首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The greenhouse gas (GHG) mitigation is one of the most important environmental benefits of using bioenergy replacing fossil fuels. Nitrous oxide (N2O) and methane (CH4) are important GHGs and have drawn extra attention for their roles in global warming. Although there have been many works of soil emissions of N2O and CH4 from bioenergy crops in the field scale, GHG emissions in large area of marginal lands are rather sparse and how soil temperature and moisture affect the emission potential remains unknown. Therefore, we sought to estimate the regional GHG emission based on N2O and CH4 releases from the energy crop fields.

Results

Here we sampled the top soils from two Miscanthus fields and incubated them using a short-term laboratory microcosm approach under different conditions of typical soil temperatures and moistures. Based on the emission measurements of N2O and CH4, we developed a model to estimate annual regional GHG emission of Miscanthus production in the infertile Loess Plateau of China. The results showed that the N2O emission potential was 0.27 kg N ha?1 year?1 and clearly lower than that of croplands and grasslands. The CH4 uptake potential was 1.06 kg C ha?1 year?1 and was slightly higher than that of croplands. Integrated with our previous study on the emission of CO2, the net greenhouse effect of three major GHGs (N2O, CH4 and CO2) from Miscanthus fields was 4.08 t CO2eq ha?1 year?1 in the Loess Plateau, which was lower than that of croplands, grasslands and shrub lands.

Conclusions

Our study revealed that Miscanthus production may hold a great potential for GHG mitigation in the vast infertile land in the Loess Plateau of China and could contribute to the sustainable energy utilization and have positive environmental impact on the region.
  相似文献   

2.

Purpose

The crude palm oil (CPO) extraction is normally done by a wet extraction process, and wastewater treatment of the wet process emits high levels of greenhouse gases (GHGs). A dry process extracts mixed palm oil (MPO) from palm fruit without using water and has no GHG emissions from wastewater treatment. This work is aimed at determining the GHG emissions of a dry process and at evaluating GHG savings on changing from wet to dry process, including land use change (LUC) effects.

Methods

Life cycle assessment from cradle to gate was used. The raw material is palm fruits. The dry process includes primary production, oil room, and utilities. MPO is the main product, while palm cake and fine palm residue are co-products sold for animal feed. Case studies were undertaken without and with carbon stocks of firewood and of nitrogen recycling at plantations from fronds. Allocations by mass, economic, and heating values were conducted. The trading of GHG emissions from co-products to GHG emissions from animal feed was assessed. The GHG emissions or savings from direct LUC (dLUC) and from indirect LUC (iLUC) effects and for the change from wet to dry process were determined.

Results and discussion

Palm fruit and firewood were the major GHG emission sources. Nitrogen recycling on plantations from fronds significantly affects the GHG emissions. With the carbon stocks, the GHG emissions allocated by energy value were 550 kg CO2 eq/t MPO. The GHG emissions were affected by ?3 to 37% for the change from wet to dry process. When the plantation area was increased by 1 ha and the palm oil extraction was changed from wet to dry process, and the change included dLUC and iLUC, the GHG savings ranged from ?0.94 to 5.08 t CO2 eq/ha year. The iLUC was the main GHG emission source. The GHG saving mostly originated from the change of extraction process and from the dLUC effect. Based on the potential use of biodiesel production from oil palm, during 2015–2036 in Thailand, when the extraction process was changed and dLUC and iLUC effects were included, the saving in GHG emissions was estimated to range from ?35,454 to 274,774 t CO2 eq/year.

Conclusions

The change of palm oil extraction process and the LUC effects could minimize the GHG emissions from the palm oil industry. This advantage encourages developing policies that support the dry extraction process and contribute to sustainable developments in palm oil production.
  相似文献   

3.

Purpose

The rapid growth of vehicle sales and usage has highlighted the need for greenhouse gas (GHG) emission reduction in Macau, a special administrative region (SAR) of China. As the most primary vehicle type, light-duty vehicles (LDV, including light-duty gasoline vehicles (LDGVs) and light-duty diesel vehicles (LDDVs)) play a key role in promoting the GHG reduction and development of green transportation system in Macau.

Methods

This study, on the basis of real-world tested and statistical data, firstly performed a streamlined life-cycle assessment (SLCA) on LDVs, to evaluate the potential GHG emissions and reduction through shifting to hybrid electric vehicles (HEVs) and electric vehicles (EVs).

Results and discussion

The results show that the mean GHG emissions from the LDGVs, LDDVs, and HEVs per 100 km were 25.16, 20.30, and 15.00 kg CO2 eq, respectively. Under the current electricity mix in Macau, EVs with the emissions of 12.39 kg CO2 eq/100 km can achieve a significant GHG emission reduction of LDVs in Macau. The total GHG emissions from LDVs increased from 124.99 to 247.82 thousand metric tons over the periods 2001–2014, with a 5.42% annual growth rate. A scenario analysis indicated that the development of HEVs and EVs—especially EVs—has the potential to control the GHG emissions from LDVs. Under the electricity mix of natural gas (NG) and solar energy (SE), the GHG emissions from EVs would drop by about 22 and 28%, respectively, by 2030.

Conclusions

This study develops a useful approach to evaluate the potential GHG emissions and its reduction strategies in Macau. All the obtained results could be useful for decision makers, providing robust support for drawing up an appropriate plan for improving green transportation systems in Macau.
  相似文献   

4.

Purpose

Gold is one of the most significant metals in the world, with use in various sectors including the electronic, health, and fashion industries. The Philippines has the world’s third largest known Au deposits and is ranked 20th in global gold production. Of the country’s annual production, about 80% is from the small-scale gold mining (SSGM) sector. This work estimates the first location-specific life cycle energy use and CO2 emissions of SSGM establishments in the Philippines.

Methods

Process-based LCA was used with functional unit of 100 g Au and observed data from 2010 to 2011 for mining, comminution, recovery, and refining. Four gold production paths were observed in the provinces of Benguet and Camarines Norte, namely, amalgamation, cyanidation with carbon-in-leach (CIL), cyanidation with leaching with zinc, and combination of amalgamation and cyanidation with CIL.

Results and discussion

It was estimated that 3–18 g of Au was extracted for every ton of ore within 57–159 man-hours from mining to refining. Energy use estimates ranged from 3501 to 67,325 MJ/100 g Au, while CO2 emission estimates ranged from 398 to 5340 kg CO2/100 g Au. The combination of amalgamation and cyanidation with CIL processes was the least energy and carbon intensive, while cyanidation with CIL process was the most intensive. Electricity use accounted for 95–100% of total emissions, except in cyanidation with CIL where kerosene accounts for 77% of the total. Since SSGMs contributed 80% of the 40 tons of Au produced in the Philippines in 2014, the SSGM energy use was estimated to be between 1120 and 21,544 TJ and the CO2 emissions to be between 129 and 1726 ktons CO2. Energy estimates are most sensitive to refining process yield and electrical equipment efficiency.

Conclusions

The estimated life cycle emissions rate for SSGM in the Philippines is lower than available estimates of large-scale mining. Notwithstanding, given the sector’s reliance on fossil fuels for its energy needs and the Philippines’ pledge to reduce its CO2 footprint by 70% in 2030, every effort to mitigate energy use and CO2 emission counts. Three main recommendations toward energy consumption and CO2 emissions reduction in SSGMs are proposed: (1) policy to promote technologies that are energy-efficient and processes that maximize gold process yield, (2) effective Minahang Bayan (SSGM mining zone mandated by law) implementation to ensure use of higher-grade ores, and (3) adoption of renewable energy in Minahang Bayans to promote energy independence and mitigate CO2 emissions.
  相似文献   

5.
The ongoing work on global warming resulting from green house gases (GHGs) has led to explore the possibility of bacterial strains which can fix carbon dioxide (CO2) and can generate value-added products. The present work is an effort in this direction and has carried out an exhaustive batch experiments for the fixation of CO2 using B. Cereus SM1 isolated from sewage treatment plant (STP). The work has incorporated 5-day batch run for gaseous phase inlet CO2 concentration of 13 ± 1 % (%v/v). 84.6 (±5.76) % of CO2 removal was obtained in the gaseous phase at mentioned CO2 concentration (%v/v). Energetic requirement for CO2 fixation was assessed by varying Fe[II] ion concentration (0–200 ppm) on the per-day basis. The cell lysate obtained from CO2 fixation studies (Fe[II] ion = 100 ppm) was analyzed using Fourier transformation infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC–MS). This analysis confirmed the presence of fatty acids and hydrocarbon as valuable products. The hydrocarbons were found in the range of C11–C22 which is equivalent to light oil. The obtained fatty acids were found in the range of C11–C19. The possibility of fatty acid conversion to biodiesel was explored by carrying out the transesterification reaction. The yield of biodiesel was obtained as 86.5 (±0.048) % under the transesterification reaction conditions. Results of this research work can provide the valuable information in the implementation of biomitigation of CO2 at real scenario.  相似文献   

6.
Invasive plants can influence ecosystem processes such as greenhouse gas (GHG) emissions from wetland systems directly through plant-mediated transfer of GHGs to the atmosphere or through indirect modification of the environment. However, patterns of plant invasion often co-vary with other environmental gradients, so attributing ecosystem effects to invasion can be difficult in observational studies. Here, we assessed the impact of Phragmites australis invasion into native shortgrass communities on methane (CH4) emissions by conducting field measurements of CH4 emissions along transects of invasion by Phragmites in two neighboring brackish marsh sites and compared these findings to those from a field-based mesocosm experiment. We found remarkable differences in CH4 emissions and the influence of Phragmites on CH4 emissions between the two neighboring marsh sites. While Phragmites consistently increased CH4 emissions dramatically by 10.4 ± 3.7 µmol m?2 min?1 (mean ± SE) in our high-porewater CH4 site, increases in CH4 emissions were much smaller (1.4 ± 0.5 µmol m?2 min?1) and rarely significant in our low-porewater CH4 site. While CH4 emissions in Phragmites-invaded zones of both marsh sites increased significantly, the presence of Phragmites did not alter emissions in a complementary mesocosm experiment. Seasonality and changes in temperature and light availability caused contrasting responses of CH4 emissions from Phragmites- versus native zones. Our data suggest that Phragmites-mediated CH4 emissions are particularly profound in soils with innately high rates of CH4 production. We demonstrate that the effects of invasive species on ecosystem processes such as GHG emissions may be predictable qualitatively but highly variable quantitatively. Therefore, generalizations cannot be made with respect to invader-ecosystem processes, as interactions between the invader and local abiotic conditions that vary both spatially and temporally on the order of meters and hours, respectively, can have a stronger impact on GHG emissions than the invader itself.  相似文献   

7.
The aim of this study is to estimate emissions of greenhouse gases CO2, CH4 and N2O, and the effects of drainage and peat extraction on these processes, in Estonian transitional fens and ombrotrophic bogs. Closed-chamber-based sampling lasted from January to December 2009 in nine peatlands in Estonia, covering areas with different land-use practices: natural (four study sites), drained (six sites), abandoned peat mining (five sites) and active peat mining areas (five sites). Median values of soil CO2 efflux were 1,509, 1,921, 2,845 and 1,741 kg CO2-C ha?1 year?1 from natural, drained, abandoned and active mining areas, respectively. Emission of CH4-C (median values) was 85.2, 23.7, 0.07 and 0.12 kg ha?1 year?1, and N2O-N ?0.05, ?0.01, 0.18 and 0.19 kg ha?1 year?1, respectively. There were significantly higher emissions of CO2 and N2O from abandoned and active peat mining areas, whereas CH4 emissions were significantly higher in natural and drained areas. Significant Spearman rank correlation was found between soil temperature and CO2 flux at all sites, and CH4 flux with high water level at natural and drained areas. Significant increase in CH4 flux was detected for groundwater levels above 30 cm.  相似文献   

8.
Global biodiesel production is continuously increasing and it is proportionally accompanied by a huge amount of crude glycerol (CG) as by-product. Due to its crude nature, CG has very less commercial interest; although its pure counterpart has different industrial applications. Alternatively, CG is a very good carbon source and can be used as a feedstock for fermentative hydrogen production. Further, a move of this kind has dual benefits, namely it offers a sustainable method for disposal of biodiesel manufacturing waste as well as produces biofuels and contributes in greenhouse gas (GHG) reduction. Two-stage fermentation, comprising dark and photo-fermentation is one of the most promising options available for bio-hydrogen production. In the present study, techno-economic feasibility of such a two-stage process has been evaluated. The analysis has been made based on the recent advances in fermentative hydrogen production using CG as a feedstock. The study has been carried out with special reference to North American biodiesel market; and more specifically, data available for Canadian province, Québec City have been used. Based on our techno-economic analysis, higher production cost was found to be the major bottleneck in commercial production of fermentative hydrogen. However, certain achievable alternative options for reduction of process cost have been identified. Further, the process was found to be capable in reducing GHG emissions. Bioconversion of 1 kg of crude glycerol (70 % w/v) was found to reduce 7.66 kg CO2 eq (equivalent) GHG emission, and the process also offers additional environmental benefits.  相似文献   

9.
Tropical peatlands are currently being rapidly cleared and drained for the establishment of oil palm plantations, which threatens their globally significant carbon sequestration capacity. Large-scale land conversion of tropical peatlands is important in the context of greenhouse gas emission factors and sustainable land management. At present, quantification of carbon dioxide losses from tropical peatlands is limited by our understanding of the relative contribution of heterotrophic and autotrophic respiration to net peat surface CO2 emissions. In this study we separated heterotrophic and autotrophic components of peat CO2 losses from two oil palm plantations (one established in ‘2000’ and the other in 1978, then replanted in ‘2006’) using chamber-based emissions sampling along a transect from the rooting to non-rooting zones on a peatland in Selangor, Peninsular Malaysia over the course of 3 months (June–August, 2014). Collar CO2 measurements were compared with soil temperature and moisture at site and also accompanied by depth profiles assessing peat C and bulk density. The soil respiration decreased exponentially with distance from the palm trunks with the sharpest decline found for the plantation with the younger palms with overall fluxes of 1341 and 988 mg CO2 m?2 h?1, respectively, at the 2000 and 2006 plantations, respectively. The mean heterotrophic flux was 909 ± SE 136 and 716 ± SE 201 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Autotrophic emissions adjacent to the palm trunks were 845 ± SE 135 and 1558 ± SE 341 mg m?2 h?1 at the 2000 and 2006 plantations, respectively. Heterotrophic CO2 flux was positively related to peat soil moisture, but not temperature. Total peat C stocks were 60 kg m?2 (down to 1 m depth) and did not vary among plantations of different ages but SOC concentrations declined significantly with depth at both plantations but the decline was sharper in the second generation 2006 plantation. The CO2 flux values reported in this study suggest a potential for very high carbon (C) loss from drained tropical peats during the dry season. This is particularly concerning given that more intense dry periods related to climate change are predicted for SE Asia. Taken together, this study highlights the need for careful management of tropical peatlands, and the vulnerability of their carbon storage capability under conditions of drainage.  相似文献   

10.
In-field measurements of direct soil greenhouse gas (GHG) emissions provide critical data for quantifying the net energy efficiency and economic feasibility of crop residue-based bioenergy production systems. A major challenge to such assessments has been the paucity of field studies addressing the effects of crop residue removal and associated best practices for soil management (i.e., conservation tillage) on soil emissions of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4). This regional survey summarizes soil GHG emissions from nine maize production systems evaluating different levels of corn stover removal under conventional or conservation tillage management across the US Corn Belt. Cumulative growing season soil emissions of CO2, N2O, and/or CH4 were measured for 2–5 years (2008–2012) at these various sites using a standardized static vented chamber technique as part of the USDA-ARS’s Resilient Economic Agricultural Practices (REAP) regional partnership. Cumulative soil GHG emissions during the growing season varied widely across sites, by management, and by year. Overall, corn stover removal decreased soil total CO2 and N2O emissions by -4 and -7 %, respectively, relative to no removal. No management treatments affected soil CH4 fluxes. When aggregated to total GHG emissions (Mg CO2?eq ha?1) across all sites and years, corn stover removal decreased growing season soil emissions by ?5?±?1 % (mean?±?se) and ranged from -36 % to 54 % (n?=?50). Lower GHG emissions in stover removal treatments were attributed to decreased C and N inputs into soils, as well as possible microclimatic differences associated with changes in soil cover. High levels of spatial and temporal variabilities in direct GHG emissions highlighted the importance of site-specific management and environmental conditions on the dynamics of GHG emissions from agricultural soils.  相似文献   

11.
Sheepfolds represent significant hot spot sources of greenhouse gases (GHG) in semi-arid grassland regions, such as Inner Mongolia in China. However, the annual contribution of sheepfolds to regional GHG emissions is still unknown. In order to quantify its annual contribution, we conducted measurements of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes at two sheepfold sites in the Baiyinxile administrative region of Inner Mongolia for 1 year, using static opaque chamber and gas chromatography methods. Our data show that, at an annual scale, both sheepfolds functioned as net sources of CO2, CH4 and N2O. Temperatures primarily determined the seasonal pattern of CO2 emission; 60–84% of the CO2 flux variation could be explained by temperature changes. High rates of net CH4 emissions from sheepfold soils were only observed when animals (sheep and goats) were present. While nitrous oxide emissions were also stimulated by the presence of animals, pulses of N2O emissions were also be related to rainfall and spring-thaw events. The total annual cumulative GHG emissions in CO2 equivalents (CO2: 1; CH4: 25; and N2O: 298) were quantified as 87.4?±?18.4 t ha?1 for the sheepfold that was used during the non-grazing period (i.e., winter sheepfold) and 136.7?±?15.9 t ha?1 used during the grazing period (i.e., summer sheepfold). Of the annual total GHG emissions, CH4 release accounted for approximately 1% of emissions, while CO2 and N2O emissions contributed to approximately 59% and 40%, respectively. The total GHG emission factor (CO2?+?CH4?+?N2O) per animal for the sheepfolds investigated in this study was 30.3 kg CO2 eq yr?1 head?1, which translates to 0.3, 18.8 and 11.2 kg CO2 eq yr?1 head?1 for CH4, CO2 and N2O, respectively. Sheepfolds accounted for approximately 34% of overall N2O emissions in the Baiyinxile administrative region, a typical steppe region within Inner Mongolia. The contribution of sheepfolds to the regional CO2 or CH4 exchange is marginal.  相似文献   

12.
Greenhouse gases (GHG) can be affected by grazing intensity, soil, and climate variables. This study aimed at assessing GHG emissions from a tropical pasture of Brazil to evaluate (i) how the grazing intensity affects the magnitude of GHG emissions; (ii) how season influences GHG production and consumption; and (iii) what are the key driving variables associated with GHG emissions. We measured under field conditions, during two years in a palisade-grass pasture managed with 3 grazing intensities: heavy (15 cm height), moderate (25 cm height), and light (35 cm height) N2O, CH4 and CO2 fluxes using static closed chambers and chromatographic quantification. The greater emissions occurred in the summer and the lower in the winter. N2O, CH4, and CO2 fluxes varied according to the season and were correlated with pasture grazing intensity, temperature, precipitation, % WFPS (water-filled pores space), and soil inorganic N. The explanatory variables differ according to the gas and season. Grazing intensity had a negative linear effect on annual cumulative N2O emissions and a positive linear effect on annual cumulative CO2 emissions. Grazing intensity, season, and year affected N2O, CH4, and CO2 emissions. Tropical grassland can be a large sink of N2O and CH4. GHG emissions were explained for different key driving variables according to the season.  相似文献   

13.
14.

Purpose

The effect of regional factors on life cycle assessment (LCA) of camelina seed production and camelina methyl ester production was assessed in this study. While general conclusions from LCA studies point to lower environmental impacts of biofuels, it has been shown in many studies that the environmental impacts are dependent on location, production practices, and even local weather variations.

Methods

A cradle-to-farm gate and well-to-pump approaches were used to conduct the LCA. To demonstrate the impact of agro-climatic and management factors (weather condition, soil characteristics, and management practices) on the overall emissions for four different regions including Corvallis, OR, Pendleton, OR, Pullman, WA, and Sheridan, WY, field emissions were simulated using the DeNitrification-DeComposition (DNDC) model. openLCA v.1.4.2 software was used to quantify the environmental impacts of camelina seed and camelina methyl ester production.

Results and discussion

The results showed that greenhouse gas (GHG) emissions during camelina production in different regions vary between 49.39 and 472.51 kg CO2-eq./ha due to differences in agro-climatic and weather variations. The GHG emissions for 1 kg of camelina produced in Corvallis, Pendleton, Pullman, and Sheridan were 0.76 ± 11, 0.55 ± 10, 0.47 ± 18, and 1.26 ± 6 % kg CO2-eq., respectively. The GHG emissions for 1000 MJ of camelina biodiesel using camelina produced in Corvallis, Pendleton, Pullman, and Sheridan were 53.60 ± 5, 48.87 ± 5, 44.33 ± 7, and 78.88 ± 4 % kg CO2-eq., respectively. Other impact categories such as acidification and ecotoxicity for 1000 MJ of camelina biodiesel varied across the regions by 43 and 103 %, respectively.

Conclusions

It can be concluded that process-based crop models such as DNDC in conjunction with Monte Carlo analysis are helpful tools to quantitatively estimate the influence of regional factors on field emissions which consequently can provide information about the expected variability in LCA results.
  相似文献   

15.

Purpose

The aim of this study was to estimate the total greenhouse gas (GHG) emissions generated from whole life cycle stages of a sewer pipeline system and suggest the strategies to mitigate GHG emissions from the system.

Methods

The process-based life cycle assessment (LCA) with a city-scale inventory database of a sewer pipeline system was conducted. The GHG emissions (direct, indirect, and embodied) generated from a sewer pipeline system in Daejeon Metropolitan City (DMC), South Korea, were estimated for a case study. The potential improvement actions which can mitigate GHG emissions were evaluated through a scenario analysis based on a sensitivity analysis.

Results and discussion

The amount of GHG emissions varied with the size (150, 300, 450, 700, and 900 mm) and materials (polyvinyl chloride (PVC), polyethylene (PE), concrete, and cast iron) of the pipeline. Pipes with smaller diameter emitted less GHG, and the concrete pipe generated lower amount of GHG than pipes made from other materials. The case study demonstrated that the operation (OP) stage (3.67 × 104 t CO2eq year?1, 64.9%) is the most significant for total GHG emissions (5.65 × 104 t CO2eq year?1) because a huge amount of CH4 (3.51 × 104 t CO2eq year?1) can be generated at the stage due to biofilm reaction in the inner surface of pipeline. Mitigation of CH4 emissions by reducing hydraulic retention time (HRT), optimizing surface area-to-volume (A/V) ratio of pipes, and lowering biofilm reaction during the OP stage could be effective ways to reduce total GHG emissions from the sewer pipeline system. For the rehabilitation of sewer pipeline system in DMC, the use of small diameter pipe, combination of pipe materials, and periodic maintenance activities are suggested as suitable strategies that could mitigate GHG emissions.

Conclusions

This study demonstrated the usability and appropriateness of the process-based LCA providing effective GHG mitigation strategies at a city-scale sewer pipeline system. The results obtained from this study could be applied to the development of comprehensive models which can precisely estimate all GHG emissions generated from sewer pipeline and other urban environmental systems.
  相似文献   

16.
Today, methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions represent approximately 98 % of the total greenhouse gas (GHG) inventory worldwide, and their share is expected to increase significantly in this twenty-first century. CO2 represents the most important GHG with approximately 77 % of the total GHG emissions (considering its global warming potential) worldwide, while CH4 and N2O are emitted to a lesser extent (14 and 8 %, respectively) but exhibit global warming potentials 23 and 298 times higher than that of CO2, respectively. Most members of the United Nations, based on the urgent need to maintain the global average temperature 2 °C above preindustrial levels, have committed themselves to significantly reduce their GHG emissions. In this context, an active abatement of these emissions will help to achieve these target emission cuts without compromising industrial growth. Nowadays, there are sufficient empirical evidence to support that biological technologies can become, if properly tailored, a low-cost and environmentally friendly alternative to physical/chemical methods for the abatement of GHGs. This study constitutes a state-of-the-art review of the microbiology (biochemistry, kinetics, and waste-to-value processes) and bioreactor technology of CH4, N2O, and CO2 abatement. The potential and limitations of biological GHG degradation processes are critically discussed, and the current knowledge gaps and technology niches in the field are identified.  相似文献   

17.
Purpose

Microalgae biodiesel has attracted considerable attention as a potential substitute for fossil fuels and biodiesel from food crops. Nevertheless, its reported climate impacts in the scientific literature vary significantly. This article describes and synthesizes the range of results found in the life cycle assessment (LCA) literature regarding microalgae biodiesel studies to investigate whether particular parameters, e.g. technologies, were associated with higher or lower greenhouse gas (GHG) emissions so that a best practice can be inferred from currently available LCA data and thereby recommended.

Methods

A systematic literature review and meta-regression analysis (MRA) of 36 LCA studies that report on the GHG emissions of microalgae biodiesel was conducted. An assessment of key aspects, including modelling choices and technologies, was performed. Furthermore, MRA models were formulated considering several variables of interest describing both technical and modelling choices to identify the main causes for the variability in GHG emissions per MJ of biodiesel. Variables chosen include: microalgae species; culture medium; cultivation system; source of CO2; extraction technology; conversion technology; system boundary; geographical scope; inclusion or exclusion of capital goods; and how multifunctionality was handled.

Results and discussion

The reviewed studies altogether reported 308 results ranging from ?0.7 to 3.8 kg CO2 eq. MJ?1biodiesel, portraying 19 different system configurations. Despite the comprehensive range of variables assessed, the models generated could not plausibly explain that the variability in GHG emissions depends either on the technologies considered or on the methodological choices adopted. However, the following relationships could be observed: location in Europe and high oil productivity were associated with lower emissions, whilst dry extraction should be avoided for leading to higher GHG emissions, on average.

Conclusions

There is a large degree of variability within the technologies considered, as well as the methodological choices adopted, so that no robust conclusions could be drawn from the MRA. Notwithstanding, average GHG emissions reported were more than twice as high as fossil diesel and, while there are some studies showing large benefits, none of the various algae technologies performed consistently better than fossil diesel, questioning the climate-mitigation potential of microalgae biodiesel.

  相似文献   

18.

Purpose

The purpose of this study is to assess and calculate the potential impacts of climate change on the greenhouse gas (GHG) emissions reduction potentials of combined production of whole corn bioethanol and stover biomethanol, and whole soybean biodiesel and stalk biomethanol. Both fuels are used as substitutes to conventional fossil-based fuels. The product system includes energy crop (feedstock) production and transportation, biofuels processing, and biofuels distribution to service station.

Methods

The methodology is underpinned by life cycle thinking. Crop system model and life cycle assessment (LCA) model are linked in the analysis. The Decision Support System for Agrotechnology Transfer – crop system model (DSSAT-CSM) is used to simulate biomass and grain yield under different future climate scenarios generated using a combination of temperature, precipitation, and atmospheric CO2. Historical weather data for Gainesville, Florida, are obtained for the baseline period (1981–1990). Daily minimum and maximum air temperatures are projected to increase by +2.0, +3.0, +4.0, and +5.0 °C, precipitation is projected to change by ±20, 10, and 5 %, and atmospheric CO2 concentration is projected to increase by +70, +210, and +350 ppm. All projections are made throughout the growing season. GaBi 4.4 is used as primary LCA modelling software using crop yield data inputs from the DSSAT-CSM software. The models representation of the physical processes inventory (background unit processes) is constructed using the ecoinvent life cycle inventory database v2.0.

Results and discussion

Under current baseline climate condition, net greenhouse gas (GHG) emissions savings per hectare from corn-integrated biomethanol synthesis (CIBM) and soybean-integrated biomethanol synthesis (SIBM) were calculated as ?8,573.31 and ?3,441 kg CO2-eq. ha?1 yr?1, respectively. However, models predictions suggest that these potential GHG emissions savings would be impacted by changing climate ranging from negative to positive depending on the crop and biofuel type, and climate scenario. Increased atmospheric level of CO2 tends to minimise the negative impacts of increased temperature.

Conclusions

While policy measures are being put in place for the use of renewable biofuels driven by the desire to reduce GHG emissions from the use of conventional fossil fuels, climate change would also have impacts on the potential GHG emissions reductions resulting from the use of these renewable biofuels. However, the magnitude of the impact largely depends on the biofuel processing technology and the energy crop (feedstock) type.  相似文献   

19.
Solid waste of the automobile industry containing large amounts of heavy metals might affect the emission of greenhouse gases (GHG) when applied to the soil. Accumulation of inorganic chemical elements in the environment generally occurs due to human activity (industry, agriculture, mining and waste landfills). Residues from human activities may release heavy metals to the soil solution, causing toxicity to plants and other soil organisms. Heavy metals may also be adsorbed to clay minerals and/or complexed by the soil organic matter, becoming a potential source of pollutants. Not much is known about the behavior of solid wastes in tropical soil as regarded as source of greenhouse gases (GHG). The emission of GHG (CO2, CH4 and N2O) was evaluated in incubated soil samples collected in an area contaminated with a solid residue from an automobile industry. Samples were randomly collected at 0 to 0.2 m (a mix of soil and residue), 0.2 to 0.4 m (only residue) and 0.4 to 0.6 m (only soil). A contiguous uncontaminated area, cultivated with sugarcane, was also sampled following the same protocol. Canonical Discriminant Analysis and Principal Component Analysis were applied to the data to evaluate the GHG emission rates. Emission rates of GHG were greater in the samples from the contaminated than the sugarcane area, particularly high during the first days of incubation. CO2 emissions were greater in samples collected at the upper layer for both areas, while CH4 and N2O emissions were similar in all samples. The emission rates of CH4 were the most efficient variables to differentiate contaminated and uncontaminated areas.  相似文献   

20.

Background and aims

The impact of understory vegetation control or replacement with selected plant species, which are common forest plantation management practices, on soil C pool and greenhouse gas (GHG, including CO2, CH4 and N2O) emissions are poorly understood. The objective of this paper was to investigate the effects of understory vegetation management on the dynamics of soil GHG emissions and labile C pools in an intensively managed Chinese chestnut (Castanea mollissima Blume) plantation in subtropical China.

Methods

A 12-month field experiment was conducted to study the dynamics of soil labile C pools and GHG emissions in a Chinese chestnut plantation under four different understory management practices: control (Control), understory removal (UR), replacement of understory vegetation with Medicago sativa L. (MS), and replacement with Lolium perenne L. (LP). Soil GHG emissions were determined using the static chamber/GC technique.

Results

Understory management did not change the seasonal pattern of soil GHG emissions; however, as compared with the Control, the UR treatment increased soil CO2 and N2O emissions and CH4 uptake, and the MS and LP treatments increased CO2 and N2O emissions and reduced CH4 uptake (P?<?0.05 for all treatment effects, same below). The total global warming potential (GWP) of GHG emissions in the Control, UR, MS, and LP treatments were 36.56, 39.40, 42.36, and 42.99 Mg CO2 equivalent (CO2-e) ha?1 year?1, respectively, with CO2 emission accounting for more than 95 % of total GWP regardless of the understory management treatment. The MS and LP treatments increased soil organic C (SOC), total N (TN), soil water soluble organic C (WSOC) and microbial biomass C (MBC), while the UR treatment decreased SOC, TN and NO3 ?-N but had no effect on WSOC and MBC. Soil GHG emissions were correlated with soil temperature and WSOC across the treatments, but had no relationship with soil moisture content and MBC.

Conclusions

Although replacing competitive understory vegetation with legume or less competitive non-legume species increased soil GHG emissions and total GWP, such treatments also increased soil C and N pools and are therefore beneficial for increasing soil C storage, maintaining soil fertility, and enhancing the productivity of Chinese chestnut plantations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号