首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Liquid hot (LHW) water pretreatment (LHW) of lignocellulosic material enhances enzymatic conversion of cellulose to glucose by solubilizing hemicellulose fraction of the biomass, while leaving the cellulose more reactive and accessible to cellulase enzymes. Within the range of pretreatment conditions tested in this study, the optimized LHW pretreatment conditions for a 15% (wt/vol) slurry of hybrid poplar were found to be 200oC, 10 min, which resulted in the highest fermentable sugar yield with minimal formation of sugar decomposition products during the pretreatment. The LHW pretreatment solubilized 62% of hemicellulose as soluble oligomers. Hot‐washing of the pretreated poplar slurry increased the efficiency of hydrolysis by doubling the yield of glucose for a given enzyme dose. The 15% (wt/vol) slurry of hybrid poplar, pretreated at the optimal conditions and hot‐washed, resulted in 54% glucose yield by 15 FPU cellulase per gram glucan after 120 h. The hydrolysate contained 56 g/L glucose and 12 g/L xylose. The effect of cellulase loading on the enzymatic digestibility of the pretreated poplar is also reported. Total monomeric sugar yield (glucose and xylose) reached 67% after 72 h of hydrolysis when 40 FPU cellulase per gram glucan were used. An overall mass balance of the poplar‐to‐ethanol process was established based on the experimentally determined composition and hydrolysis efficiencies of the liquid hot water pretreated poplar. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

2.
This research shows the effect of dilute acid pretreatment with various sulfuric acid concentrations (0.5–2.0% [wt/vol]) on enzymatic saccharification and fermentation yield of rye straw. After pretreatment, solids of rye straw were suspended in Na citrate buffer or post-pretreatment liquids (prehydrolysates) containing sugars liberated after hemicellulose hydrolysis. Saccharification was conducted using enzymes dosage of 15 or 25 FPU/g cellulose. Cellulose saccharification rate after rye straw pretreatment was enhanced by performing enzymatic hydrolysis in sodium citrate buffer in comparison with hemicellulose prehydrolysate. The maximum cellulose saccharification rate (69%) was reached in sodium citrate buffer (biomass pretreated with 2.0% [wt/vol] H2SO4). Lignocellulosic complex of rye straw after pretreatment was subjected to separate hydrolysis and fermentation (SHF) or separate hydrolysis and co-fermentation (SHCF). The SHF processes conducted in the sodium citrate buffer using monoculture of Saccharomyces cerevisiae (Ethanol Red) were more efficient compared to hemicellulose prehydrolysate in respect with ethanol yields. Maximum fermentation efficiency of SHF processes obtained after rye straw pretreatment at 1.5% [wt/vol] H2SO4 and saccharification using enzymes dosage of 25 FPU/g in sodium citrate buffer, achieving 40.6% of theoretical yield. However, SHCF process using cocultures of pentose-fermenting yeast, after pretreatment of raw material at 1.5% [wt/vol] H2SO4 and hydrolysis using enzymes dosage of 25 FPU/g, resulted in the highest ethanol yield among studied methods, achieving 9.4 g/L of ethanol, corresponding to 55% of theoretical yield.  相似文献   

3.
At the core of cellulosic ethanol research are innovations leading to reductions in the chemical and energetic stringency of thermochemical pretreatments and enzymatic saccharification. In this study, key compositional features of maize cell walls influencing the enzymatic conversion of biomass into fermentable sugars were identified. Stem samples from eight contrasting genotypes were subjected to a series of thermal dilute-acid pretreatments of increasing severity and evaluated for glucose release after enzymatic saccharification. The biochemically diverse set of genotypes displayed significant differences in glucose yields at all processing conditions evaluated. The results revealed that mechanisms controlling biomass conversion efficiency vary in relation to pretreatment severity. At highly severe pretreatments, cellulose conversion efficiency was primarily influenced by the inherent efficacy of the thermochemical process, and maximum glucose yields were obtained from cellulosic feedstocks harboring the highest cellulose contents per dry gram of biomass. When mild dilute-acid pretreatments were applied, however, maximum bioconversion efficiency and glucose yields were observed for genotypes combining high stem cellulose contents, reduced cell wall lignin and highly substituted hemicelluloses. For the best-performing genotype, glucose yields under sub-optimal processing regimes were only 10 % lower than the genotype-set mean at the most stringent processing conditions evaluated, while furfural production was reduced by approximately 95 %. Our results ultimately established that cellulosic feedstocks with tailored cell wall compositions can help reduce the chemical and energetic intensity of pretreatments used in the industry and improve the commercial and environmental performance of biomass-to-ethanol conversion technologies.  相似文献   

4.
Enzymatic saccharification of cellulose is a key step in conversion of plant biomass to advanced biofuel and chemicals. Many substrate-related factors affect saccharification. Rather than examining the role of each individual factor on overall saccharification efficiency, this study examined how each factor affects the three basic processes of a heterogeneous biochemistry reaction: (1) substrate accessibility to cellulose—the roles of component removal and size reduction by pretreatments, (2) substrate and cellulase reactivity limited by component inhibition, and (3) reaction conditions—substrate-specific optimization. Our in-depth analysis of published literature work, especially those published in the last 5 years, explained and reconciled some of the conflicting results in literature, especially the relative importance of hemicellulose vs. lignin removal and substrate size reduction on enzymatic saccharification of lignocelluloses. We concluded that hemicellulose removal is more important than lignin removal for creating cellulase accessible pores. Lignin removal is important when alkaline-based pretreatment is used with limited hemicellulose removal. Partial delignification is needed to achieve satisfactory saccharification of lignocelluloses with high lignin content, such as softwood species. Rather than using passive approaches, such as washing and additives, controlling pretreatment or hydrolysis conditions, such as pH, to modify lignin surface properties can be more efficient for reducing or eliminating lignin inhibition to cellulase, leading to improved lignocellulose saccharification.  相似文献   

5.
Summary A new and effective pretreatment process for biomass conversion involves the steeping of biomass in 2.9 M NH4OH. This resulted in the removing about 80–90% of the lignin along with almost all the acetate from cellulosic residues. Based on dry cellulose from corn cob, a high glucose yield of 92% was obtained after enzymatic saccharification of cellulose fraction. By using a genetically engineered, xylosefermenting Saccharomyces 1400(pLNH33) in the batch fermentation of a glucose-xylose mixture from corn cob, an ethanol concentration of 47 g/L was obtained within 36 h with 84% yield. In addition, an ethanol concentration of 45 g/L was obtained within 48 h with 86% yield using simultaneous saccharification-fermentation process.  相似文献   

6.
Bio-refinery processes require use of the most suitable lignocellulosic biomass for enzymatic saccharification and microbial fermentation. Glucose yield from biomass solid fractions obtained after dilute sulfuric acid (1%) pretreatment (at 180 °C) was investigated using 14, 8, and 16 varieties of rice, wheat, and sorghum, respectively. Biomass solid fractions of each crop showed similar cellulose content. However, glucose yield after enzymatic hydrolysis (cellulase loading at 6.6 filter paper unit/g-biomass) was different among the varieties of each crop, indicating genotypic differences for rice, wheat, and sorghum. Nuclear magnetic resonance method revealed that the high residual level of lignin aromatic regions decreased glucose yield from solid fraction of sorghum.  相似文献   

7.

Background

Isoprene as the feedstock can be used to produce renewable energy fuels, providing an alternative to replace the rapidly depleting fossil fuels. However, traditional method for isoprene production could not meet the demands for low-energy consumption and environment-friendliness. Moreover, most of the previous studies focused on biofuel production out of lignocellulosic materials such as wood, rice straw, corn cob, while few studies concentrated on biofuel production using peanut hull (PH). As is known, China is the largest peanut producer in the globe with an extremely considerable amount of PH to be produced each year. Therefore, a novel, renewable, and environment-friendly pretreatment strategy to increase the enzymatic hydrolysis efficiency of cellulose and reduce the inhibitors generation was developed to convert PH into isoprene.

Results

The optimal pretreatment conditions were 100 °C, 60 min, 10% (w/v) solid loading with a 2:8 volume ratio of phosphoric acid and of hydrogen peroxide. In comparison with the raw PH, the hemicellulose and lignin were reduced to 85.0 and 98.0%, respectively. The cellulose–glucose conversion of pretreated PH reached up to 95.0% in contrast to that of the raw PH (19.1%). Only three kinds of inhibitors including formic acid, levulinic acid, and a little furfural were formed during the pretreatment process, whose concentrations were too low to inhibit the isoprene yield for Escherichia coli fermentation. Moreover, compared with the isoprene yield of pure glucose fermentation (298 ± 9 mg/L), 249 ± 6.7 and 294 ± 8.3 mg/L of isoprene were produced using the pretreated PH as the carbon source by the engineered strain via separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) methods, respectively. The isoprene production via SSF had a 9.8% glucose–isoprene conversion which was equivalent to 98.8% of isoprene production via the pure glucose fermentation.

Conclusions

The optimized phosphoric acid/hydrogen peroxide combination pretreatment approach was proved effective to remove lignin and hemicellulose from lignocellulosic materials. Meanwhile, the pretreated PH could be converted into isoprene efficiently in the engineered Escherichia coli. It is concluded that this novel strategy of isoprene production using lignocellulosic materials pretreated by phosphoric acid/hydrogen peroxide is a promising alternative to isoprene production using traditional way which can fully utilize non-renewable fossil sources.
  相似文献   

8.
Ethanol can be produced from lignocellulosic biomass using steam pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields, from both hemicellulose and cellulose are critical parameters for an economically-feasible ethanol production process. This study shows that a near-theoretical glucose yield (96-104%) from acid-catalysed steam pretreated corn stover can be obtained if xylanases are used to supplement cellulases during hydrolysis. Xylanases hydrolyse residual hemicellulose, thereby improving the access of enzymes to cellulose. Under these conditions, xylose yields reached 70-74%. When pre-treatment severity was reduced by using autocatalysis instead of acid-catalysed steam pretreatment, xylose yields were increased to 80-86%. Partial delignification of pretreated material was also evaluated as a way to increase the overall sugar yield. The overall glucose yield increased slightly due to delignification but the overall xylose yield decreased due to hemicellulose loss in the delignification step. The data also demonstrate that steam pretreatment is a robust process: corn stover from Europe and North America showed only minor differences in behaviour.  相似文献   

9.
Eastern gamagrass (Trypsacum dactyloides) is a C4 perennial grass, native to the USA with desirable characteristics that warrants further investigation as a new lignocellulosic crop for bioethanol production. Chemical composition assays showed that eastern gamagrass had comparable cellulose, hemicellulose and lignin compositions to those of switchgrass (Panicum virgatum). With the cellulose solvent-based lignocellulose fractionation (CSLF) pretreatment and subsequent enzymatic saccharification, 80.5–99.8% of cellulosic glucose was released from the gamagrass biomass, which was 10–17% greater than the glucose release efficiency from switchgrass (73.5–87.1%). Furthermore, the hydrolysate of gamagrass supported greater ethanol fermentation yield (up to 0.496 g/g glucose) than the hydrolysates of switchgrass. As such, in the whole process of biomass-to-ethanol conversion, gamagrass could yield 13–35% more ethanol per gram of biomass than switchgrass, indicating that gamagrass has high potential as an alternative energy feedstock for lignocellulosic ethanol production.  相似文献   

10.
Corn stover is a potential feedstock for biofuel production. This work investigated physical and chemical changes in plant cell-wall structure of corn stover due to hot compressed water (HCW) pretreatment at 170–190 °C in a tube reactor. Chemical composition analysis showed the soluble hemicellulose content increased with pretreatment temperature, whereas the hemicellulose content decreased from 29 to 7 % in pretreated solids. Scanning electron microscopy revealed the parenchyma-type second cell-wall structure of the plant was almost completely removed at 185 °C, and the sclerenchyma-type second cell wall was greatly damaged upon addition of 5 mmol/L ammonium sulfate during HCW pretreatment. These changes favored accessibility for enzymatic action. Enzyme saccharification of solids by optimized pretreatment with HCW at 185 °C resulted in an enzymatic hydrolysis yield of 87 %, an enhancement of 77 % compared to the yield from untreated corn stover.  相似文献   

11.
Loss of hemicellulose and inability to effectively decrystallize cellulose, result in low yield and high cost of sugars derived from biomass. In this work, dilute sulfuric acid pretreatment could easily remove most of hemicellulose as sugars. The sugars were successfully used for 2,3-butanediol production with relative high yield (36.1%). Then, the remained solid residue after acid-pretreatment was further pretreated by ionic liquid (IL) to decrease its crystallinity for subsequent enzymatic saccharification. The combination of dilute acid- and IL-pretreatments resulted in significant higher glucose yield (95.5%) in enzymatic saccharification, which was more effective than using dilute acid- or IL-pretreatment alone. This strategy seems a promising route to achieve high yield of sugars from both hemicellulose and cellulose for biorefinery.  相似文献   

12.
The aim of this work was to investigate the optimal process conditions leading to high glucose yield (over 80 %) after wet explosion (WEx) pretreatment and enzymatic hydrolysis. The study focused on determining the “sweet spot” where the glucose yield obtained is optimized compared to the cost of the enzymes. WEx pretreatment was conducted at different temperatures, times, and oxygen concentrations to determine the best WEx pretreatment conditions for the most efficient enzymatic hydrolysis. Enzymatic hydrolysis was further optimized at the optimal conditions using central composite design of response surface methodology with respect to two variables: Cellic® CTec2 loading [5 to 40 mg enzyme protein (EP)/g glucan] and substrate concentration (SC) (5 to 20 %) at 50 °C for 72 h. The most efficient and economic conditions for corn stover conversion to glucose were obtained when wet-exploded at 170 °C for 20 min with 5.5 bar oxygen followed by enzymatic hydrolysis at 20 % SC and 15 mg EP/g glucan (5 filter paper units) resulting in a glucose yield of 84 %.  相似文献   

13.
Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid   总被引:1,自引:0,他引:1  
Kim JW  Kim KS  Lee JS  Park SM  Cho HY  Park JC  Kim JS 《Bioresource technology》2011,102(19):8992-8999
Liberation of fermentable sugars from recalcitrant lignocellulosic biomass is one of the key challenges in production of cellulosic ethanol. Here we developed a two-stage pretreatment process using aqueous ammonia and dilute sulfuric acid in a percolation mode to improve production of fermentable sugars from rice straw. Aqueous NH? was used in the first stage which removed lignin selectively but left most of cellulose (97%) and hemicellulose (77%). Dilute acid was applied in the second stage which removed most of hemicellulose, partially disrupted the crystalline structure of cellulose, and thus enhanced enzymatic digestibility of cellulose in the solids remaining. Under the optimal pretreatment conditions, the enzymatic hydrolysis yields of the two-stage treated samples were 96.9% and 90.8% with enzyme loadings of 60 and 15FPU/g of glucan, respectively. The overall sugar conversions of cellulose and hemicellulose into glucose and xylose by enzymatic and acid hydrolysis reached 89.0% and 71.7%, respectively.  相似文献   

14.
This paper describes an improved process for bioethanol production using a recently developed combined extrusion–saccharification technology. Blue agave bagasse (BAB) was pretreated via a thermo-mechano-chemical process (co-rotational twin-screw, reactive extrusion) to increase the availability of cellulose and hemicellulose for enzymatic saccharification. Then, several commercial enzyme preparations, boosted with accessory enzymes (exoglucanase, endoglucanase, hemicellulase, xylanase, and β-glucosidase), were tested with extruded BAB at 5 % consistency in a stirred vessel. The enzyme blend that produced the highest saccharification yield was evaluated at different BAB consistencies. The obtained concentration of sugars increased up to 69.5 g/L (73 % yield) when a 20 % BAB mixture was used. When the enzyme blend was fed into the extruder and with a residence time of 2 min, the yield reached 15 % of the maximum theoretical of C6 sugars along this step. This extruded and pre-saccharified BAB was further hydrolyzed and used for fermentation. The pre-saccharification step significantly enhanced cellulose degradation and ethanol production. Our results indicate that the enzymatic saccharification of BAB, coupled with reactive extrusion, produces an excellent substrate for bioethanol production.  相似文献   

15.
青贮对柳枝稷制取燃料乙醇转化过程的影响   总被引:1,自引:0,他引:1  
青贮是一种传统的生物质原料保存方法,广泛应用于纤维素乙醇炼制领域尚需要考察其对原料品质和下游乙醇转化过程的影响。文中以秋季(初、中和末)收割的柳枝稷为原料,通过青贮、高温水热(LHW)预处理、纤维素酶水解和同步糖化与发酵(SSF)实验对上述问题予以回答。结果显示,秋季初收割的柳枝稷以不同湿度青贮后pH均小于4.0,干重损失小于2%,各主要成分与青贮前相比无明显变化;LHW预处理中青贮样品半纤维素水解率普遍高于未贮存样品,但青贮同样使原料获得了更高的发酵抑制物产生水平;青贮柳枝稷葡萄糖、木糖和半乳糖产量(预处理+酶水解)高于未贮存柳枝稷;经过168 h的SSF,青贮样品乙醇浓度为12.1 g/L,未贮存的秋季初、秋季中和秋季末柳枝稷为底物的浓度分别为10.3 g/L、9.7 g/L和10.6 g/L。综上,青贮有助于提高柳枝稷LHW预处理效率、酶水解率和乙醇产量。  相似文献   

16.
Ionic liquid (IL) and ammonia fiber expansion (AFEX) pretreatments were studied to develop the first direct side-by-side comparative assessment on their respective impacts on biomass structure, composition, process mass balance, and enzymatic saccharification efficiency. AFEX pretreatment completely preserves plant carbohydrates, whereas IL pretreatment extracts 76% of hemicellulose. In contrast to AFEX, the native crystal structure of the recovered corn stover from IL pretreatment was significantly disrupted. For both techniques, more than 70% of the theoretical sugar yield was attained after 48 h of hydrolysis using commercial enzyme cocktails. IL pretreatment requires less enzyme loading and a shorter hydrolysis time to reach 90% yields. Hemicellulase addition led to significant improvements in the yields of glucose and xylose for AFEX pretreated corn stover, but not for IL pretreated stover. These results provide new insights into the mechanisms of IL and AFEX pretreatment, as well as the advantages and disadvantages of each.  相似文献   

17.
Briquetting of plant biomass with low bulk density is an advantage for handling, transport, and storage of the material, and heating of the biomass prior to the briquetting facilitates the densification process and improves the physical properties of the briquettes. This study investigates the effects of preheating prior to briquetting of wheat straw (WS) on subsequent hydrothermal pretreatment and enzymatic conversion to fermentable sugars. WS (11% moisture content) was densified to briquettes under different conditions; without preheating or with preheating at 75 or 125°C for either 5 or 10 min. Subsequent hydrothermal pretreatment was done for both un-briquetted WS and for briquettes. Enzymatic saccharification was afterwards performed for all samples. The results showed that as expected, nonpretreated WS briquettes gave very low sugar yields (22–29% of the cellulose content), even though preheating at 125°C prior to briquetting (without pretreatment) improved sugar yields somewhat. When combined with pretreatment, briquetting with preheating showed neutral or negative effects on sugar yield. This result suggests that moderate preheating (75°C for 5 min) before briquetting improved bulk density and compressive resistance of briquettes without impeding subsequent enzymatic conversion. However, excessive preheating (75 or 125°C for 10 min) before briquetting may result in irreversible structural modifications that hinder the interaction between biomass and water during pretreatment, thereby decreasing the accessibility of cellulose to enzymatic saccharification.  相似文献   

18.
Lactic acid production from α-cellulose by simultaneous saccharification and fermentation (SSF) was studied. The cellulose was converted in a batch SSF using cellulase enzyme Cytolase CL to produce glucose sugar andLactobacillus delbrueckii to ferment the glucose to lactic acid. The effects of temperature, pH, yeast extract loading, and lactic acid inhibition were studied to determine the optimum conditions for the batch processing. Cellulose was converted efficiently to lactic acid, and enzymatic hydrolysis was the rate controlling step in the SSF. The highest conversion rate was obtained at 46°C and pH 5.0. The observed yield of lactic acid from α-cellulose was 0.90 at 72 hours. The optimum pH of the SSF was coincident with that of enzymatic hydrolysis. The optimum temperature of the SSF was chosen as the highest temperature the microorganism could withstand. The optimum yeast extract loading was found to be 2.5 g/L. Lactic acid was observed to be inhibitory to the microorganisms’ activity.  相似文献   

19.
Sodium percarbonate (SP), a kind of alkaline strong oxidant, was applied to corncob pretreatment. The optimized pretreatment conditions were at 4% (w/v) SP concentration with solid-to-liquid (SLR) ratio of 1:10 treating for 4?hr at 60°C. This pretreatment resulted in 91.06% of cellulose and 84.08% of hemicellulose recoveries with 34.09% of lignin removal in corncob. The reducing sugar yield from SP-pretreated corncob was 0.56?g/g after 72?hr of enzymatic hydrolysis, 1.75-folds higher than that from raw corncob. 2,3-butanediol production by Enterobacer cloacae in simultaneous saccharification fermentation was 29.18?g/L using SP-pretreated corncob as a substrate, which was 11.12 times of that using raw corncob. Scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectra analysis indicated that physical characteristics, crystallinity, and structure of corncob had changed obviously after SP pretreatment. This simple and novel pretreatment method was effective for delignification and carbohydrate retention in microbial production of 2,3-butanediol from lignocellulose biomass.  相似文献   

20.
This study applied dilute acid (DA) and sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) to deconstruct earlywood and latewood cell walls of Douglas fir for fermentable sugars production through subsequent enzymatic hydrolysis. DA pretreatment removed almost all the hemicelluloses, while SPORL at initial pH?=?4.5 (SP-B) removed significant amount of lignin between 20 and 25 %. But both are not sufficient for effective enzymatic saccharification. SPORL at low initial pH?=?2 (SP-AB) combines the advantage of both DA and SPORL-B to achieve approximately 90 % hemicellulose removal and delignification of 10–20 %. As a result, SP-AB effectively removed recalcitrance and thereby significantly improved enzymatic saccharification compared with DA and SP-B. Results also showed that earlywood with significantly lower density produced less saccharification after DA pretreatment, suggesting that wood density does not contribute to recalcitrance. The thick cell wall of latewood did not limit chemical penetration in pretreatments. The high lignin content of earlywood limited the effectiveness of DA pretreatment for enzymatic saccharification, while hemicellulose limits the effectiveness of high pH pretreatment of SP-B. The higher hemicellulose content in the earlywood and latewood of heartwood reduced saccharification relative to the corresponding earlywood and latewood in the sapwood using DA and SP-AB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号