首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.

Background

Anaerobic digestate is the effluent from anaerobic digestion of organic wastes. It contains a significant amount of nutrients and lignocellulosic materials, even though anaerobic digestion consumed a large portion of organic matters in the wastes. Utilizing the nutrients and lignocellulosic materials in the digestate is critical to significantly improve efficiency of anaerobic digestion technology and generate value-added chemical and fuel products from the organic wastes. Therefore, this study focused on developing an integrated process that uses biogas energy to power fungal fermentation and converts remaining carbon sources, nutrients, and water in the digestate into biofuel precursor-lipid.

Results

The process contains two unit operations of anaerobic digestion and digestate utilization. The digestate utilization includes alkali treatment of the mixture feed of solid and liquid digestates, enzymatic hydrolysis for mono-sugar release, overliming detoxification, and fungal fermentation for lipid accumulation. The experimental results conclude that 5 h and 30 °C were the preferred conditions for the overliming detoxification regarding lipid accumulation of the following fungal cultivation. The repeated-batch fungal fermentation enhanced lipid accumulation, which led to a final lipid concentration of 3.16 g/L on the digestate with 10% dry matter. The mass and energy balance analysis further indicates that the digestate had enough water for the process uses and the biogas energy was able to balance the needs of individual unit operations.

Conclusions

A fresh-water-free and energy-positive process of lipid production from anaerobic digestate was achieved by integrating anaerobic digestion and fungal fermentation. The integration addresses the issues that both biofuel industry and waste management encounter—high water and energy demand of biofuel precursor production and few digestate utilization approaches of organic waste treatment.
  相似文献   

2.
We investigated the extent to which nitrogenous and phosphorus nutrients from liquid anaerobic digestates could be recycled for photosynthetic growth of a microalga, Scenedesmus sp. AMDD. Digestates recovered from the anaerobic digestion of cow manure and swine manure and a co-digestion of swine manure and algal biomass were diluted in distilled water and used for algal growth with and without supplemental CO2 addition. Nutrient assimilation and final biomass yield were retarded in all but the swine manure/algae co-digestate cultures supplemented with high CO2. Swine manure digestate cultures supplemented with the typical complement of micronutrients normally added with a commonly used growth medium or with Fe/EDTA failed to grow any better than unamended controls. When the culture medium was prepared by blending swine manure digestate with 25 or 50 % algal biomass digestate, diluting it with lake water or by supplementing with magnesium, nutrient assimilation and final algal biomass yields were maximized, indicating that magnesium was critically limiting for algal growth in swine manure digestates. Magnesium amendment thus appears to be essential if nutrients from swine manure digestates are recycled for algal growth. No such requirement is necessary for recycling nutrients from digestates generated wholly or in part from algal biomass.  相似文献   

3.
The use of OFMSW for biogas and compost production is considered as a sustainable strategy in saving valuable landfill space while producing valuable product for soil application. This study examines the effects of anaerobic and aerobic post-treatment of OFMSW on the stability of anaerobic digestate and compost and soil quality using seed germination tests. Anaerobic digestion of OFMSW was carried out for fifteen days after which the residual anaerobic digestate was subjected to aerobic post-treatment for seventy days. Seed germination tests showed that fresh feedstock and digestates collected during anaerobic digestion and during the early stages of aerobic post-treatment were phytotoxic. However, phytotoxic effects were not observed in soils amended with the fully stabilised anaerobic digestate compost, ADC. It was also found that seed germination increases with dilution and incubation time, suggesting that lower soil application rates and longer lag periods between soil application of ADC and planting can reduce the amount of biodegradable organics in the ADC, thus enhancing the benefits of ADC as soil amendment.  相似文献   

4.

This study concerned the anaerobic treatment of five different industrial wastewaters with a diverse and complex chemical composition. The kinetics of biotransformation of this wastewater at different chemical oxygen demand (COD) were studied in a batch reactor. Wastewater from an amino acid producing industry (Fermex) and from a tank that received several types of wastewaters (collector) contained 0.83 g l−1 and 0.085 g l−1 sulfate, respectively. During the study period of 20 days, methane formation was observed in all types of wastewaters. Studies on COD biodegradation showed the reaction velocity was higher for Fermex wastewater and lower for collector wastewater, with values of 0.0022 h−1 and 0.0011 h−1, respectively. A lower methanogenic activity of 0.163 g CH4 day−1 g−1 volatile suspended solids (VSS) and 0.20 g CH4 day−1 g−1 VSS, respectively, was observed for paper producing and brewery wastewater. Adapted granular sludge showed the best biodegradation of COD during the 20-day period. The sulfate-reducing activity in pharmaceutical and collector wastewater was studied. A positive effect of sulfate-reducing activity on methanogenic activity was noted for both types of wastewaters, both of which contained sulfate ions. All reactions of methane generation for the tested industrial wastewaters were first-order. The results of this study suggest that the tested wastewaters are amenable to anaerobic treatment.

  相似文献   

5.
Abstract

The production of polyhydroxyalkanoates (PHA) using digestate of chicken manure combined with waste sunflower oil as no-cost feedstocks in a multi-stage process was investigated. Using Cupriavidus necator H16 in combined culture media, a maximum PHA accumulation of 4.6?±?0.2?g/L at 75.1?±?1.4% of cell dry matter and a residual cell matter yield of 1.5?±?0.1?g/L were obtained after 96?hr of cultivation (30?°C, 160?rpm, pH 7.0) in flask-based experiments. Manure was acidogenically fermented in a continuous stirring tank reactor in fed-batch mode. The bioreactor was operated at varying organic loading rates (OLR) and hydraulic retention times (HRT) ranging from 1–4?g volatile solids (VS)/L/d and 4–8?days, respectively. Optimal operation was observed at an OLR of 4?g VS/L/d and an HRT of 4?days. Analysis showed the presence of significant amounts of ammonia, potassium, magnesium, calcium, and trace elements, i.e. Fe, Cu, Ni, Mn, Co, Zn, Cr in the digestate. The micro-filtered digestate was utilized as a complex culture media base while waste oil served as an additional carbon source and supplemented for effective PHA production. The total volatile fatty acid content of digestate greatly affected the growth performance of the PHA-producing microorganism Cupriavidus necator H16.  相似文献   

6.
In this paper, Fourier Transform infrared spectroscopy (FTIR) along with thermogravimetric analysis together with mass spectrometry (TG–MS analysis) were employed to study the organic matter transformation attained under anaerobic digestion of slaughterhouse waste and to establish the stability of the digestates obtained when compared with fresh wastes. Digestate samples studied were obtained from successful digestion and failed systems treating slaughterhouse waste and the organic fraction of municipal solid wastes. The FTIR spectra and TG profiles from well stabilized products (from successful digestion systems) showed an increase in the aromaticity degree and the reduction of volatile content and aliphatic structures as stabilization proceeded. On the other hand, the FTIR spectra of non-stable reactors showed a high aliphaticity degree and fat content. When comparing differential thermogravimetry (DTG) profiles of the feed and digestate samples obtained from all successful anaerobic systems, a reduction in the intensity of the low-temperature range (≈300°C) peak was observed, while the weight loss experienced at high-temperature (450–550°C) was variable for the different systems. Compared to the original waste, the intensity of the weight loss peak in the high-temperature range decreased in the reactors with higher hydraulic retention time (HRT) whereas its intensity increased and the peak was displaced to higher temperatures for the digesters with lower HRT.  相似文献   

7.
The sludge digestate stabilized by mesophilic anaerobic digestion was further degraded through thermophilic anaerobic digestion using 0–10 % (v/v) of thermophilic, proteolytic Coprothermobacter proteolyticus, and/or methanogenic granular sludge. The results demonstrated that the temperature shift to thermophilic condition promoted abiotic solubilization of proteins and reactivated the fermentative bacteria and methanogens indigenous in the sludge digestate, resulting in a final methane yield of 6.25 mmol-CH4/g-volatile suspended solid (VSS) digestate. The addition of C. proteolyticus accelerated the hydrolysis and fermentation of proteins and polysaccharides in the digestate during the early stage of thermophilic anaerobic digestion and stimulated methane production by syntrophic cooperation with methanogenic granular sludge. In the treatment with granular sludge and inoculated with 10 % (v/v) of C. proteolyticus, a final methane yield of 7 mmol-CH4/g-VSS digestate was obtained, and 48.4 % proteins and 27.0 % polysaccharides were degraded. The dissolved proteins were contributed by abiotic factor, C. proteolyticus, and indigenous digestate bacteria, respectively, by around 16, 28, and 56 %.  相似文献   

8.
We attempted to enhance the growth and total lipid production of three microalgal species, Isochrysis galbana LB987, Nannochloropsis oculata CCAP849/1, and Dunaliella salina, which are capable of accumulating high content of lipid in cells. Low nitrogen concentration under photoautotrophic conditions stimulated total lipid production, but a decreasing total lipid content and an increasing biomass were observed with increasing nitrogen concentration. Among the different carbon sources tested for heterotrophic cultivation, glucose improved the growth of all three strains. The optimal glucose concentration for growth of I. galbana LB987 and N. oculata CCAP849/1 was 0.02 M, and that of D. salina was 0.05 M. Enhanced growth occurred when they were cultivated under heterotrophic or mixotrophic conditions compared with photoautotrophic conditions. Meanwhile, high total lipid accumulation in cells occurred when they were cultivated under photoautotrophic or mixotrophic conditions. During mixotrophic cultivation, biomass production was not affected significantly by light intensity; however, both chlorophyll concentration and total lipid content increased dramatically with increasing light intensity up to 150 µmol/m2/s. The amount and composition ratio of saturated and unsaturated fatty acids in cells were different from each other depending on both species and light intensity. The highest accumulation of total fatty acid (C16–C18) among the three strains was found from cells of N. oculata CCAP849/1, which indicates that this species can be used as a source for production of biodiesel.  相似文献   

9.
Every year, several million tonnes of anaerobic digestate are produced worldwide as a by-product of the biogas industry, most of which is applied as agricultural fertilizer. However, in the context of a circular bioeconomy, more sustainable uses of residual digestate biomass would be desirable. This study investigates the fate of the sterol lipids β-sitosterol and cholesterol from the feedstocks to the final digestates of three agricultural and one biowaste biogas plants to assess if sterols are degraded during anaerobic digestion or if they remain in the digestate, which could provide a novel opportunity for digestate cascade valorization. Gas chromatographic analyses showed that feedstock sterols were not degraded during anaerobic digestion, resulting in their accumulation in the digestates to up to 0.15% of the dry weight. The highest concentrations of around 1440 mg β-sitosterol and 185 mg cholesterol per kg dry weight were found in liquid digestate fractions, suggesting partial sterol solubilization. Methanogenic batch cultures spiked with β-sitosterol, cholesterol, testosterone and β-oestradiol confirmed that steroids persist during anaerobic digestion. Mycobacterium neoaurum was able to transform digestate sterols quantitatively into androstadienedione, a platform chemical for steroid hormones, without prior sterol extraction or purification. These results suggest that digestate from agricultural and municipal biowaste is an untapped resource for natural sterols for biotechnological applications, providing a new strategy for digestate cascade valorization beyond land application.  相似文献   

10.
Filamentous oleaginous microalgae Tribonema minus have advantages in relatively easy harvesting and grazers resistance in mass cultivation due to its filaments in previous study. To evaluate whether the genus Tribonema is a valuable candidate for use in biofuel production, the morphology, growth, biochemical composition and fatty acid profile of six filamentous microalgae strains Tribonema sp. were investigated. All the strains are unbranched filament in single row of elongated cylinder, attaining 0.5–3 mm in length. The growth rates of tested strains were 0.35–0.42 g L?1 d?1. Generally, for all strains, decrease in protein content was followed by a slight increase in lipid and significant increase in carbohydrate in early phase, afterwards, lipid increased constantly inversely to decrease in carbohydrate content. After 15-day cultivation, total lipid contents of tested strains ranged from 38–61 %, of which TAG were the majority and palmitic acid (C16:0) and palmitoleic acid (C16:1) were the dominant components. The study confirmed that the genus Tribonema is the potential for biodiesel and bioethanol production upon culture time.  相似文献   

11.
A key reason inhibiting commercialization of algal oil as biodiesel feedstock, is cultivation cost. For this reason, the usability of 19 readily available industrial effluents (autoclaved and non-autoclaved) to support heterotrophic growth and lipid accumulation was evaluated using six mixed algal cultures. Autoclaved whey effluent was the best with 14.32 g biomass L?1, 13.23% lipids, resulting in a lipid production of 1.91 g lipids L?1. Biomass production and lipid accumulation were in many cases inverse, e.g. mixed algal culture termed TUT4 accumulating 84.25% lipids on autoclaved acid mine drainage, with very little biomass produced. Biomass production was dependent on the effluent type, whereas the lipid accumulation was influenced mostly by the specific mixed algal cultures. The fatty acid composition of the algal oil (fish cannery and whey effluents) showed high saturation, leading to acceptable cetane numbers, kinematic viscosity, good oxidative stability, but poor cold flow properties.  相似文献   

12.
We determined the effects of cultivation conditions (nitrogen source, salinity, light intensity, temperature) on the composition of polyunsaturated fatty acids (PUFAs) and the production of eicosapentaenoic acid (EPA) in the laboratory cultured eustigmatophycean microalga, Trachydiscus minutus. T. minutus was capable of utilizing all nitrogen compounds tested (potassium nitrate, urea, ammonium nitrate, ammonium carbonate) with no differences in growth and only minor differences in fatty acid (FA) compositions. Ammonium carbonate was the least appropriate for lipid content and EPA production, while urea was as suitable as nitrates. Salinity (0.2 % NaCl) slightly stimulated EPA content and inhibited growth. Increasing salinity had a marked inhibitory effect on growth and PUFA composition; salinity at or above 0.8 % NaCl was lethal. Both light intensity and temperature had a distinct effect on growth and FA composition. The microalga grew best at light intensities of 470–1,070 μmol photons m?2 s?1 compared to 100 μmol photons m?2 s?1, and at 28 °C; sub-optimal temperatures (20, 33 °C) strongly inhibited growth. Saturated fatty acids increased with light intensity and temperature, whereas the reverse trend was found for PUFAs. Although the highest level of EPA (as a proportion of total FAs) was achieved at a light intensity of 100 μmol photons m?2 s?1 (51.1?± 2.8 %) and a temperature of 20 °C (50.9?±?0.8 %), the highest EPA productivity of about 30 mg L?1?day?1 was found in microalgae grown at higher light intensities, at 28 °C. Overall, for overproduction of EPA in microalgae, we propose that outdoor cultivation be used under conditions of a temperate climatic zone in summer, using urea as a nitrogen source.  相似文献   

13.
Chlorella vulgaris (C. vulgaris) microalga was investigated as a new potential feedstock for the production of biodegradable lubricant. In order to enhance microalgae lipid for biolubricant production, mixotrophic growth of C. vulgaris was optimized using statistical analysis of Plackett–Burman (P-B) and response surface methodology (RSM). A cheap substrate-based medium of molasses and corn steep liquor (CSL) was used instead of expensive mineral salts to reduce the total cost of microalgae production. The effects of molasses and CSL concentration (cheap substrates) and light intensity on the growth of microalgae and their lipid content were analyzed and modeled. Designed models by RSM showed good compatibility with a 95% confidence level when compared to the cultivation system. According to the models, optimal cultivation conditions were obtained with biomass productivity of 0.123 g L?1 day?1 and lipid dry weight of 0.64 g L?1 as 35% of dry weight of C. vulgaris. The extracted microalgae lipid presented useful fatty acid for biolubricant production with viscosities of 42.00 cSt at 40°C and 8.500 cSt at 100°C, viscosity index of 185, flash point of 185°C, and pour point of ?6°C. These properties showed that microalgae lipid could be used as potential feedstock for biolubricant production.  相似文献   

14.
Anaerobic digesters produce biogas, a mixture of predominantly CH4 and CO2, which is typically incinerated to recover electrical and/or thermal energy. In a context of circular economy, the CH4 and CO2 could be used as chemical feedstock in combination with ammonium from the digestate. Their combination into protein-rich bacterial, used as animal feed additive, could contribute to the ever growing global demand for nutritive protein sources and improve the overall nitrogen efficiency of the current agro- feed/food chain. In this concept, renewable CH4 and H2 can serve as carbon-neutral energy sources for the production of protein-rich cellular biomass, while assimilating and upgrading recovered ammonia from the digestate. This study evaluated the potential of producing sustainable high-quality protein additives in a decentralized way through coupling anaerobic digestion and microbial protein production using methanotrophic and hydrogenotrophic bacteria in an on-farm bioreactor. We show that a practical case digester handling liquid piggery manure, of which the energy content is supplemented for 30% with co-substrates, provides sufficient biogas to allow the subsequent microbial protein as feed production for about 37% of the number of pigs from which the manure was derived. Overall, producing microbial protein on the farm from available methane and ammonia liberated by anaerobic digesters treating manure appears economically and technically feasible within the current range of market prices existing for high-quality protein. The case of producing biomethane for grid injection and upgrading the CO2 with electrolytic hydrogen to microbial protein by means of hydrogen-oxidizing bacteria was also examined but found less attractive at the current production prices of renewable hydrogen. Our calculations show that this route is only of commercial interest if the protein value equals the value of high-value protein additives like fishmeal and if the avoided costs for nutrient removal from the digestate are taken into consideration.  相似文献   

15.
The submerged cultivating conditions for triterpenoids production from Antrodia cinnamomea were optimized using uniform design method and the one-factor-at-a-time method was adopted to investigate the effect of plants oils and glucose supply on triterpenoids production and mycelia growth. Corn starch and culturing time were identified as more significant variables for triterpenoids production. The optimal conditions for triterpenoids production was 20.0 g/L corn starch, 20.0 g/L wheat bran, 1.85 g/L MgSO4, initial pH 3 and 16 days of cultivation. In addition, investigation of plant oils and glucose supply showed that 0.3 % (v/v) olive oil supply at the beginning of fermentation stimulated mycelia growth and significantly increased triterpenoids production; 0.2 % (w/v) glucose supplement at 10th day enhanced production of triterpenoids with slight effect on biomass, which is reported for the first time. The triterpenoids production experimentally obtained under the optimal conditions was 7.23 % (w/w). The uniform design method may be used to optimize many environmental and genetic factors such as temperature and agitation that can also affect the triterpenoids production from A. cinnamomea.  相似文献   

16.
The growth and total lipid content of four green microalgae (Chlorella sp., Chlorella vulgaris CCAP211/11B, Botryococcus braunii FC124 and Scenedesmus obliquus R8) were investigated under different culture conditions. Among the various carbon sources tested, glucose produced the largest biomass or microalgae grown heterotrophically. It was found that 1 % (w/v) glucose was actively utilized by Chlorella sp., C. vulgaris CCAP211/11B and B. braunii FC124, whereas S. obliquus R8 preferred 2 % (w/v) glucose. No significant difference in biomass production was noted between heterotrophic and mixotrophic (heterotrophic with light illumination/exposure) growth conditions, however, less production was observed for autotrophic cultivation. Total lipid content in cells increased by approximately two-fold under mixotrophic cultivation with respect to heterotrophic and autotrophic cultivation. In addition, light intensity had an impact on microalgal growth and total lipid content. The highest total lipid content was observed at 100 μmol m?2s?1 for Chlorella sp. (22.5 %) and S. obliquus R8 (23.7 %) and 80 μmol m?2s?1 for C. vulgaris CCAP211/11B (20.1 %) and B. braunii FC124 (34.9 %).  相似文献   

17.
The utilization of microalgae for wastewater treatment represents an attractive opportunity for wastewater valorization through the use of the produced biomass. Five strains of microalgae were isolated from municipal wastewater and grown in autoclaved and non-autoclaved effluent at 30 °C and 150 μmol photons m?2 s?1 to study biomass production, nutrient removal, and the biochemical composition of the biomass. All strains reached high biomass productivity (35.6 to 54.2 mg dry weight L?1 day?1) within 4 days of batch culturing. In this period, ammonium-N and phosphate were reduced by more than 60 and 90 %, respectively. The high growth rate (0.57 to 1.06 day?1) ensured a rapid removal of nutrients and thereby a short retention time. By the fourth day of cultivation, the algal biomass contained 32 % protein, but only 11 % lipids and 18 % carbohydrates. It was found that the biomass was a suitable raw material for biogas production by anaerobic digestion. Biodigestion of obtained biomass was simulated by employing the Aspen HYSYS modeling software, resulting in methane yields comparable to those found in the literature. The elemental analysis of the algal biomass showed very low concentrations of pollutants, demonstrating the potential of use of the digestate from biodigestion as a bio-fertilizer.  相似文献   

18.
As a potential feedstock for biofuel production, a high-cell-density continuous culture for the lipid production by Cryptococcus albidus was investigated in this study. The influences of dilution rates in the single-stage continuous cultures were explored first. To reach a high-cell-density culture, a single-stage continuous culture coupled with a membrane cell recycling system was carried out at a constant dilution rate of 0.36/h with varied bleeding ratios. The maximum lipid productivity of 0.69 g/L/h was achieved with the highest bleeding ratio of 0.4. To reach a better lipid yield and content, a two-stage continuous cultivation was performed by adjusting the C/N ratio in two different stages. Finally, a lipid yield of 0.32 g/g and lipid content of 56.4% were obtained. This two-stage continuous cultivation, which provided a higher lipid production performance, shows a great potential for an industrial-scale biotechnological production of microbial lipids and biofuel production.  相似文献   

19.
Biostimulation of petroleum reservoir to improve oil recovery has been conducted in a large number of oilfields. However, the roles and linkages of organic nutrients, inorganic salts and oxygen content during biostimulation have not been effectively elucidated. Therefore, we investigated the relationships between carbon source, nitrogen source, phosphorus source, oxygen content, and microbial stimulation, oil emulsification, and oil degradation. The organic nutrients (molasses) accelerated microbial growth, and promoted oil emulsification under aerobic conditions. The added molasses also promoted metabolites production (CO2, CH4 and acetic acid) and microbial anaerobic hydrocarbon degradation under anaerobic conditions. (NH4)2HPO4 improved gases production by neutralizing the acidic production and molasses. NaNO3 could also improve gases production by inhibiting sulfate-reducing bacteria to adjust pH value. Oxygen supply was necessary for oil emulsification, but bountiful supply of oxygen aggravated oil degradation, leading the entire ranges of alkanes and some aromatic hydrocarbons were degraded. Core-flooding experiments showed an oil displacement efficiency of 13.81 % in test with air package injected, 8.56 % without air package injection, and 4.77 % in control test with air package injection and 3.61 % without air package injection. The results suggest that the combined effect of organic nutrients, inorganic salts and oxygen content determines microbial growth, while production of metabolites, oil emulsification and biodegradation alter the reservoir biochemical characters and influence oil recovery during stimulation.  相似文献   

20.
Prolific algal growth in sewage ponds with high organic loads in the tropical regions can provide cost-effective and efficient wastewater treatment and biofuel production. This work examines the ability of Euglena sp. growing in wastewater ponds for biofuel production and treatment of wastewater. The algae were isolated from the sewage treatment plants and were tested for their nutrient removal capability. Compared to other algae, Euglena sp. showed faster growth rates with high biomass density at elevated concentrations of ammonium nitrogen (NH4-N) and organic carbon (C). Profuse growth of these species was observed in untreated wastewaters with a mean specific growth rate (μ) of 0.28 day?1 and biomass productivities of 132 mg ?L?1? day?1. The algae cultured within a short period of 8 days resulted in the 98 % removal of NH4-N, 93 % of total nitrogen 85 % of ortho-phosphate, 66 % of total phosphate and 92 % total organic carbon. Euglenoids achieved a maximum lipid content of 24.6 % (w/w) with a biomass density of 1.24 g ?L?1 (dry wt.). Fourier transform infrared spectra showed clear transitions in biochemical compositions with increased lipid/protein ratio at the end of the culture. Gas chromatography and mass spectrometry indicated the presence of high contents of palmitic, linolenic and linoleic acids (46, 23 and 22 %, respectively), adding to the biodiesel quality. Good lipid content (comprised quality fatty acids), efficient nutrient uptake and profuse biomass productivity make the Euglena sp. as a viable source for biofuel production in wastewaters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号