首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In dry climates with long, hot summers and freezing winters, such as that of the southern Great Plains of North America, switchgrass (Panicum virgatum L.) has proven potential as a cellulosic bioenergy feedstock. This trial looked at dry matter (DM) and N yield dynamics of switchgrass overseeded with cool-season legumes and rye (Secale cereale L.), compared to switchgrass fertilized with 0, 56 and 112 kg N ha-1 yr-1 at an infertile and a fertile location. Optimal N fertilizer rate on switchgrass was 56 kg N ha-1 at the infertile location. Legume yield was greater in the first season after planting, compared to subsequent years where annual legumes were allowed to reseed and alfalfa (Medicago sativa L.) was allowed to grow. This suggests that the reseeding model for annual legumes will not work in switchgrass swards grown for biomass unless soil seed banks are built up for more than one year, and that overseeding with alfalfa may have to be repeated in subsequent years to build up plant populations. Overseeding rye and legumes generally did not suppress or enhance switchgrass biomass production compared to unfertilized switchgrass. However, cumulative spring and fall biomass yields were generally greater due to winter and spring legume production, which could be beneficial for grazing or soil conservation systems, but not necessarily for once-yearly late autumn harvest biofuel production systems.  相似文献   

2.
Biorefineries that plan to use switchgrass exclusively will encounter year-to-year variability in feedstock production. The economic success of the biorefinery will depend in part on the ability of the management team to strategically identify land for conversion from current use to the production of switchgrass enabling a flow of feedstock for the life of the biorefinery. The objective of this research is to determine the optimal quality, quantity, and location of land to lease while considering the spatial and temporal variability of switchgrass biomass yield. A calibrated biophysical simulation model was used to simulate switchgrass biomass yields for 50 years based on historical weather data from 1962 to 2011, for three land capability classes for each of 30 counties. Mathematical programming models were constructed and solved to determine the optimal leasing scheme for each of three strategies for a biorefinery that requires 2,000 Mg/day. As expected, a model based on the assumption that the average yield would be obtained in each year finds that production from land identified for leasing would be insufficient to fulfill the biorefinery’s needs in half of the years. In the absence of other sources of biomass, the feedstock shortage would require forced idling of the biorefinery for an average of 29.5 days during these years. Results of a strategy of leasing sufficient land to cover feedstock needs in the worst year from among 50 years for which data are available are compared to that of a strategy enabling year-to-year storage.  相似文献   

3.
Perennial grasses may provide a renewable source of biomass for energy production. Biomass yield, nutrient concentrations, and nutrient removal rates of switchgrass (Panicum virgatum L.), giant miscanthus (Miscanthus x giganteus), giant reed (Arundo donax L.), weeping lovegrass [Eragrostis curvula (Shrad.) Nees], kleingrass (Panicum coloratum L.), and Johnsongrass (Sorghum halepense (L.) Pers.) were evaluated at four N fertilizer rates (0, 56, 112, or 168?kg?N?ha?1) on a Minco fine sandy loam soil in southern Oklahoma. Species were established in 2008 and harvested for biomass in winter of 2009 and 2010. Biomass yield (dry matter basis) did not show a strong relationship with N fertilizer rate (p?=?0.08), but was affected by year and species interactions (p?<?0.01). Weeping lovegrass and kleingrass produced 29.0 and 16.0?Mg?ha?1 in 2009, but only 13.0?Mg?ha?1 and 9.8?Mg?ha?1 in 2010, respectively. Biomass yields of giant reed, switchgrass, and Johnsongrass averaged 23.3, 17.8, and 6.0?Mg?ha?1, respectively. Giant miscanthus established poorly, producing only 4.7?Mg?ha?1. Across years, giant reed had the highest biomass yield, 33.2?Mg?ha?1 at 168?kg?N?ha?1, and the highest nutrient concentrations and removal rates (162 to 228?kg?N?ha?1, 23 to 25?kg?P?ha?1, and 121 to 149?kg?K?ha?1) among the grasses. Although giant reed demonstrated tremendous biomass production, its higher nutrient removal rates indicate a potential for increased fertilization requirements over time. Switchgrass had consistently high biomass yields and relatively low nutrient removal rates (40 to 75?kg?N?ha?1, 5 to 12?kg?P?ha?1, and 44 to 110?kg?K?ha?1) across years, demonstrating its merits as a low-input bioenergy crop.  相似文献   

4.
Development of switchgrass (Panicum virgatum L.) as a dedicated biomass crop for conversion to energy requires substantial increases in biomass yield. Most efforts to breed for increased biomass yield are based on some form of indirect selection. The objective of this paper is to evaluate and compare the expected efficiency of several indirect measures of breeding value for improving sward-plot biomass yield of switchgrass. Sward-plot biomass yield, row-plot biomass, and spaced-plant biomass were measured on 144 half-sib families or their maternal parents from the WS4U-C2 breeding population of upland switchgrass. Heading date was also scored on row plots and anthesis date was scored on spaced plants. Use of any of these indirect selection criteria was expected to be less efficient than direct selection for biomass yield measured on sward plots, when expressed as genetic gain per year. Combining any of these indirect selection criteria with half-sib family selection for biomass yield resulted in increases in efficiency of 14 to 36%, but this could only be achieved at a very large cost of measuring phenotype on literally thousands of plants that would eventually have no chance of being selected because they were derived from inferior families. Genomic prediction methods offered the best solution to increase breeding efficiency by reducing average cycle time, increasing selection intensity, and placing selection pressure on all additive genetic variance within the population. Use of genomic selection methods is expected to double or triple genetic gains over field-based half-sib family selection.  相似文献   

5.
Increasing desire for renewable energy sources has increased research on biomass energy crops in marginal areas with low potential for food and fiber crop production. In this study, experiments were established on low phosphorus (P) soils in southern Oklahoma, USA to determine switchgrass biomass yield, nutrient concentrations, and nutrient removal responses to P and nitrogen (N) fertilizer application. Four P rates (0, 15, 30, and 45?kg?P?ha?1) and two N fertilizer rates (0 and 135?kg?N?ha?1) were evaluated at two locations (Ardmore and Waurika) for 3?years. While P fertilization had no effect on yield at Ardmore, application of 45?kg?P?ha?1 increased yield at Waurika by 17% from 10.5 to 12.3?Mg?ha?1. Across P fertilizer rates, N fertilizer application increased yields every year at both locations. In Ardmore, non-N-fertilized switchgrass produced 3.9, 6.7, and 8.8?Mg?ha?1, and N-fertilized produced 6.6, 15.7, and 16.6?Mg?ha?1 in 2008, 2009, and 2010, respectively. At Waurika, corresponding yields were 7.9, 8.4, and 12.2?Mg?ha?1 and 10.0, 12.1, and 15.9?Mg?ha?1. Applying 45?kg?P?ha?1 increased biomass N, and P concentration and N, P, potassium, and magnesium removal at both locations. Increased removal of nutrients with N fertilization was due to both increased biomass and biomass nutrient concentrations. In soils of generally low fertility and low plant available P, application of P fertilizer at 45?kg?P?ha?1 was beneficial for increasing biomass yields. Addition of N fertilizer improves stand establishment and biomass production on low P sites.  相似文献   

6.
Switchgrass (Panicum virgatum L.) is currently undergoing intensive breeding efforts to improve biomass yield. Consideration must be made regarding the relative importance of spaced plantings to sward plots for evaluation and selection for increased biomass yield. It has previously been suggested that selection schemes using secondary plant morphological traits as selection criteria within spaced plantings may be an efficient method of making genetic gain. The objective of this study was to empirically test the effects of direct selection for plant height, tiller count, flowering date, and visual selection for biomass yield within spaced plantings on biomass yield and morphology traits within sward plots. Divergently selected populations for each trait were developed from the WS4U upland tetraploid germplasm and evaluated for biomass yield at five locations in Wisconsin during two growing seasons. Significant variation was observed between maternal parents of the selected populations for both selected and nonselected traits. Despite substantial differences between parent plant populations for plant morphology, significant differences were not observed for sward-plot biomass yield or sward-plot morphology relative to the base population. Late flowering selections yielded 2.0 Mg/ha greater biomass than early flowering selections (29 % increase). Plant height within sward plots was observed to have a strong positive correlation with biomass yield. Tiller count was observed to have a weak correlation with biomass yield. Based on the observed results, it is recommended that greater emphasis be placed on evaluation of biomass yield using sward plots.  相似文献   

7.
Switchgrass (Panicum virgatum L.) is well suited to marginal croplands, but is difficult to manage sustainably both for maximum yield and optimal biomass composition. Quality can be improved by overwintering switchgrass in the field, but more information is needed on amount and consistency of yield recovery in spring. Two cultivars of switchgrass were sown on separate fields in Freeville, NY, and mowed and baled in late fall (FALL), mowed in fall and baled in spring (WINTER), or mowed and baled in spring (SPRING), using conventional field harvesting equipment. Samples were collected for analysis of plant morphological components and for determining the influence of harvest stubble height on yield and composition. Recovery of FALL biomass yields the following spring ranged from 52 to 82% and was related to both total winter snowfall and to the spring date when soil was dry enough to allow equipment traffic. Approximately 1% of dry matter yield was left in the field for each centimeter of stubble height following mowing. Bale moisture content was very low in spring, averaging 7.3%, but was much more variable and higher in the fall, averaging 22% for “Cave-in-Rock”. Inflorescence and leaf blade were the primary morphological components lost in standing switchgrass over winter. The SPRING treatment can be mowed and baled on the same day without other field operations and has higher quality than WINTER, with no consistent yield advantage for either spring baling treatment. The large and variable yield loss due to overwintering switchgrass in the field makes the practice questionable.  相似文献   

8.
Farm-Scale Production Cost of Switchgrass for Biomass   总被引:2,自引:0,他引:2  
The economic potential of cellulosic biomass from switchgrass has heretofore been evaluated using estimates of farm costs based on extrapolation from experimental data and budget estimates. The objective of the project reported here was to estimate the cost of production that would be experienced by farmers on commercial production situations. Switchgrass was produced as a biomass crop on commercial-scale fields by ten contracting farmers located from northern North Dakota to southern Nebraska. Results showed a wide range of yields and costs across the five production years and ten sites, with an overall average cost of $65.86 Mg?1 of biomass dry matter, and annualized yield of 5.0 Mg ha?1. The low-cost half of the producers were able to produce at an average cost of $51.95 Mg?1over the 5-year period. When projected to a full 10-year rotation, their cost fell further to $46.26 Mg?1. We conclude that substantial quantities of biomass feedstock could have been produced in this region at a cost of about $50 Mg?1 at the farm gate, which translates to about $0.13/l of ethanol. These results provide a more reliable benchmark for current commercial production costs as compared to other estimates, which range from $25 to $100 Mg?1.  相似文献   

9.
Switchgrass (Panicum virgatum L.) is being developed as a biofuel feedstock for the United States. Efficient and accurate methods to estimate switchgrass biomass feedstock supply within a production area will be required by biorefineries. Our main objective was to determine the effectiveness of indirect methods for estimating biomass yields and composition of switchgrass fields. Indirect measurements were conducted in eastern Nebraska from 2003 to 2007 in which switchgrass biomass yields were manipulated using three nitrogen rates (0 kg N ha-1, 60 kg N ha-1, and 120 kg N ha-1) and two harvest periods (August and post-killing frost). A modified Robel pole was used to determine visual obstruction, elongated leaf height, and canopy height measurements. Prediction models from the study showed that elongated leaf height, visual obstruction, and canopy height measurements accounted for >?91%, >?90%, and >?82% of the variation in switchgrass biomass, respectively. Regression slopes were similar by cultivar (“Cave-in-Rock” and “Trailblazer”), harvest period, and across years indicating that a single model is applicable for determining biomass feedstock supply within a region, assuming similar harvesting methods. Sample numbers required to receive the same level of precision were as follows: elongated leaf height<canopy height<visual obstruction. Twenty to 30 elongated leaf height measurements in a field could predict switchgrass biomass yield within 10% of the mean with 95% confidence. Visual obstruction is recommended on switchgrass fields with low to variable stand densities while elongated leaf height measurements would be recommended on switchgrass fields with high, uniform stand densities. Incorporating an ocular device with a Robel pole provided reasonable frequency estimates of switchgrass, broadleaf weeds, and grassy weeds at the field scale.  相似文献   

10.
High amounts of phosphorus (P) are in soil of former farmland due to previous fertilizer additions. Draining these residues would provide conditions for grassland plant species diversity restoration amongst other ecosystem benefits. Nitrogen (N) fertilization followed by cutting with subsequent removal of biomass has been suggested as a P residue removal method. We present a general model of N and P ecosystem cycling with nutrients coupled in plant biomass. We incorporate major P pools and biological and physico-chemical fluxes around the system together with transfers into and out of the system given several decades of management. We investigate conditions where N addition and cutting accelerate fertilizer P draining. Cutting does not generally accelerate soil P depletion under short-term management because the benefits of biomass removal through decreased P mineralization occur on too long a timescale compared to cutting’s impact on the ability of plants to deplete nutrients. Short-term N fertilization lowers soil fertilizer P residues, provided plant growth remains N limited. In such situations, N fertilization without biomass removal increases soil organic P. Some scenarios show significant reductions in available P following N addition, but many situations record only marginal decreases in problematic soil P pools compared to the unfertilized state. We provide explicit conditions open to experimental testing. Cutting might have minimal adverse impacts, but will take time to be successful. N fertilization either alone or in combination with cutting is more likely to bring about desired reductions in P availability thus allowing grassland restoration, but might have undesired ecosystem consequences.  相似文献   

11.
水氮运筹对棉花花后生物量和氮素利用率的影响   总被引:5,自引:0,他引:5  
在池栽和大田条件下,以‘美棉33B’为材料,研究不同水分(自然降水、自然降水 灌水)和氮素(0、240、480kgN/hm2)运筹下棉花花后生物量和养分累积及氮素利用率动态变化特征。结果表明:施氮使棉花(整株、营养器官、生殖器官)生物量和养分快速累积期持续时间缩短、最大累积速率增大且出现时间提前、累积量及皮棉产量增加。灌水使240 kgN/hm2处理棉花(整株、营养器官、生殖器官)生物量和养分快速累积期持续时间缩短、最大累积速率出现时间提前、最大累积速率和累积量增大、氮素累积利用率和产量提高;而使480 kgN/hm2处理棉花营养器官生物量和养分快速累积期持续时间延长、最大累积速率出现时间推迟、生物量和养分最大累积速率及累积量增大、氮素累积利用率提高,而生殖器官相应指标呈降低趋势;灌水对不施氮处理棉花生物量和养分累积各项特征参数影响较小。营养器官生物量和氮磷钾最大累积速率出现时间较生殖器官早23 d左右,而快速累积期持续时间长于生殖器官11 d左右。研究发现,水分和氮素运筹可通过影响棉花生物量和养分累积的动态特征参数来影响棉花生长,进而影响最终产量品质形成;在本实验条件下,以灌水的240 kgN/hm2处理棉花的生长特征参数最为协调,皮棉产量和氮素利用率最高,品质较优。  相似文献   

12.
Switchgrass (Panicum virgatum L.) is an attractive bioenergy crop option for eroded portions of claypan landscapes where grain crop production is marginally profitable. Topsoil thickness above the claypan, or depth to claypan (DTC), can vary widely within fields, and little information exists on its impacts on N management of switchgrass. Therefore, a study was conducted at the University of Missouri South Farm near Columbia, Missouri, to determine whether topsoil thickness influenced fertilizer N requirements of switchgrass. Switchgrass was planted in 2009 on main plots with a range of DTC classified as exposed (<8 cm), shallow (8–15 cm), moderate (16–30 cm), and deep (>30 cm) and was harvested annually at postdormancy during 2011 to 2015. Three split-plot treatments were 0, 67, or 101 kg N ha?1 applied annually in May, and a fourth was three intercropped native legumes as the N source. Across years, the legume treatment apparently supplied no N because it produced the same or less switchgrass yield than the nonfertilized treatment. Topsoil proved valuable as switchgrass yield, nutrient removal, and profit usually increased as DTC increased. Fertilization with 101 kg N ha?1 on exposed, shallow, or moderate DTC and 67 kg N ha?1 on deep DTC was required to obtain the highest biomass yield, but it also increased nutrient removal. Strikingly, profit across years was negative for the legume treatment and highest with no fertilizer on all DTC classes. Therefore, improvements are needed before intercropped legumes are profitable, and N fertilization may be needed only periodically to maximize switchgrass profit on claypan soils.  相似文献   

13.
以常规单施氮肥处理为对照(CK,270kg·hm-2),设置秸秆还田(J)、秸秆还田+牛粪(JF)、秸秆还田+沼渣(JZ)3种有机培肥措施,耦合N1(较CK减量10%)、N2(较CK减量20%)和N3(较CK减量30%)3个施氮水平,采用田间试验方法,探究有机培肥和减施氮肥对小麦光合特性、氮素吸收及产量的影响。结果表明:(1)与CK相比,有机肥配施氮肥明显促进了小麦生育期分蘖的发生和有效群体数的形成,提高叶绿素含量并维持旗叶较高光合速率水平,促进小麦地上部干物质积累、植株氮素吸收,增加穗粒数和千粒重,并显著提高小麦产量,产量增幅为4.21%~17.80%,并以JFN2(JF+N2)处理组合产量最高(6 853.43kg·hm-2)。(2)同一有机肥培肥处理中,N2(减施氮肥20%)处理效果最好,能显著促进小麦群体形成,提高小麦叶绿素含量、光合速率和产量;JFN2小麦群体数在成熟期分别比JFN1、JFN3增加5.16%、4.31%,JFN2叶绿素含量在花期分别较JFN1、JFN3增加2.29%、2.31%;JFN2处理产量分别比JFN1和JFN3显著增加11.41%和7.56%。(3)同一施氮水平下,成熟期干物质积累量表现为JZN1处理显著大于JFN1和JN1处理,分别增加8.93%和12.01%;花期JF处理氮素积累量在3种施氮水平下均分别显著高于其它2种有机培肥处理;JFN2处理籽粒产量显著高于JZN2和JN2处理,增幅分别为12.17%和6.09%。研究认为,有机肥耦合施氮量可促进小麦分蘖和有效群体数的形成,提高叶绿素含量和光合速率,增加植株干物质和氮素积累,从而增加小麦产量。  相似文献   

14.
Increasing photosynthetic capacity by extending canopy longevity during grain filling using slow senescing stay-green genotypes is a possible means to improve yield in wheat.Ethyl methanesulfonate (EMS...  相似文献   

15.
Although upgrading bio-oil from fast pyrolysis of biomass is an attractive pathway for biofuel production, nitrogen (N) and mineral matter carried over from the feedstock to the bio-oil represents a serious contaminant in the process. Reducing the N and ash content of biomass feedstocks would improve process reliability and reduce production costs of pyrolytic biofuels. This study investigated: (1) How does switchgrass harvest date influence the yield, N concentration ([N]), and ash concentration of biomass and fast pyrolysis products? and (2) Is there a predictive relationship between [N] of switchgrass biomass and [N] of fast pyrolysis products? Switchgrass from five harvest dates and varying [N] from central Iowa were pyrolyzed using a free-fall reactor. Harvestable biomass peaked in August (8.6 Mg ha?1), dropping significantly by November (6.7 Mg ha?1, P?=?0.0027). Production of bio-oil per unit area mirrored that of harvested biomass at each harvest date; however, bio-oil yield per unit dry biomass increased from 46.6 % to 56.7 % during the season (P?=?0.0018). Allowing switchgrass to senesce lowered biomass [N] dramatically, by as much as 68 % from June to November (P?<?0.0001). Concurrently, bio-oil [N] declined from 0.51 % in June to 0.17 % by November (P?<?0.0001). Significant reductions in ash concentration were also observed in biomass and char. Finally, we show for the first time that the [N] of switchgrass biomass is a strong predictor of the [N] of bio-oil, char, and non-condensable gas with R 2 values of 0.89, 0.94, and 0.88, respectively.  相似文献   

16.
A fertilization trial was carried out in established short-rotation willow coppice (SRWC) plantations of two bred varieties of willow (Salix spp.; "Tora" and "Jorr") at five sites in central Sweden between 2008 and 2010. Mineral nitrogen was applied at four different rates: No fertilization (Control), 160 kg nitrogen ha?1 as a single dose after harvest (Economy), 60–100–60 kg nitrogen ha?1 in year 1–2–3 (Normal), and 160 kg nitrogen ha?1 year?1 in years 1–3 (Intensive), using a randomized block design with four replicates. The yield response (biomass increase per kg fertilizer nitrogen) was 65, 67 and 46 kg kg?1 in the Economy, Normal and Intensive treatments, respectively. The results from the fertilization trial were used for economic calculations of different fertilization strategies given varying costs for fertilization and marginal value of the increased yield (price received for wood chips minus the costs for harvest and transportation of wood chips to a district heating plant). Comparative calculations were made based on data from a previous fertilization trial during the first cutting cycle of old, non-bred varieties. The calculations showed positive net present values of fertilizing bred willow varieties given a realistic fertilization response and a price for wood chips close to the market price for forestry-based wood chips in Sweden.  相似文献   

17.
营养物质对桑黄菌丝生物量及胞外多糖产量的影响   总被引:2,自引:0,他引:2  
研究了不同碳源、氮源和无机盐对桑黄深层培养菌丝生物量和胞外多糖产量的影响,结果表明:在培养温度为26℃、摇床转速为160r/min、发酵时间为10d的条件下,以桑黄菌丝生物量为指标,最适碳源、氮源和无机盐分别是果糖或葡萄糖、酵母粉或酵母膏、KH2P04或MgSO4·7H2O;菌丝生物量分别达到1.51、1.31、1.69、1.52、1.52、1.36g/100mL;以胞外多糖为指标,最适碳源、氮源和无机盐分别是葡萄糖、酵母膏、ZnSO4·7H2O,胞外多糖产量分别达到0.49、0.45、0.22g/100mL。  相似文献   

18.
19.
Various local factors influence the decision of when to harvest grassland biomass for renewable energy including climate, plant composition, and phenological stage. However, research on biomass yield and quality related to a wide range of harvest timing from multiple environments and years is lacking. Our objective was to determine the effect of harvest timing on yield, moisture, and mineral concentration of switchgrass (Panicum virgatum L.) and native polyculture biomass. Biomass was harvested on 56 unique days ranging from late summer (2 September) to late spring (20 May) spanning 3 years (2009 to 2011) and seven sites in Minnesota, USA. Biomass yield varied considerably by location and year (range?=?0.7–11.7 Mg ha?1) and was lowest during the winter. On average, there was no difference in biomass yield harvested in early fall compared to late spring. Biomass moisture content was lowest in late spring, averaging 156 g kg?1 across all locations and years when harvested after 1 April. Biomass N concentration did not change across harvest dates; however, P and K concentrations declined dramatically from late summer to late spring. Considering the economic costs of replacing exported minerals and changes in revenues from biomass yield through time, biomass harvest should be conducted in late summer–early fall or late spring and avoided in winter. However, biomass managed for gasification should be harvested in spring to reduce concentrations of minerals that lead to slagging and fouling. Changes in biomass yield and quality through time were similar for switchgrass and native polyculture biomass. These biomass harvest recommendations are made from data spanning multiple years and locations and should be applicable to various growing conditions across the Upper Midwest.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号