首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomass demand for energy will lead to utilization of marginal, low fertility soil. Application of fertilizer to such soil may increase switchgrass (Panicum virgatum L.) biomass production. In this three-way factorial field experiment, biomass yield response to potassium (K) fertilizer (0 and 68 kg?K?ha?1) on nitrogen (N)-sufficient and N-deficient switchgrass (0 and 135 kg?N?ha?1) was evaluated under two harvest systems. Harvest system included harvesting once per year after frost (December) and twice per year in summer (July) at boot stage and subsequent regrowth after frost. Under the one-cut system, there was no response to N or K only (13.4 Mg?ha?1) compared to no fertilizer (12.4 Mg?ha?1). Switchgrass receiving both N and K (14.6 Mg?ha?1) produced 18 % greater dry matter (DM) yield compared to no fertilizer check. Under the two-cut harvest system, N only (16.0 Mg?ha?1) or K only (14.1 Mg?ha?1) fertilizer produced similar DM to no fertilizer (15.1 Mg?ha?1). Switchgrass receiving both N and K in the two-cut system (19.2 Mg?ha?1) produced the greatest (P?<?0.05) DM yield, which was 32 % greater than switchgrass receiving both N and K in the one-cut system. Nutrient removal (biomass?×?nutrient concentration) was greatest in plots receiving both N and K, and the two-cut system had greater nutrient removal than the one-cut system. Based on these results, harvesting only once during winter months reduces nutrient removal in harvested biomass and requires less inorganic fertilizer for sustained yields from year to year compared to two-cut system.  相似文献   

2.
With the goal of improving N fertilizer management to maximize soil organic carbon (SOC) storage and minimize N losses in high-intensity cropping system, a 6-years greenhouse vegetable experiment was conducted from 2004 to 2010 in Shouguang, northern China. Treatment tested the effects of organic manure and N fertilizer on SOC, total N (TN) pool and annual apparent N losses. The results demonstrated that SOC and TN concentrations in the 0-10cm soil layer decreased significantly without organic manure and mineral N applications, primarily because of the decomposition of stable C. Increasing C inputs through wheat straw and chicken manure incorporation couldn''t increase SOC pools over the 4 year duration of the experiment. In contrast to the organic manure treatment, the SOC and TN pools were not increased with the combination of organic manure and N fertilizer. However, the soil labile carbon fractions increased significantly when both chicken manure and N fertilizer were applied together. Additionally, lower optimized N fertilizer inputs did not decrease SOC and TN accumulation compared with conventional N applications. Despite the annual apparent N losses for the optimized N treatment were significantly lower than that for the conventional N treatment, the unchanged SOC over the past 6 years might limit N storage in the soil and more surplus N were lost to the environment. Consequently, optimized N fertilizer inputs according to root-zone N management did not influence the accumulation of SOC and TN in soil; but beneficial in reducing apparent N losses. N fertilizer management in a greenhouse cropping system should not only identify how to reduce N fertilizer input but should also be more attentive to improving soil fertility with better management of organic manure.  相似文献   

3.
Green harvest sugarcane management has increased soil organic C and N stocks over time. However, emerging sugarcane straw removal to meet increasing bioenergy demands has raised concerns about soil C and N depletions. Thus, we conducted a field study in southeast Brazil over nearly three years (1100 days) for assessing soil C and N responses to increasing sugarcane straw removal rates. In order to detect the C input as a function of the different amounts of straw over three years, a field simulation was performed, where the original soil layer (0–0.30 m) was replaced by another from an adjacent area with low total C and δ13C. The treatments tested were as follows: (i) 0 Mg ha?1 year?1 (i.e., 100% removal), (ii) 3.5 Mg ha?1 year?1 (i.e., 75% removal), (iii) 7.0 Mg ha?1 year?1 (i.e., 50% removal), (iv) 14.0 Mg ha?1 year?1 (i.e., no removal), and (v) 21.0 Mg ha?1 year?1 (i.e., no removal + extra 50% of the straw left on the field). The results showed that sugarcane straw removal affected the soil C and total N pools. In the first 45 days of straw decomposition, a small but important straw-derived C portion enters into the soil as dissolved organic carbon (DOC). The lower the straw removal rate, the higher was straw-derived DOC content found into the soil, down to 0.50 m depth. After 3 years of management, keeping sugarcane straw on soil surface significantly increased C and N stocks within surface soil layer (0–0.025 m). Our findings suggest that under no straw removal management (i.e., 14 Mg ha?1), approximately 364 kg ha?1 of C and 23 kg ha?1 of N are annually stored into this low-C soil. The contribution of the straw-derived C (C-C4) to the total soil C increases over time, which accounted for about 60% under no straw removal rate. The greatest contribution of the C storage preferentially occurs into the fraction of organic matter (<?0.53 μm) associated with soil clay minerals. We concluded that indiscriminate sugarcane straw removal to produce cellulosic ethanol or bioelectricity depletes soil C stocks and reduces N cycling in sugarcane fields, impairing environmental gains associated with bioenergy production. Therefore, this information, linked with other agronomic and environmental issues, should be taken into account towards a more sustainable straw removal management for bioenergy production in Brazil.  相似文献   

4.
Yan  Guoyong  Xing  Yajuan  Liu  Guancheng  Huang  Binbin  Wang  Qinggui 《Ecosystems》2021,24(7):1608-1623
Ecosystems - Changes in precipitation frequency and intensity are predicted to be more intense and frequent accompanying climate change and may have immediate or potentially prolonged effects on...  相似文献   

5.
The adoption of mechanical harvesting of green cane gives rise to concerns as to whether systems developed under burnt cane harvesting are applicable to a green cane harvesting system. In particular, tillage, which is an integral part of the burnt cane system, may no longer be necessary, and the nitrogen fertilizer rates required may need to be replaced due to the large amounts of organic matter being returned to the soil after green cane harvesting. Mechanical harvesting is relatively new in Brazil and little is known about its effect on other sugarcane production strategies. This work aimed to evaluate sugarcane performance under not only different harvesting and cultivation systems, but also different nitrogen fertilizer rates over a 3-year period. The experimental design was a split plot with harvesting systems (burnt vs. green) as main plots, cultivation (interrow vs. no cultivation) as sub plots, and nitrogen rates as sub-sub plots. The harvesting systems produced similar sugarcane yields throughout the experimental period, which demonstrates that the harvest systems do not influence sugarcane yield. Mechanical tillage practices in interrow after harvesting had no impact on stalk yield or sugar quality, indicating no necessity for this operation in the following crop. Ratoon nitrogen fertilization promoted an increase of stalk and sugar yield, with highest yields obtained at the rate of 130 kg ha?1 N. However, there was no interaction between harvesting system and nitrogen rate.  相似文献   

6.
Life-cycle assessments (LCAs) of switchgrass (Panicum virgatum L.) grown for bioenergy production require data on soil organic carbon (SOC) change and harvested C yields to accurately estimate net greenhouse gas (GHG) emissions. To date, nearly all information on SOC change under switchgrass has been based on modeled assumptions or small plot research, both of which do not take into account spatial variability within or across sites for an agro-ecoregion. To address this need, we measured change in SOC and harvested C yield for switchgrass fields on ten farms in the central and northern Great Plains, USA (930 km latitudinal range). Change in SOC was determined by collecting multiple soil samples in transects across the fields prior to planting switchgrass and again 5 years later after switchgrass had been grown and managed as a bioenergy crop. Harvested aboveground C averaged 2.5?±?0.7 Mg C ha?1 over the 5 year study. Across sites, SOC increased significantly at 0–30 cm (P?=?0.03) and 0–120 cm (P?=?0.07), with accrual rates of 1.1 and 2.9 Mg C ha?1 year?1 (4.0 and 10.6 Mg CO2 ha?1 year?1), respectively. Change in SOC across sites varied considerably, however, ranging from ?0.6 to 4.3 Mg C ha?1 year?1 for the 0–30 cm depth. Such variation in SOC change must be taken into consideration in LCAs. Net GHG emissions from bioenergy crops vary in space and time. Such variation, coupled with an increased reliance on agriculture for energy production, underscores the need for long-term environmental monitoring sites in major agro-ecoregions.  相似文献   

7.
To improve our ability to predict SOC mineralization response to residue and N additions in soils with different inherent and dynamic organic matter properties, a 330-day incubation was conducted using samples from two long-term experiments (clay loam Mollisols in Iowa [IAsoil] and silt loam Ultisols in Maryland [MDsoil]) comparing conventional grain systems (Conv) amended with inorganic fertilizers with 3 yr (Med) and longer (Long), more diverse cropping systems amended with manure. A double exponential model was used to estimate the size (Ca, Cs) and decay rates (ka, ks) of active and slow C pools which we compared with total particulate organic matter (POM) and occluded-POM (OPOM). The high-SOC IAsoil containing highly active smectite clays maintained smaller labile pools and higher decay rates than the low-SOC MDsoil containing semi-active kaolinitic clays. Net SOC loss was greater (2.6 g kg−1; 8.6%) from the IAsoil than the MDsoil (0.9 g kg−1, 6.3%); fractions and coefficients suggest losses were principally from IAsoil’s resistant pool. Cropping history did not alter SOC pool size or decay rates in IAsoil where rotation-based differences in OPOM-C were small. In MDsoil, use of diversified rotations and manure increased ka by 32% and ks by 46% compared to Conv; differences mirrored in POM- and OPOM-C contents. Residue addition prompted greater increases in Ca (340% vs 230%) and Cs (38% vs 21%) and decreases in ka (58% vs 9%) in IAsoil than MDsoil. Reduced losses of SOC from residue-amended MDsoil were associated with increased OPOM-C. Nitrogen addition dampened CO2-C release. Clay type and C saturation dominated the IAsoil’s response to external inputs and made labile and stable fractions more vulnerable to decay. Trends in OPOM suggest aggregate protection influences C turnover in the low active MDsoil. Clay charge and OPOM-C contents were better predictors of soil C dynamics than clay or POM-C contents.  相似文献   

8.
Net benefits of bioenergy crops, including maize and perennial grasses such as switchgrass, are a function of several factors including the soil organic carbon (SOC) sequestered by these crops. Life cycle assessments (LCA) for bioenergy crops have been conducted using models in which SOC information is usually from the top 30 to 40?cm. Information on the effects of crop management practices on SOC has been limited so LCA models have largely not included any management practice effects. In the first 9?years of a long-term C sequestration study in eastern Nebraska, USA, switchgrass and maize with best management practices had average annual increases in SOC per hectare that exceed 2?Mg?C?year?1 (7.3?Mg?CO2?year?1) for the 0 to 150 soil depth. For both switchgrass and maize, over 50?% of the increase in SOC was below the 30?cm depth. SOC sequestration by switchgrass was twofold to fourfold greater than that used in models to date which also assumed no SOC sequestration by maize. The results indicate that N fertilizer rates and harvest management regimes can affect the magnitude of SOC sequestration. The use of uniform soil C effects for bioenergy crops from sampling depths of 30 to 40?cm across agro-ecoregions for large scale LCA is questionable.  相似文献   

9.
The Regional Feedstock Partnership is a collaborative effort between the Sun Grant Initiative (through Land Grant Universities), the US Department of Energy, and the US Department of Agriculture. One segment of this partnership is the field-scale evaluation of switchgrass (Panicum virgatum L.) in diverse sites across the USA. Switchgrass was planted (11.2 kg PLS ha?1) in replicated plots in New York, Oklahoma, South Dakota, and Virginia in 2008 and in Iowa in 2009. Adapted switchgrass cultivars were selected for each location and baseline soil samples collected before planting. Nitrogen fertilizer (0, 56, and 112 kg N ha?1) was applied each spring beginning the year after planting, and switchgrass was harvested once annually after senescence. Establishment, management, and harvest operations were completed using field-scale equipment. Switchgrass production ranged from 2 to 11.5 Mg ha?1 across locations and years. Yields were lowest the first year after establishment. Switchgrass responded positively to N in 6 of 19 location/year combinations and there was one location/year combination (NY in Year 2) where a significant negative response was noted. Initial soil N levels were lowest in SD and VA (significant N response) and highest at the other three locations (no N response). Although N rate affected some measures of biomass quality (N and hemicellulose), location and year had greater overall effects on all quality parameters evaluated. These results demonstrate the importance of local field-scale research and of proper N management in order to reduce unnecessary expense and potential environmental impacts of switchgrass grown for bioenergy.  相似文献   

10.
Many vital ecosystem processes take place in the soils and are greatly affected by the increasing active nitrogen (N) deposition observed globally. Nitrogen deposition generally affects ecosystem processes through the changes in soil biochemical properties such as soil nutrient availability, microbial properties and enzyme activities. In order to evaluate the soil biochemical responses to elevated atmospheric N deposition in bamboo forest ecosystems, a two-year field N addition experiment in a hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis daii) plantation was conducted. Four levels of N treatment were applied: (1) control (CK, without N added), (2) low-nitrogen (LN, 50 kg N ha−1 year−1), (3) medium-nitrogen (MN, 150 kg N ha−1 year−1), and (4) high-nitrogen (HN, 300 kg N ha−1 year−1). Results indicated that N addition significantly increased the concentrations of NH4+, NO3, microbial biomass carbon, microbial biomass N, the rates of nitrification and denitrification; significantly decreased soil pH and the concentration of available phosphorus, and had no effect on the total organic carbon and total N concentration in the 0–20 cm soil depth. Nitrogen addition significantly stimulated activities of hydrolytic enzyme that acquiring N (urease) and phosphorus (acid phosphatase) and depressed the oxidative enzymes (phenol oxidase, peroxidase and catalase) activities. Results suggest that (1) this bamboo forest ecosystem is moving towards being limited by P or co-limited by P under elevated N deposition, (2) the expected progressive increases in N deposition may have a potential important effect on forest litter decomposition due to the interaction of inorganic N and oxidative enzyme activities, in such bamboo forests under high levels of ambient N deposition.  相似文献   

11.
混播下柳枝稷叶绿素荧光参数及对水氮条件的响应特征   总被引:1,自引:0,他引:1  
采用盆栽试验,按照白羊草(Bothriochloa ischaemum)与柳枝稷(Panicum virgatum)株数比设置5个混播比例(0∶8、2∶6、4∶4、6∶2、8∶0),在两种氮肥处理(不施氮和0.1g N·kg-1)下,测定分析柳枝稷叶绿素荧光参数对土壤水分短期自然干旱并复水[土壤含水量从80%FC(田间持水量为20%)逐渐降至20%FC后再复水至80%FC]的响应,以期揭示不同水氮及混播比例下柳枝稷与白羊草竞争关系的生理生态机制。结果显示:(1)随干旱胁迫加剧,柳枝稷最大光化学效率(Fv/Fm)、光化学猝灭(qP)、实际光化学效率(ΦPSⅡ)和表观光合量子传递速率(ETR)逐渐下降,复水后第2天各指标均可恢复到对照水平;(2)两氮肥处理下,单播柳枝稷的ETR显著高于混播,施氮处理下单播的qP显著高于混播,但非光化学猝灭系数(NPQ)相反(P0.05),且柳枝稷比例越小各指标降幅越大,表明混播后柳枝稷PSⅡ反应中心活性下降,显示出其对混播竞争的适应;(3)施氮显著提高了柳枝稷的ΦPSⅡ(13.64%~23.53%)和qP(6.12%~11.11%),降低了NPQ值(9.76%~12.82%)(P0.05),表明施氮可提高其光能利用能力,增强其与白羊草的竞争力。研究认为,不同水氮条件下,柳枝稷表现出较强的混播竞争适应性,施氮会提高其对白羊草的生态竞争能力。  相似文献   

12.
Nitrogen (N) fertilization can greatly improve plant productivity but needs to be carefully managed to avoid harmful environmental impacts. Nutrient management guidelines aimed at reducing harmful forms of N loss such as nitrous oxide (N2O) emissions and nitrate (NO3-) leaching have been tailored for many cropping systems. The developing bioenergy industry is likely to make use of novel cropping systems, such as polycultures of perennial species, for which we have limited nutrient management experience. We studied how a switchgrass (Panicum virgatum) monoculture, a 5-species native grass mixture and an 18-species restored prairie responded to annual fertilizer applications of 56 kg N ha-1 in a field-scale agronomic trial in south-central Wisconsin over a 2-year period. We observed greater fertilizer-induced N2O emissions and sub-rooting zone NO3- concentrations in the switchgrass monoculture than in either polyculture. Fertilization increased aboveground net primary productivity in the polycultures, but not in the switchgrass monoculture. Switchgrass was generally more productive, while the two polycultures did not differ from each other in productivity or N loss. Our results highlight differences between polycultures and a switchgrass monoculture in responding to N fertilization.  相似文献   

13.
Increasing desire for renewable energy sources has increased research on biomass energy crops in marginal areas with low potential for food and fiber crop production. In this study, experiments were established on low phosphorus (P) soils in southern Oklahoma, USA to determine switchgrass biomass yield, nutrient concentrations, and nutrient removal responses to P and nitrogen (N) fertilizer application. Four P rates (0, 15, 30, and 45?kg?P?ha?1) and two N fertilizer rates (0 and 135?kg?N?ha?1) were evaluated at two locations (Ardmore and Waurika) for 3?years. While P fertilization had no effect on yield at Ardmore, application of 45?kg?P?ha?1 increased yield at Waurika by 17% from 10.5 to 12.3?Mg?ha?1. Across P fertilizer rates, N fertilizer application increased yields every year at both locations. In Ardmore, non-N-fertilized switchgrass produced 3.9, 6.7, and 8.8?Mg?ha?1, and N-fertilized produced 6.6, 15.7, and 16.6?Mg?ha?1 in 2008, 2009, and 2010, respectively. At Waurika, corresponding yields were 7.9, 8.4, and 12.2?Mg?ha?1 and 10.0, 12.1, and 15.9?Mg?ha?1. Applying 45?kg?P?ha?1 increased biomass N, and P concentration and N, P, potassium, and magnesium removal at both locations. Increased removal of nutrients with N fertilization was due to both increased biomass and biomass nutrient concentrations. In soils of generally low fertility and low plant available P, application of P fertilizer at 45?kg?P?ha?1 was beneficial for increasing biomass yields. Addition of N fertilizer improves stand establishment and biomass production on low P sites.  相似文献   

14.
Limited information is available explaining the economics of supplying N and P fertilizers on established stands of switchgrass growing in phosphorus-deficient soils. The objective of this study was to determine the most economical fertilizer supply system for producing feedstock in phosphorus-deficient soil in the southern Great Plains. Data collected from field trials conducted at two locations in south-central Oklahoma along with prices quoted by local input suppliers and custom service providers and assumptions about the farm-gate price of feedstock were used to estimate expected values for production costs, gross revenue and net return to owner's labor, management, and overhead for eight fertilizer supply systems. The systems included a zero fertilizer check system (0/0), three P systems (0/34, 0/67, and 0/101), one N system (135/0), and three N and P systems (135/34, 135/67, and 135/101). Random-effects mixed ANOVA models were used to determine the effects of fertilizer system on the values of total cost and net return. For the base-case price scenario (feedstock, N and P prices of $110 Mg?1 and $1.28 and 1.17 kg?1, respectively), the 135/0 system was the most profitable system, producing 10.2 Mg of feedstock and $263 of net return per hectare. Economic results were most sensitive to the prices of feedstock, N and P. Net return was negative for all eight systems for the scenario where the farm-gate price of feedstock was relatively low ($55 Mg?1) and prices for N and P were relatively high ($2.20 kg?1).  相似文献   

15.
Long-term manure application is recognized as an efficient management practice to enhance soil organic carbon (SOC) accumulation and nitrogen (N) mineralization capacity. A field study was established in 1979 to understand the impact of long-term manure and/or chemical fertilizer application on soil fertility in a continuous maize cropping system. Soil samples were collected from field plots in 2012 from 9 fertilization treatments (M0CK, M0N, M0NPK, M30CK, M30N, M30NPK, M60CK, M60N, and M60NPK) where M0, M30, and M60 refer to manure applied at rates of 0, 30, and 60 t ha−1 yr−1, respectively; CK indicates no fertilizer; N and NPK refer to chemical fertilizer in the forms of either N or N plus phosphorus (P) and potassium (K). Soils were separated into three particle-size fractions (2000–250, 250–53, and <53 μm) by dry- and wet-sieving. A laboratory incubation study of these separated particle-size fractions was used to evaluate the effect of long-term manure, in combination with/without chemical fertilization application, on the accumulation and mineralization of SOC and total N in each fraction. Results showed that long-term manure application significantly increased SOC and total N content and enhanced C and N mineralization in the three particle-size fractions. The content of SOC and total N followed the order 2000–250 μm > 250–53μm > 53 μm fraction, whereas the amount of C and N mineralization followed the reverse order. In the <53 μm fraction, the M60NPK treatment significantly increased the amount of C and N mineralized (7.0 and 10.1 times, respectively) compared to the M0CK treatment. Long-term manure application, especially when combined with chemical fertilizers, resulted in increased soil microbial biomass C and N, and a decreased microbial metabolic quotient. Consequently, long-term manure fertilization was beneficial to both soil C and N turnover and microbial activity, and had significant effect on the microbial metabolic quotient.  相似文献   

16.
17.
Soil physicochemical properties, soil microbial biomass and bacterial community structures in a rice-wheat cropping system subjected to different fertilizer regimes were investigated in two seasons (June and October). All fertilizer regimes increased the soil microbial biomass carbon and nitrogen. Both fertilizer regime and time had a significant effect on soil physicochemical properties and bacterial community structure. The combined application of inorganic fertilizer and manure organic-inorganic fertilizer significantly enhanced the bacterial diversity in both seasons. The bacterial communities across all samples were dominated by Proteobacteria, Acidobacteria and Chloroflexi at the phylum level. Permutational multivariate analysis confirmed that both fertilizer treatment and season were significant factors in the variation of the composition of the bacterial community. Hierarchical cluster analysis based on Bray-Curtis distances further revealed that bacterial communities were separated primarily by season. The effect of fertilizer treatment is significant (P = 0.005) and accounts for 7.43% of the total variation in bacterial community. Soil nutrients (e.g., available K, total N, total P and organic matter) rather than pH showed significant correlation with the majority of abundant taxa. In conclusion, both fertilizer treatment and seasonal changes affect soil properties, microbial biomass and bacterial community structure. The application of NPK plus manure organic-inorganic fertilizer may be a sound fertilizer practice for sustainable food production.  相似文献   

18.
19.
四个氮素水平处理的盆栽水稻(Oryza sativa L.)的叶尖在不同生育期均表现出明显的傅里叶转换红外光谱差异.新定义的光谱指数((A3400-A1653)/(A3400+A1653),A为某频率处的吸收值)随着施氮水平的提高而降低.结果表明,傅里叶转换红外光谱可用于诊断植物的氮素状况.  相似文献   

20.
不同供氮水平的水稻叶尖的傅里叶转换红外光谱(英)   总被引:4,自引:0,他引:4  
四个氮素水平处理的盆栽水稻 (OryzasativaL .)的叶尖在不同生育期均表现出明显的傅里叶转换红外光谱差异。新定义的光谱指数 ((A3 4 0 0 -A1653 ) / (A3 4 0 0 A1653 ) ,A为某频率处的吸收值 )随着施氮水平的提高而降低。结果表明 ,傅里叶转换红外光谱可用于诊断植物的氮素状况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号