobacillus curvatus, Lact. sakei and Leuconostoc spp. Polymerase chain reaction primers specific for Carnobacterium and Leuconostoc were created from 16S rRNA oligonucleotide probes and used in combination with species-specific primers for the 16S/23S rRNA spacer region of Lact. curvatus and Lact. sakei in multiplex PCR reactions. The method was used successfully to characterize lactic acid bacteria isolated from a vacuum-packaged pork loin stored at 2 degrees C. Seventy isolates were selected for identification and 52 were determined to be Lact. sakei, while the remaining 18 isolates were identified as Leuconostoc spp.  相似文献   

2.
Abstract The occurrence of β-glucuronidase activity, a main characteristic of Escherichia coli and the presence of the uid chromosomal region of E. coli , coding for this enzyme, were tested on representative members of enteric bacteria. DNA hybridization techniques using uid probes and ampplification experiments of uidA gene by the polymerase chain reaction (PCR) confirmed the specificity of uid genes fro E. coli and Shigella spp. (i.e., S. boydii, S. dysenteriae, S. flexneri and S. sonnei ), independent of the β-glucuronidase phenotype of bacterial strains. This specificity seemed to be conserved when studies were extended to a wide range of bacteria. It was not possible to distinguish E. coli from Shigella spp. The detection sensitivity using double stranded DNA radiolabeled probes was 3 × 104 bacteria and could be brought down to 8 bacteria by PCR. Thus, the uid genes appeared to be ideal candidates for DNA probes technology to detect E. coli-Shigella species.  相似文献   

3.
A multiplex PCR assay was devised and compared with standard conventional methods for quality evaluation of pharmaceutical raw materials and finished products with low levels of microbial contamination. Samples which were artificially contaminated with <10 colony forming units of Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella species and possibly contaminated samples were incubated for 16 h with different enrichment media. Primers that deduce 559 bp fragment of the 16S rRNA gene was employed in amplifying E. coli species, similarly invasion protein gene with 275 bp fragment size was used as target for detecting Salmonella spp., in case of S. aureus a 461 bp amplicon from m-RNA nuclease gene, and an 709 bp fragment from oprL gene was used for amplifying P. aeruginosa. The detection limits for artificially contaminants by multiplex PCR was 1 CFU/g, where as in case of conventional method the detection limit was >2 CFU/g. Similarly, when tested with possibly contaminated samples, 35% were detected for E. coli, Salmonella spp., S. aureus and P. aeruginosa species with multiplex PCR, while only 21% were detected with standard conventional microbial methods. Multiplex PCR assay provides sensitive and reliable results and allows for the cost-effective detection of all four bacterial pathogens in single reaction tube.  相似文献   

4.
Leptospirosis, caused by pathogenic Leptospira, is one of the most important zoonoses in the world. Several molecular techniques have been developed for detection and differentiation between pathogenic and saprophytic Leptospira spp. The aim of this study was to develop a rapid and simple assay for specific detection and differentiation of pathogenic Leptospira spp. by multiplex real-time PCR (TaqMan) assay using primers and probes targeting Leptospira genus specific 16S ribosomal RNA gene, the pathogen specific lig A/B genes and nonpathogen Leptospira biflexa specific 23S ribosomal RNA gene. Sixteen reference strains of Leptospira spp. including pathogenic and nonpathogenic and ten other negative control bacterial strains were used in the study. While the 16S primers amplified target from both pathogenic and non-pathogenic leptospires, the ligA/B and the 23S primers amplified target DNA from pathogenic and non-pathogenic leptospires, respectively. The multiplex real-time PCR (TaqMan) assay detection limit, that is, the sensitivity was found approximately 1 x 10(2) cells/ml for ligA/B gene and 23S ribosomal RNA gene, and 10 cells/ml 16S ribosomal RNA. The reaction efficiencies were 83-105% with decision coefficients of more than 0.99 in all multiplex assays. The multiplex real-time PCR (TaqMan) assay yielded negative results with the ten other control bacteria. In conclusion, the developed multiplex real-time PCR (TaqMan) assay is highly useful for early diagnosis and differentiation between pathogenic and non-pathogenic leptospires in a reaction tube as having high sensitivity and specificity.  相似文献   

5.
基因芯片技术检测3种食源性致病微生物方法的建立   总被引:5,自引:0,他引:5  
建立一种运用多重PCR和基因芯片技术检测和鉴定志贺氏菌、沙门氏菌、大肠杆菌O157的方法, 为3种食源性致病菌的快速检测和鉴定提供了准确、快速、灵敏的方法。分别选取编码志贺氏菌侵袭性质粒抗原H基因(ipaH)、沙门氏菌肠毒素(stn)基因和致泻性大肠杆菌O157志贺样毒素(slt)基因设计引物和探针, 进行三重PCR扩增, 产物与含特异性探针的芯片杂交。对7种细菌共26株菌进行芯片检测, 仅3种菌得到阳性扩增结果, 证明此方法具有很高的特异性。3种致病菌基因组DNA和细菌纯培养物的检测灵敏度约为8 pg。对模拟食品样品进行直接检测, 结果与常规细菌学培养结果一致, 检测限为50 CFU/mL。结果表明:所建立的基因芯片检测方法特异性好, 灵敏度高, 为食源性致病菌的检测提供了理想手段, 有良好的应用前景。  相似文献   

6.
The rapid and accurate detection and identification of food-borne pathogenic bacteria is critical for food safety. In this paper, we describe a rapid (<4 h) high-throughput detection and identification system that uses universal polymerase chain reaction (PCR) primers to amplify a variable region of bacterial the 16S rRNA gene, followed by reverse hybridization of the products to species-specific oligonucleotide probes on a chip. This procedure was successful in discriminating 204 strains of bacteria from pure culture belonging to 13 genera of bacteria. When this method was applied directly to 115 strains of bacteria isolated from foods, 112/115 (97.4%) were correctly identified; two strains were indistinguishable due to weak signal, while one failed to produce a PCR product. The array was used to detect and successfully identify two strains of bacteria from food poisoning outbreak samples, giving results through hybridization that were identical to those obtained by traditional methods. The sensitivity of the microarray assay was 102 CFU of bacteria. Thus, the oligonucleotide microarray is a powerful tool for the detection and identification of pathogens from foods. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
Bloodstream infections are associated with high mortality rates because of the probable manifestation of sepsis, severe sepsis and septic shock1. Therefore, rapid administration of adequate antibiotic therapy is of foremost importance in the treatment of bloodstream infections. The critical element in this process is timing, heavily dependent on the results of bacterial identification and antibiotic susceptibility testing. Both of these parameters are routinely obtained by culture-based testing, which is time-consuming and takes on average 24-48 hours2, 4. The aim of the study was to develop DNA-based assays for rapid identification of bloodstream infections, as well as rapid antimicrobial susceptibility testing. The first assay is a eubacterial 16S rDNA-based real-time PCR assay complemented with species- or genus-specific probes5. Using these probes, Gram-negative bacteria including Pseudomonas spp., Pseudomonas aeruginosa and Escherichia coli as well as Gram-positive bacteria including Staphylococcus spp., Staphylococcus aureus, Enterococcus spp., Streptococcus spp., and Streptococcus pneumoniae could be distinguished. Using this multiprobe assay, a first identification of the causative micro-organism was given after 2 h.Secondly, we developed a semi-molecular assay for antibiotic susceptibility testing of S. aureus, Enterococcus spp. and (facultative) aerobe Gram-negative rods6. This assay was based on a study in which PCR was used to measure the growth of bacteria7. Bacteria harvested directly from blood cultures are incubated for 6 h with a selection of antibiotics, and following a Sybr Green-based real-time PCR assay determines inhibition of growth. The combination of these two methods could direct the choice of a suitable antibiotic therapy on the same day (Figure 1). In conclusion, molecular analysis of both identification and antibiotic susceptibility offers a faster alternative for pathogen detection and could improve the diagnosis of bloodstream infections.  相似文献   

8.
Tsai CC  Lai CH  Yu B  Tsen HY 《Anaerobe》2008,14(4):219-223
Effective methods for the identification and enumeration of lactic acid producing bacteria (LAB) cells are important for the quality control and assurance of probiotic products. In this study, we designed a polymerase chain reaction (PCR) primer set from the sequence in 16S-23S internal transcribed spacer (ITS) region and used it for the specific detection of Bifidobacterium adolescentis, one of the Bifidobacterium species used in probiotics. Specificity of the PCR primers, i.e., bits-1/bits-2, was assured by assay strains of B. adolescentis, other Bifidobacterium species, and strains of non-Bifidobacterium spp. Coupled with the use of a known primer set specific for Bifidobacterium species, Bifidobacterium strains and B. adolescentis could be identified from LAB strains in fermented dairy products and human fecal samples.  相似文献   

9.
Real-time quantitative PCR assays were developed for the absolute quantification of different groups of bacteria in pure cultures and in environmental samples. 16S rRNA genes were used as markers for eubacteria, and genes for extracellular peptidases were used as markers for potentially proteolytic bacteria. For the designed 16S rDNA TaqMan assay, specificity of the designed primer-probe combination for eubacteria, a high amplification efficiency over a wide range of starting copy numbers and a high reproducibility is demonstrated. Cell concentrations of Bacillus cereus, B. subtilis and Pseudomonas fluorescens in liquid culture were monitored by TaqMan-PCR using the 16S rDNA target sequence of Escherichia coli as external standard for quantification. Results agree with plate counts and microscopic counts of DAPI stained cells. The significance of 16S rRNA operon multiplicity to the quantification of bacteria is discussed.Furthermore, three sets of primer pair together with probe previously designed for targeting different classes of bacterial extracellular peptidases were tested for their suitability for TaqMan-PCR based quantification of proteolytic bacteria. Since high degeneracy of the probes did not allow accurate quantification, SybrGreen was used instead of molecular probes to visualize and quantify PCR products during PCR. The correlation between fluorescence and starting copy number was of the same high quality as for the 16S rDNA TaqMan assay for all the three peptidase gene classes. The detected amount of genes for neutral metallopeptidase of B. cereus, for subtilisin of B. subtilis and for alkaline metallopeptidase of P. fluorescens corresponded exactly to the numbers of bacteria investigated by the 16S rDNA targeting assay.The developed assays were applied for the quantification of bacteria in soil samples.  相似文献   

10.
Unidentified Listeria -like bacteria, which lack only one of the phenotypic characteristics used to confirm Listeria spp., were isolated from cheese during routine analysis for Listeria monocytogenes . The VIDAS Listeria assay and the Listeria specific PCR or DNA probe assays used did not identify these strains as Listeria species. This group of bacteria was studied for its homogeneity using rep-PCR and PFGE. Sequence analysis of the 16S rRNA gene showed a homology of 94% to established Listeria spp., implicating a closer relationship than that between Listeria spp. and Brochothrix spp.  相似文献   

11.
Psychrotolerant sporeformers, specifically Paenibacillus spp., are important spoilage bacteria for pasteurized, refrigerated foods such as fluid milk. While Paenibacillus spp. have been isolated from farm environments, raw milk, processing plant environments, and pasteurized fluid milk, no information on the number of Paenibacillus spp. that need to be present in raw milk to cause pasteurized milk spoilage was available. A real-time PCR assay targeting the 16S rRNA gene was designed to detect Paenibacillus spp. in fluid milk and to discriminate between Paenibacillus and other closely related spore-forming bacteria. Specificity was confirmed using 16 Paenibacillus and 17 Bacillus isolates. All 16 Paenibacillus isolates were detected with a mean cycle threshold (C(T)) of 19.14 ± 0.54. While 14/17 Bacillus isolates showed no signal (C(T) > 40), 3 Bacillus isolates showed very weak positive signals (C(T) = 38.66 ± 0.65). The assay provided a detection limit of approximately 3.25 × 10(1) CFU/ml using total genomic DNA extracted from raw milk samples inoculated with Paenibacillus. Application of the TaqMan PCR to colony lysates obtained from heat-treated and enriched raw milk provided fast and accurate detection of Paenibacillus. Heat-treated milk samples where Paenibacillus (≥1 CFU/ml) was detected by this colony TaqMan PCR showed high bacterial counts (>4.30 log CFU/ml) after refrigerated storage (6°C) for 21 days. We thus developed a tool for rapid detection of Paenibacillus that has the potential to identify raw milk with microbial spoilage potential as a pasteurized product.  相似文献   

12.
Mycoplasmas comprise a conglomerate of pathogens and commensals occurring in humans and animals. The genus Mycoplasma alone contains more than 120 species at present, and new members are continuously being discovered. Therefore, it seems promising to use a single highly parallel detection assay rather than develop separate tests for each individual species. In this study, we have designed a DNA microarray carrying 70 oligonucleotide probes derived from the 23S rRNA gene and 86 probes from the tuf gene target regions. Following a PCR amplification and biotinylation step, hybridization on the array was shown to specifically identify 31 Mycoplasma spp., as well as 3 Acholeplasma spp. and 3 Ureaplasma spp. Members of the Mycoplasma mycoides cluster can be recognized at subgroup level. This procedure enables parallel detection of Mollicutes spp. occurring in humans, animals or cell culture, from mono- and multiple infections, in a single run. The main advantages of the microarray assay include ease of operation, rapidity, high information content, and affordability. The new test's analytical sensitivity is equivalent to that of real-time PCR and allows examination of field samples without the need for culture. When 60 field samples from ruminants and birds previously analyzed by denaturing-gradient gel electrophoresis (DGGE) were tested by the microarray assay both tests identified the same agent in 98.3% of the cases. Notably, microarray testing revealed an unexpectedly high proportion (35%) of multiple mycoplasma infections, i.e., substantially more than DGGE (15%). Two of the samples were found to contain four different Mycoplasma spp. This phenomenon deserves more attention, particularly its implications for epidemiology and treatment.  相似文献   

13.
Bacterial magnetic particles (BMPs) were used for the identification of cyanobacterial DNA. Genus-specific oligonucleotide probes for the detection of Anabaena spp., Microcystis spp., Nostoc spp., Oscillatoria spp., and Synechococcus spp. were designed from the variable region of the cyanobacterial 16S rDNA of 148 strains. These oligonucleotide probes were immobilized on BMPs via streptavidin-biotin conjugation and employed for magnetic-capture hybridization against digoxigenin-labeled cyanobacterial 16S rDNA. Bacterial magnetic particles were magnetically concentrated, spotted in 100-microm-size microwell on MAG-microarray, and the fluorescent detection was performed. This work details the development of an automated technique for the magnetic isolation, the concentration of hybridized DNA, and the detection of specific target DNA on MAG-microarray. The entire process of hybridization and detection was automatically performed using a magnetic-separation robot and all five cyanobacterial genera were successfully discriminated.  相似文献   

14.
Filamentous bacteria containing bacteriochlorophylls c and a were enriched from hypersaline microbial mats. Based on phylogenetic analyses of 16S rRNA gene sequences, these organisms form a previously undescribed lineage distantly related to Chloroflexus spp. We developed and tested a set of PCR primers for the specific amplification of 16S rRNA genes from filamentous phototrophic bacteria within the kingdom of "green nonsulfur bacteria." PCR products recovered from microbial mats in a saltern in Guerrero Negro, Mexico, were subjected to cloning or denaturing gradient gel electrophoresis and then sequenced. We found evidence of a high diversity of bacteria related to Chloroflexus which exhibit different distributions along a gradient of salinity from 5.5 to 16%.  相似文献   

15.
Traditionally, Spiroplasma spp. have only been isolated from the surfaces of flowers and other plant parts, from the guts and hemolymph of various insects, and from vascular plant fluids (phloem sap) and insects that feed on these fluids. In this article, we report the first pathogenic spiroplasma to be discovered in shrimp and the results of its characterization through histological evaluation, in situ hybridization assays, transmission electron microscopy, 16S rRNA sequence homology, and injection infectivity studies. In addition, molecular methods are described that were developed for the detection of this microorganism, which was determined to be the causative disease agent in Colombian farm-raised Penaeus vannamei suffering from high mortalities. Using standard histological methods and in situ hybridization assays, it was confirmed that P. vannamei was infected with this pathogenic spiroplasma. Histological analysis revealed systemic inflammatory reactions in affected organs/tissues. In an attempt to identify the bacteria, frozen infected P. vannamei samples, from the initial epizootic, were used to sequence the 16S rRNA gene and develop molecular detection methods. The 16S rRNA gene was amplified by PCR and then sequenced. The sequence data were analyzed using the GenBank BLAST search and the results revealed a 98% homology with Spiroplasma citri, a pathogen of citrus trees. The 16S rRNA sequence data were evaluated for development of unique PCR primers to the putative spiroplasma. Using PCR primers developed for the spiralin gene of Spiroplasma spp., a digoxigenin-labeled probe was developed and tested. This probe was species-specific, with no positive reactions or cross-reactivity occurring with other bacterial samples tested in this format.  相似文献   

16.
Recent investigations have shown that members of the Bacillus cereus group carry genes which have the potential to cause gastrointestinal and somatic diseases. Although most cases of diseases caused by the B. cereus group bacteria are relatively mild, it is desirable to be able to detect members of the B. cereus group in food and in the environment. Using 16S rDNA as target, a PCR assay for the detection of B. cereus group cells has been developed. Primers specific for the 16S rDNA of the B. cereus group bacteria were selected and used in combination with consensus primers for 16S rDNA as internal PCR procedure control. The PCR procedure was optimized with respect to annealing temperature. When DNA from the B. cereus group bacteria was present, the PCR assay yielded a B. cereus specific fragment, while when non-B. cereus prokaryotic DNA was present, the consensus 16S rDNA primers directed synthesis of the PCR products. The PCR analyses with DNA from a number of non-B. cereus confirmed the specificity of the PCR assay.  相似文献   

17.
PCR techniques have significantly improved the detection and identification of bacterial pathogens. Countless adaptations and applications have been described, including quantitative PCR and the latest innovation, real-time PCR. In real-time PCR, e.g., the 5'-nuclease chemistry renders the automated and direct detection and quantification of PCR products possible (P. M. Holland et al., Proc. Natl. Acad. Sci. USA 88:7276-7280, 1991). We present an assay for the quantitative detection of Listeria monocytogenes based on the 5'-nuclease PCR using a 113-bp amplicon from the listeriolysin O gene (hlyA) as the target. The assay was positive for all isolates of L. monocytogenes tested (65 isolates including the type strain) and negative for all other Listeria strains (16 isolates from five species tested) and several other bacteria (18 species tested). The application of 5'-nuclease PCR in diagnostics requires a quantitative sample preparation step. Several magnetic bead-based strategies were evaluated, since these systems are simple and relatively easy to automate. The combination of nonspecific binding of bacteria to paramagnetic beads, with subsequent DNA purification by use of the same beads, gave the most satisfactory result. The detection limit was approximately 6 to 60 CFU, quantification was linear over at least 7 log units, and the method could be completed within 3 h. In conclusion, a complete quantitative method for L. monocytogenes in water and in skimmed and raw milk was developed.  相似文献   

18.
A recent PCR detection technique (TaqMan) based on the 5'-3'-exonuclease activity of the Taq DNA polymerase was applied to the detection of indicator organisms in water samples. In this technique, an increasing fluorescence signal is measured online which enables direct assessment of results after PCR without additional detection steps. The test is completed within about 5 h. Two sets of primers and probes were designed and tested: a genus-specific assay for the detection of Enterococcus spp. based on 23S rRNA sequence and an Escherichia coli-specific assay based on the uidA gene sequence. Specificity of the assays was confirmed by testing strains of target bacteria and potential interfering microorganisms. Application of the tests to 55 natural water samples showed the need of an overnight enrichment step to achieve compliance with detection limits of existing regulations. Compared with a parallel microbiological examination of the samples, agreement was 96% with the Enterococcus assay and 98% with the E. coli assay. The rapidity and feasibility of the method point to benefits in drinking water analysis, particularly in emergency situations and, thus, to improved public health management.  相似文献   

19.
Microbial communities associated to biofilms promote corrosion of oil pipelines. The community structure of bacteria in the biofilm formed in oil pipelines is the basic knowledge to understand the complexity and mechanisms of metal corrosion. To assess bacterial diversity, biofilm samples were obtained from X52 steel coupons corroded after 40 days of exposure to normal operation and flow conditions. The biofilm samples were directly used to extract metagenomic DNA, which was used as template to amplify 16S ribosomal gene by PCR. The PCR products of 16S ribosomal gene were also employed as template for sulfate-reducing bacteria (SRB) specific nested-PCR and both PCR products were utilized for the construction of gene libraries. The V3 region of the 16S rRNA gene was also amplified to analyse the bacterial diversity by analysis of denaturing gradient gel electrophoresis (DGGE). Ribosomal library and DGGE profiles exhibited limited bacterial diversity, basically including Citrobacter spp., Enterobacter spp. and Halanaerobium spp. while Desulfovibrio alaskensis and a novel clade within the genus Desulfonatronovibrio were detected from the nested PCR library. The biofilm samples were also taken for the isolation of SRB. Desulfovibrio alaskensis and Desulfovibrio capillatus, as well as some strains related to Citrobacter were isolated. SRB consists in a very small proportion of the community and Desulfovibrio spp. were the relatively abundant groups among the SRB. This is the first study directly exploring bacterial diversity in corrosive biofilms associated to steel pipelines subjected to normal operation conditions.  相似文献   

20.
A combined PCR-culture technique was developed to detect Arcobacter spp. in fresh chicken meat. Following a short selective enrichment of chicken samples, bacterial DNA was extracted and amplified using primers targeted at the genes encoding 16S rRNA of Arcobacter spp. The selected primers amplify a 181-bp fragment from all Arcobacter spp., whereas no PCR product is generated for other bacteria, including the closely related Campylobacter and Helicobacter species. The assay was used to screen 96 retail-purchased chicken samples for the presence of Arcobacter spp. Fifty-three percent of the samples analysed were positive for this micro-organism. The assay is simple and sensitive and reduces the amount of time required to positively detect Arcobacter spp. in poultry meat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号