首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of statistical and graphical techniques incorporating a “weight of evidence” approach were used to interpret results from an integrated Triad case study designed to determine potential environmental impacts to aquatic biota in the Delaware River that may be linked to PAHs found in Motiva's oil refinery effluent. Sediment concentrations of various metals, PCBs and LMW PAHs exceeding both ERL and ERM sediment quality guidelines (SQGs) were reported in the study area. However, most chemical contaminants did not exceed their respective SQGs. Results from a long-term sediment coring study indicated that there was no evidence of significant historical PAH contamination of sediments related to Motiva's exceedences. PAHs comprising the Motiva “fingerprint” were found in the surficial sediments at four near-field sites but non-Motiva PAH concentrations (background) were shown to be significantly higher at other far-field sites (non-Motiva influence). Chronic sediment toxicity appears to have significant relationships to the patterns of most PAH isomers, certain PCB isomers, and certain metals. However, sediment toxicity does not appear to be related to the PAH isomers that are characteristic of Motiva's effluent nor to the near-field sites. Impacted benthic communities were reported in the study area, primarily at one near-field and two far-field sites. However, there were no apparent relationships between benthic community health and sediment contaminants. The status of benthic communities does not appear to be related to PAHs derived from the Motiva effluent. The “weight of evidence” analysis developed from a systematic and comprehensive series of statistical and graphical assessments indicates that, although the study area displayed some degree of sediment contamination, chronic sediment toxicity, and benthic health impacts, these environmental effects generally could not be related to Motiva's exceedences.  相似文献   

2.
The geochemical partitioning of trace metals in sediments is of great importance in risk assessment and remedial investigation. Selected factors that may control the partitioning behavior of Cu, Pb and Zn in non-sulfidic, estuarine sediments were examined with the use of combined sorption curve—sequential extraction analysis. This approach, which has not been previously used to examine estuarine sediments, allowed determination of sorption parameters for Cu, Pb and Zn partitioning to individual geochemical fractions. Partitioning behavior in sulfidic sediments was also determined by sequentially extracting Cu, Pb, and Zn from synthetic sulfide minerals and from natural sediment and pure quartz sand after spiking with acid-volatile sulfide (AVS). Trace metal sorption to the “carbonate” fraction (pH 5, NaOAc extraction) increased with metal loading due to saturation of sorption sites associated with the “Fe-oxide” (NH2OH·HCl extraction) and “organic” (H2O2 extraction) fractions in non-sulfidic sediments. Freundlich parameters describing sorption to the “Fe-oxide” and “organic” fractions were controlled by the sediment Fe-oxide and organic carbon content, respectively. Sequential extraction of Cu from pure CuS, AVS-spiked sediment and AVS-spiked quartz sand showed that AVS-bound Cu was quantitatively recovered in association with the “organic” fraction. However, some AVS-bound Pb and Zn were recovered by the NH2OH·HCl step (which has been previously interpreted as “Fe-oxide” bound metals) in the sequential extraction procedure used in this study. This indicates that the sequential extraction of Pb and Zn in sulfidic sediments may lead to AVS-bound metals being mistaken as Fe-oxide bound species. Caution should therefore be exercised when interpreting sequential extraction results for Pb and Zn in anoxic sediments.  相似文献   

3.
The lower six miles of the tidal portion of the Passaic River (Study Area) has been heavily industrialized since the mid-1800s. The objectives of this study were to: quantify the present extent and magnitude of chemical contamination in surface sediments from the Study Area; evaluate the contamination in the Study Area relative to a reference area and surrounding regional waterways; assess the potential for adverse effects to aquatic organisms; and identify spatial gradients in concentrations that may indicate potential point-sources of chemicals. Because existing ecological communities center primarily on intertidal mudflats in the Study Area, composite surface sediment was collected from 15 mudflats to generate a realistic assessment of fish and wildlife exposure to sediment contaminants. This study showed that present concentrations of organic contaminants are elevated throughout the Study Area and are generally higher than concentrations in the reference area and regional waterways. A screening-level analysis showed that there is potential for adverse effects to sediment-associated organisms from a number of chemicals. No spatial trends were apparent for most compounds evaluated, consistent with the presence of multiple sources of chemicals in the Study Area. The exception is semivolatile compounds, which appear to be localized to specific mudflats, indicating potential point-sources of contamination for these chemicals.  相似文献   

4.
Accumulative phases for heavy metals in limnic sediments   总被引:3,自引:1,他引:2  
Förstner  Ulrich 《Hydrobiologia》1982,91(1):269-284
Data from mechanical concentrates of recent sediments indicate that clay minerals, clay-rich aggregates and heavy minerals are the major carriers of heavy metals in detrital sediment fractions. Hydrous Fe/Mn oxides and carbonates and sulfides, in their specific environments, are the predominant accumulative phases for heavy metals in autochthonous fractions. Sequential chemical extraction techniques permit the estimation of characteristic heavy metal bonding forms: exchangeable metal cations, easily reducible, moderately reducible, organic and residual metal fractions, whereby both diagenetic processes and the potential availability of toxic compounds can be studied. The data from lakes affected by acid precipitation indicate that zinc, cobalt and nickel are mainly released from the easily reducible sediment fractions and cadmium from organic phases. In contrast at pH 4.4, neither lead nor copper seem to be remobilized to any significant extent. Immobilization by carbonate precipitation seems to provide an effective mechanism for the reduction of dissolved inputs 9f metals such as zinc and cadmium in pH-buffered, hard water systems.  相似文献   

5.
The present work investigated the adsorption of Sb(III) and Sb(V) on five sediment samples (Pearl River, Yangtze River, Yellow River, Yongding River, and Liao River) from typical water systems in China and the adsorption of Sb(V) on Pearl River sediment with different organic carbon (OC) fractions using batch experiments. In order to assess the contributions of sedimentary organic components to the overall adsorption of pentavalent Sb on sediments, one sediment sample was treated by commonly used chemical and physical methods to remove different organic components. Experimental data of Sb(III) and Sb(V) adsorption on five sediments were successfully modeled using the Freundlich (r2 > 0.96) isotherm. In general, the sediments with high Fe and Al oxide contents and total organic carbon (TOC) had higher Sb(III) and Sb(V) adsorption than the sediments containing small amounts of Fe and Al oxides and TOC. Dissolved organic carbon (DOC) in sediment promoted the adsorption of Sb(V), and humin fractions and black carbon-like material in sediment had a high affinity for Sb(V).  相似文献   

6.
生物扰动对沉积物中污染物环境行为的影响研究进展   总被引:4,自引:0,他引:4  
生物扰动由于显著改变沉积物结构和性质,进而影响沉积物中污染物的环境行为。综述生物扰动对沉积物中氮、磷、重金属和疏水性有机污染物环境行为的影响。生物扰动促进这些污染物从沉积物向水体释放。生物扰动还对不同的污染物产生其它不同的影响。对于氮,生物扰动还影响其硝化与反硝化作用;对于磷,生物扰动不仅改变其化学形态,还提高有机磷降解。对于重金属,生物扰动还能改变其在沉积物中的分布及化学形态。对于疏水性有机污染物,生物扰动主要增强生物富集和代谢,以及提高生物降解。  相似文献   

7.
Gregor  D. J.  Munawar  M. 《Hydrobiologia》1989,188(1):291-300
Lake Diefenbaker, on the South Saskatchewan River, Saskatchewan, Canada, receives, on average, 90% of its inflow from snowmelt and rainfall in the Rocky Mountains. The inflowing rivers also receive irrigation return flows and municipal and industrial effluents which may result in the contamination of lake sediments. The sediments were assessed by nematode and algal bioassays.The toxicity of five chemical fractions of the sediment was determined using the nematode Panagrellus redivivus as the test organisms. The results suggest that the sediment chemical fractions frequently inhibit growth and maturation, while lethality was observed at 4 of 12 sites.Samples from 3 of these sites were further evaluated using conventional elutriate Algal Fractionation Bioassays (AFB) with both natural Lake Diefenbaker phytoplankton and a mixed laboratory grown algal culture. The natural phytoplankton showed inhibition at sediment: water ratios of 10: 1; whereas the algal cultures showed both enhancement and inhibition. Evidently, the sediments are frequently toxic to the species tested except for the algal culture. The AFB assesses the mitigative and synergistic effects of contaminants and nutrients and being a conventional elutriate, is more realistic and potentially more acceptable than the chemical fractionation/nematode bioassay technique which essentially considers potential trace organic contaminant effects.  相似文献   

8.
Laboratory bioassays can provide an integrated assessment of the potential toxicity of contaminated sediments to aquatic organisms; however, toxicity as a sole endpoint is not particularly useful in terms of identifying remedial options. To focus possible remediation (e.g., source control), it is essential to know which contaminants are responsible for toxicity. Unfortunately, contaminated sediments can contain literally thousands of potentially toxic compounds. Methods which rely solely on correlation to identify contaminants responsible for toxicity are limited in several aspects: (a) actual compounds causing toxicity might not be measured, (b) concentrations of potentially toxic compounds may covary, (c) it may be difficult to assess the bioavailability of contaminants measured in a sediment, and (d) interactions may not be accounted for among potential toxicants (e.g., additivity). Toxicity identification evaluation (TIE) procedures attempt to circumvent these problems by using toxicity-based fractionation procedures to implicate specific contaminants as causative toxicants. Phase I of TIE characterizes the general physio-chemical nature of sample toxicants. Phase II employs methods to measure toxicants via different analytical methods, and Phase III consists of techniques to confirm that the suspect toxicants identified in Phases I and II of the TIE actually are responsible for toxicity. These TIE procedures have been used to investigate the toxicity of a variety of samples, including sediments. Herein we present a brief conceptual overview of the TIE process, and discuss specific considerations associated with sediment TIE research. Points addressed include: (a) selection and preparation of appropriate test fractions, (b) use of benthic organisms for sediment TIE work, and (c) methods for the identification of common sediment contaminants.  相似文献   

9.
10.
Byrne  Pamela A.  O'Halloran  John 《Hydrobiologia》2001,465(1-3):209-217
Estuarine sediments frequently are repositories and therefore potential sources of anthropogenic contaminants. Many organic and metallic chemical compounds released into aquatic systems bind to particulates and so accumulate in the sediments, thus, sediments become repositories of contaminants in estuaries. These may also cause contamination through diffusion of porewater, resuspension of particulates and dispersal of benthic fauna. There is a need to assess the biological affects of these anthropogenic contaminants because they may be toxic to infauna and bottomfish. Sediment toxicity bioassays are a means for carrying out such an assessment and primarily provide data on toxicity by measuring the effects on the test organism. Existing sediment toxicity bioassays rely on a battery of aquatic toxicity tests, which are based on the extraction of pore water, and elutriate from sediments and then subjecting these sediment phases to toxicity testing regimes. Two estuarine bivalve molluscs, Scrobicularia plana and Tapes semidecussatus were used to assess the ecotoxicity of field-collected sediments from estuarine and coastal areas around the Irish and English Coast over a 3-year study period. A variety of endpoints were measured during the study including survival in air, behaviour, animal condition, biochemistry, soft tissue metal concentrations, lysosomal membrane integrity and histopathology. Of these endpoints, the most sensitive were survival, survival in air, lysosomal membrane integrity, behaviour and histopathology.  相似文献   

11.
A benthic macroinvertebrate and sediment chemistry study of the St. Clair River from Lake Huron to Lake St. Clair was conducted in the spring of 1985. The purpose of the. study was to evaluate the environmental quality of the nearshore areas and assess the effectiveness of industrial and municipal abatement programs that have been implemented since 1977.A total of 112 macroinvertebratd taxa was collected from the river. Classification analysis indicated that 7 macroinvertebrate communities were evident in the river. Discriminant analysis suggested that physical habitat characteristics explained the distribution of 4 benthic communities, while sediment contaminants explained the distribution of 3 benthic communities. These analyses showed that the environmental quality of a 12 km stretch of the river along the Canadian shoreline had been degraded, probably by industrial waste discharges and spills. Toxic conditions were evident along the waterfront of Dow Chemical Canada Inc., probably a result of the combined effects of chlorinated organics, oils and greases, and mercury (historical contaminant) in the sediments. In contrast, the invertebrate fauna throughout the remainder of the St. Clair River reflected meso-eutrophic conditions, typical of a large, unstressed river.A comparison of the environmental quality as reflected by the benthic invertebrate fauna in 1985 with that in 1977 suggests that the abatement programs implemented over the past decade have improved the environmental quality along the Canadian side of the river. The total length of river adversely affected by waste discharges from Canadian industries and municipalities decreased from 21 km in 1977 to 12 km in 1985.  相似文献   

12.
Baseline information on the chemical and biological quality of sediments is provided for six coastal locations in the northern Gulf of Mexico, which were considered possible candidates for regional reference areas. Chemical quality, toxicity and benthic community composition were determined for sediments collected three times from each of 12 sites during an approximate one-year period. Potential contaminants in the usually sand-dominated sediments exceeded individual threshold effects level guidelines proposed for Florida coastal areas in approximately 31% of the samples collected from 8 of 12 sites. No probable effects level guidelines were exceeded. Acute toxicity occurred in 16% or less of the sediment samples and no significant chronic toxicity was observed to the infaunal amphipod, Leptocheirus plumulosus. Approximately, 11% and 17% of the sediments were classified as poor or marginal, based on low benthic taxa abundance and diversity index values, respectively. Sediment quality at many sites was less degraded than that for nearby coastal areas receiving point and non-point source contaminants, which suggests their suitability to serve as reference sediments although further confirmation is recommended. In a broader context, the results of this survey reflect the complexity in field verification of reference conditions for near-coastal sediments. This is attributable largely to the natural variability in their physical, biological, and chemical characteristics and to the lack of biocriteria for benthic macro and meiofauna.  相似文献   

13.
Incorporating materials into sediment caps that can sequester contaminants will greatly improve their ability to isolate contaminants in the underlying sediments from the rest of the aquatic environment. For highly sorptive media a thin layer (cm) may be sufficient, but accurately placing a thin layer (cm) of material over submerged contaminated sediment is difficult. A reactive core mat (RCM) was designed to accurately place a 1.25 cm thick sorbent (coke) layer in an engineered sediment cap. In April 2004, twelve 3.1 m × 31 m sections of RCM were placed in the Anacostia River, Washington, D.C., and overlain with a 15 cm layer of sand to secure it and provide a habitat for benthic organisms to colonize without compromising the integrity of the cap. Placement of the RCM did not cause significant sediment re-suspension or impact site hydrology. The RCM is an inexpensive and effective method to accurately deliver thin layers of difficult to place, high value, sorptive media into sediment caps. The approach can also be used to place granular reactive media that can degrade or mineralize contaminants.  相似文献   

14.
The heavy metal pollution of sediment in the Nhue River, which receives wastewater from the To Lich and Kim Nguu River system, was investigated together with the effects of use of this water for irrigation of the surrounding farmland. Eighty soil samples and 40 sediment samples were collected from six locations in the Nhue River and two locations in the To Lich River for chemical and physical analyses. The results showed that the sediments in the Nhue River are heavily polluted by metals (71–420 mg/kg for Cu, 77–433 mg/kg for Pb, 150–350 mg/kg for Zn, 0.7–8.7 mg/kg for Cd, 80– 583 mg/kg for Cr, and 32–70 mg/kg for Ni). There were positive correlations between heavy metal concentration and both clay and organic matter contents in the sediment samples. The concentrations of all metals in soil samples were much higher than the background levels in the farmland, Cd, Cu, and Pb, exceeding Vietnamese standards for agricultural grounds.  相似文献   

15.
The lower 6 miles of the tidal Passaic River, part of the New York/New Jersey (NY/NJ) Harbor Estuary system, are contaminated with a variety of organic and inorganic chemicals as a result of more than 150 years of heavy industrialization and urbanization. The River's ecology is substantially degraded due to habitat removal/alteration, and the organisms that reside in or utilize the River are exposed to and bioaccumulate chemicals from sediments and food web interactions. We quantify in this study the extent and magnitude of chemical contamination in several fish species (representing a range of trophic levels) and blue crab (Callinectes sapidus). In addition, the concentration of several contaminants of concern are compared to concentrations in similar organisms from other areas of the NY/NJ Harbor Estuary, as well as available tissue-based toxicological effects benchmarks that are reported in the literature. The results suggest that a variety of contaminants are present at elevated levels in each of the species collected from the River. Several contaminants, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD), total DDT (2,2-bis[4-chlorophenyl]1,1-dichloroethene), copper, and mercury are present at average concentrations that exceed those from other waterways in the NY/NJ Harbor Estuary. However, the concentrations of contaminants in the River, with few exceptions do not exceed available toxic effects levels as reported in the literature for these or similar fish and crustaceans. This suggests that toxicological risks from bioaccumulative contaminants in the lower Passaic River are limited to select contaminants and species.  相似文献   

16.
Correlations between a series of biogenic sediment compounds, commonly used in ecological studies, and a major component of the benthic infauna, the meiofauna, were studied on the continental margin off Southwest Africa (Angola) and in a central oceanic region of the Atlantic Ocean (Mid Oceanic Ridge). Biogenic sediment compounds chosen for this investigation (electron-transport-system activity, total adenylates and energy charge, particulate proteins, chloroplastic pigments) are obviously not suitable for a quick and rough estimation of meiofaunal abundances. Nevertheless, biogenic sediment compounds might reflect quite well the activity and biomass of the total benthic infauna, including all size classes (from bacteria to macrofaunal organisms) and/or the total particulate organic matter within the sediments. Furthermore, analyzing biogenic sediment compounds leads to a better understanding of environmental conditions and biological activities of benthic organisms. Consequently, despite their limitations, biochemical sediment parameters may be very useful in benthic ecological studies to obtain rapid information on the eco-status of the benthic system.  相似文献   

17.
Several types of bioassays were used in 1986 and 1987 to investigate the effect of contaminated sediments on natural populations of bacteria and phytoplankton from the Trenton Channel, Detroit River. The approach included the measurement of uptake of 3H-glucose or 3H-adenine by bacteria and 14C-bicarbonate by phytoplankton in the presence of different amounts of Trenton Channel and Lake Michigan (control) sediments. Trenton Channel sediments are contaminated by high levels of toxic organic compounds and metals, especially zinc, lead, and copper. Because levels of biomass of bacteria and phytoplankton varied widely among the different bioassays, it was necessary to adjust uptake rates for biomass. Biomass adjustments were made using acridine orange counts for bacteria and chlorophyll measurements for phytoplankton. The results show a statistically significant suppression of uptake of substrates for both bacteria and phytoplankton with increasing amounts of sediment. Uptake was suppressed as much as 90 percent for bacteria and 93 percent for phytoplankton at 1200 mg l-1 of Trenton Channel sediments compared to bioassays without sediment. Uncontaminated Lake Michigan sediment suppressed uptake much less than Detroit River sediment; the difference in suppression of uptake between the two types of sediment was statistically significant for both bacteria and phytoplankton.Contribution No. 518 of the Center for Great Lakes and Aquatic Sciences of the University of Michigan.  相似文献   

18.
牛安逸  高一飞  徐颂军 《生态学报》2020,40(23):8549-8558
湿地沉积物是红树林生态系统中重要的组成部分,其总有机碳储量的变化对红树林生态系统的固碳能力有着重要影响。现有对红树林湿地重金属的研究多集中于污染评价,鲜有涉及重金属含量对沉积物总有机碳(TOC)含量影响的研究。于2018-2019年期间4次前往珠江口典型红树林湿地,采集了0-30 cm表层土壤沉积物的样品,并测定其重金属含量和TOC含量,以探讨重金属含量变化对TOC的影响。结果表明,与广东地区的背景值相比,研究区沉积物重金属含量超标较为严重,重金属来源应是人类活动;沉积物的重金属含量能够显著影响TOC含量(P<0.01,R2=0.39),间接对红树林湿地的固碳能力、甚至全球变暖产生一定影响;Cd、As、Zn含量高的沉积物环境有利于TOC的积累,Cu、Cr、Ni、Hg含量低的沉积物环境则不利于TOC的积累。沉积物的重金属对TOC的影响的机制是非常复杂的,它们可以通过影响土壤结构、土壤化学组分、土壤内微生物、上部植被群落的生长以及凋落物归还等一系列过程,导致沉积物TOC和固碳能力的变化。  相似文献   

19.
20.
This paper describes the results of a benchscale testing program to assess the efficacy of a reactive core mat (RCM) for short-term isolation and partial remediation of contaminated, subaqueous sediments. The 1.25-cm-thick RCM (with a core reactive material such as organoclay with filtering layers on top and bottom) is placed on the sediment, and approximately 7.5–10 cm of overlying soil is placed on the RCM for stability and protection. A set of experiments were conducted to measure the sorption characteristics of the mat core (organoclay) and sediment used in the experiments, and to determine the fate of semi-volatile organic contaminants and non-reactive tracers through the sediment and reactive mat. The experimental study was conducted on naphthalene-spiked Neponset River (Milton, MA) sediment. The results show nonlinear sorption behavior for organoclay, with sorption capacity increasing with increasing naphthalene concentration. Neponset River sediment showed a notably high sorption capacity, likely due to the relatively high organic carbon fraction (14%). The fate and transport experiments demonstrated the short-term efficiency of the reactive mat to capture the contamination that is associated with the post-capping period during which the highest consolidation-induced advective flux occurs, driving solid particles, pore fluid, and soluble contaminants toward the reactive mat. The goal of the mat placement is to provide a physical filtering and chemically reactive layer to isolate contamination from the overlying water column. An important finding is that, because of the high sorption capacity of the Neponset River sediment, the physical filtering capability of the mat is as critical as its chemical reactive capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号