首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Micropropagation technology promises to improve the supply of sea oats for restoring Florida's eroded beaches, but concerns about genetic diversity need to be addressed. These dune plants are colonized by a wide array of arbuscular mycorrhizal (AM) fungi, yet little is know of the diversity of these fungal communities. Our goal was to test the level of functional diversity that exists among communities of AM fungi that are present in divergent Florida dunes. Community pot cultures were established from samples collected from ten transects in two Gulf coast and two Atlantic coast locations in Florida, and these were used to conduct two greenhouse studies. The objective of the first study was to evaluate within-location variance in the mycorrhizal function of different AM fungal communities associated with endemic sea oats. The objective of the second study was to evaluate among-location responses of plant and fungal ecotypes using selected combinations obtained from the first experiment. Within locations, the AM fungal community had significant impacts on shoot mass and shoot-P contents, confirming a range of symbiotic effectiveness exists within the beach-dune system. Among locations, there was a tendency for greater root colonization between host clones and fungal communities from the same location, indicating a degree of specificity between host ecotypes and their symbiotic fungi. Relative to plant growth response, one fungal community was superior across plant genotypes from all locations, while one plant genotype tended to have the best response across all fungal communities. These data suggest that while it is possible to select effective AM fungal-host combinations for outplanting, origin of host and AM fungi have little predictive value in screening these combinations.  相似文献   

2.
The mycorrhizal status of dune plant species in relation to their plant life forms was surveyed along a successional gradient of sand dune on the southern Mediterranean coast of Turkey. Roots of 64 dune plant species belonging to 30 families were collected from sand dune communities at four different successional stages: embryonic dunes (ED), mobile dunes (MD), fixed dunes (FD), and remnant dunes (RD). Of the plant species surveyed in all successional stages, 54 (84%) had formed mycorrhizal associations. Nonmycorrhizal plants with cryptophyte life forms predominated in the earlier successional stages (ED and MD), whereas the number and percent coverage of mycorrhizal plant species belonging to hemicryptophytes, phanerophytes, and chamaephytes generally increased with the stabilization of sand dunes. Arbuscular mycorrhizal (AM) colonization was found to be the dominant mycorrhizal type in ED, MD, and RD. But phanerophytes with dual colonization, AM and ectomycorrhizal, became the dominant life form with high plant coverage in the FD stage. Total percentage of mycorrhizal root length colonization showed significant positive correlations relating to soil parameters such as organic matter and nitrogen content, while negatively correlating to high soil reaction (pH).  相似文献   

3.
Grapevine N fertilization may affect and be affected by arbuscular mycorrhizal (AM) fungal colonization and change berry composition. We studied the effects of different N fertilizers on AM fungal grapevine root colonization and sporulation, and on grapevine growth, nutrition, and berry composition, by conducting a 3.5-year pot study supplying grapevine plants with either urea, calcium nitrate, ammonium sulfate, or ammonium nitrate. We measured the percentage of AM fungal root colonization, AM fungal sporulation, grapevine shoot dry weight and number of leaves, nutrient composition (macro- and micronutrients), and grapevine berry soluble solids (total sugars or °Brix) and total acidity. Urea suppressed AM fungal root colonization and sporulation. Mycorrhizal grapevine plants had higher shoot dry weight and number of leaves than non-mycorrhizal and with a higher growth response with calcium nitrate as the N source. For the macronutrients P and K, and for the micronutrient B, leaf concentration was higher in mycorrhizal plants. Non-mycorrhizal plants had higher concentration of microelements Zn, Mn, Fe, and Cu than mycorrhizal. There were no differences in soluble solids (°Brix) in grapevine berries among mycorrhizal and non-mycorrhizal plants. However, non-mycorrhizal grapevine berries had higher acid content with ammonium nitrate, although they did not have better N nutrition and vegetative growth.  相似文献   

4.
The role of arbuscular mycorrhizal (AM) fungi in aquatic and semi-aquatic environments is poorly understood, although they may play a significant role in the establishment and maintenance of wetland plant communities. We tested the hypothesis that AM fungi have little effect on plant response to phosphorus (P) supply in inundated soils as evidenced by an absence of increased plant performance in inoculated (AM+) versus non-inoculated (AM-) Lythrum salicaria plants grown under a range of P availabilities (0-40 mg/l P). We also assessed the relationship between P supply and levels of AM colonization under inundated conditions. The presence of AM fungi had no detectable benefit for any measures of plant performance (total shoot height, shoot dry weight, shoot fresh weight, root fresh weight, total root length or total root surface area). AM+ plants displayed reduced shoot height at 10 mg/l P. Overall, shoot fresh to dry weight ratios were higher in AM+ plants although the biological significance of this was not determined. AM colonization levels were significantly reduced at P concentrations of 5 mg/l and higher. The results support the hypothesis that AM fungi have little effect on plant response to P supply in inundated conditions and suggest that the AM association can become uncoupled at relatively high levels of P supply.  相似文献   

5.
Individual plants typically interact with multiple mutualists and enemies simultaneously. Plant roots encounter both arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi, while the leaves are exposed to herbivores. AMF are usually beneficial symbionts, while the functional role of DSE is largely unknown. Leaf herbivory may have a negative effect on root symbiotic fungi due to decreased carbon availability. However, evidence for this is ambiguous and no inoculation-based experiment on joint effects of herbivory on AM and DSE has been done to date. We investigated how artificial defoliation impacts root colonization by AM (Glomus intraradices) and DSE (Phialocephala fortinii) fungi and growth of Medicago sativa host in a factorial laboratory experiment. Defoliation affected fungi differentially, causing a decrease in arbuscular colonization and a slight increase in DSE-type colonization. However, the presence of one fungal species had no effect on colonization by the other or on plant growth. Defoliation reduced plant biomass, with this effect independent of the fungal treatments. Inoculation by either fungal species reduced root/shoot ratios, with this effect independent of the defoliation treatments. These results suggest AM colonization is limited by host carbon availability, while DSE may benefit from root dieback or exudation associated with defoliation. Reductions in root allocation associated with fungal inoculation combined with a lack of effect of fungi on plant biomass suggest DSE and AMF may be functional equivalent to the plant within this study. Combined, our results indicate different controls of colonization, but no apparent functional consequences between AM and DSE association in plant roots in this experimental setup.  相似文献   

6.
Soil factors and host plant identity can both affect the growth and functioning of mycorrhizal fungi. Both components change during primary succession, but it is unknown if their relative importance to mycorrhizas also changes. This research tested how soil type and host plant differences among primary successional stages determine the growth and plant effects of arbuscular mycorrhizal (AM) fungal communities. Mycorrhizal fungal community, plant identity, and soil conditions were manipulated among three stages of a lacustrine sand dune successional series in a fully factorial greenhouse experiment. Late succession AM fungi produced more arbuscules and soil hyphae when grown in late succession soils, although the community was from the same narrow phylogenetic group as those in intermediate succession. AM fungal growth did not differ between host species, and plant growth was similarly unaffected by different AM fungal communities. These results indicate that though ecological filtering and/or adaptation of AM fungi occurs during this primary dune succession, it more strongly reflects matching between fungi and soils, rather than interactions between fungi and host plants. Thus, AM fungal performance during this succession may not depend directly on the sequence of plant community succession.  相似文献   

7.
The community structure of arbuscular mycorrhizal (AM) fungi associated with Ixeris repens was studied in coastal vegetation near the Tottori sand dunes in Japan. I. repens produces roots from a subterranean stem growing near the soil surface which provides an opportunity to examine the effects of an environmental gradient related to distance from the sea on AM fungal communities at a regular soil depth. Based on partial sequences of the nuclear large subunit ribosomal RNA gene, AM fungi in root samples were divided into 17 phylotypes. Among these, five AM fungal phylotypes in Glomus and Diversispora were dominant near the seaward forefront of the vegetation. Redundancy analysis of the AM fungal community showed significant relationships between the distribution of phylotypes and environmental variables such as distance from the sea, water-soluble sodium in soil, and some coexisting plant species. These results suggest that environmental gradients in the coastal vegetation can be determinants of the AM fungal community.  相似文献   

8.
Arbuscular mycorrhizae, ubiquitous mutualistic symbioses between plant roots and fungi in the order Glomales, are believed to be important controllers of plant responses to global change, in particular to elevated atmospheric CO2. In order to test if any effects on the symbiosis can persist after long-term treatment, we examined root colonization by arbuscular mycorrhizal (AM) and other fungi of several plant species from two grassland communities after continuous exposure to elevated atmospheric CO2 for six growing seasons in the field. For plant species from both a sandstone and a serpentine annual grassland there was evidence for changes in fungal root colonization, with changes occurring as a function of plant host species. We documented decreases in percentage nonmycorrhizal fungal root colonization in elevated CO2 for several plant species. Total AM root colonization (%) only increased significantly for one out of the five plant species in each grassland. However, when dividing AM fungal hyphae into two groups of hyphae (fine endophyte and coarse endophyte), we could document significant responses of AM fungi that were hidden when only total percentage colonization was measured. We also documented changes in elevated CO2 in the percentage of root colonized by both AM hyphal types simultaneously. Our results demonstrate that changes in fungal root colonization can occur after long-term CO2 enrichment, and that the level of resolution of the study of AM fungal responses may have to be increased to uncover significant changes to the CO2 treatment. This study is also one of the first to document compositional changes in the AM fungi colonizing roots of plants grown in elevated CO2. Although it is difficult to relate the structural data directly to functional changes, possible implications of the observed changes for plant communities are discussed.  相似文献   

9.
Even though the positive interactions between arbuscular mycorrhizal (AM) fungi and rhizobial bacteria in legume plants are well documented, their interactions under drought conditions could be negative in some species. In the present study, we examined six different strains of Rhizobiun in combination with two AM fungi (Glomus mosseae and Glomus intraradices) on the responses of Phaseolus vulgaris plants to moderate drought conditions. Moreover, to discriminate between direct competition for carbon resources from direct inhibition processes, a non-legume plant (Zea mays) was also used. Although all inoculants (single or double) increased P. vulgaris growth, only one double combination further increased total or pod dry weights. On the other hand, three double combinations decreased pod dry weight compared to plants inoculated with a single AM fungus. In Z. mays plants, one double inoculation treatment further increased shoot dry weight, but another double inoculation treatment decreased root dry weight in plants inoculated with G. mosseae. In addition, in both plant species, a higher percentage of decrease in AM root colonization by some rhizobial strains was observed. This was most likely caused by a direct inhibition of AM fungal growth by the rhizobial strains and also depended on the host plant involved. Further research is needed to elucidate on the mechanisms behind this inhibition.  相似文献   

10.
The diversity of functional and life-history traits of organisms depends on adaptation as well as the legacy of shared ancestry. Although the evolution of traits in macro-organisms is well studied, relatively little is known about character evolution in micro-organisms. Here, we surveyed an ancient and ecologically important group of microbial plant symbionts, the arbuscular mycorrhizal (AM) fungi, and tested hypotheses about the evolution of functional and life-history traits. Variation in the extent of root and soil colonization by AM fungi is constrained to a few nodes basal to the most diverse groups within the phylum, with relatively little variation associated with recent divergences. We found no evidence for a trade-off in biomass allocated to root versus soil colonization in three published glasshouse experiments; rather these traits were positively correlated. Partial support was observed for correlated evolution between fungal colonization strategies and functional benefits of the symbiosis to host plants. The evolution of increased soil colonization was positively correlated with total plant biomass and shoot phosphorus content. Although the effect of AM fungi on infection by root pathogens was phylogenetically conserved, there was no evidence for correlated evolution between the extent of AM fungal root colonization and pathogen infection. Variability in colonization strategies evolved early in the diversification of AM fungi, and we propose that these strategies were influenced by functional interactions with host plants, resulting in an evolutionary stasis resembling trait conservatism.  相似文献   

11.
Revegetation following dam removal projects may depend on recovery of arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal communities, which perform valuable ecosystem functions. This study assessed the availability and function of AM and EM fungi for plants colonizing dewatered reservoirs following a dam removal project on the Elwha River, Olympic Peninsula, Washington, United States. Availability was assessed via AM fungal spore density in soils and EM root tip colonization of Salix sitchensis (Sitka willow) in an observational field study. The effect of mycorrhizal fungi from 4 sources (reservoir soils, commercial inoculum, and 2 mature plant community soils) on growth and nutrient status of S. sitchensis was quantified in a greenhouse study. AM fungal spores and EM root tips were present in all field samples. In the greenhouse, plants receiving reservoir soil inoculum had only incipient mantle formation, while plants receiving inoculum from mature plant communities had fully formed EM root tips. EM formation corresponded with alleviation of phosphorus stress in plants (lower shoot nitrogen:phosphorus). Thus, revegetating plants have access to AM and EM fungi following dam removal, and EM formation may be especially important for plant P uptake in reservoir soils. However, availability of mycorrhizal fungi declines with distance from established plant communities. Furthermore, EM fungal communities in recently dewatered reservoirs may not be as effective at forming beneficial mycorrhizae as those from mature plant communities. Whole soil inoculum from mature plant communities may be important for the success of revegetating plants and recovery of mycorrhizal fungal communities.  相似文献   

12.
Summary We tested the hypothesis that mycorrhizal infection benefits wild plants to a lesser extent than cultivated plants. This hypothesis stems from two observations: (1) mycorrhizal infection improves plant growth primarily by increasing nutrient uptake, and (2) wild plants often possess special adaptations to soil infertility which are less pronounced in modern cultivated plants. In the first experiment, wild (Avena fatua L.) and cultivated (A. sativa L.) oats were grown hydroponically at four different phosphorus levels. Wild oat was less responsive (in shoot dry weight) to increasing phosphorus availability than cultivated oat. In addition, the root: shoot ratio was much more plastic in wild oat (varying from 0.90 in the low phosphorus solution to 0.25 in the high phosphorus solution) than in cultivated oat (varying from 0.44 to 0.17). In the second experiment, mycorrhizal and non-mycorrhizal wild and cultivated oats were grown in a phosphorus-deficient soil. Mycorrhizal infection generally improved the vegetative growth of both wild and cultivated oats. However, infection significantly increased plant lifespan, number of panicles per plant, shoot phosphorus concentration, shoot phosphorus content, duration of flowering, and the mean weight of individual seeds in cultivated oat, while it had a significantly reduced effect, no effect, or a negative effect on these characters for wild oat. Poor positive responsiveness of wild oat in these characters was thus associated with what might be considered to be inherent adaptations to nutrient deficiency: high root: shoot ratio and inherently low growth rate. Infection also increased seed phosphorus content and reproductive allocation.  相似文献   

13.
接种木霉菌对黄瓜幼苗生长和根际土壤AM真菌侵染的影响   总被引:1,自引:0,他引:1  
在盆栽试验中分别接种3株长枝木霉菌株Trichoderma longibrachiatum MF-1、MF-2和MF-3,以不接种木霉菌处理作为对照,研究木霉菌接种对土著AM真菌和黄瓜幼苗生长的影响。结果表明,菌株MF-1和MF-2显著提高了AM真菌侵染率和根外菌丝密度,与对照相比,AM真菌侵染率分别提高了26.85%和54.66%,根外菌丝密度分别是对照的3.94和3.76倍。接种菌株MF-2使植株地上部生物量显著提高了39.07%。菌株MF-3显著提高土壤pH和土壤有效磷含量。Pearson相关分析发现,添加木霉菌后,AM真菌侵染率与根外菌丝密度和孢子密度均呈显著正相关关系,土壤pH与植株地上部生物量和土壤有效磷含量均呈显著正相关关系。研究表明,3株长枝木霉与土著AM真菌的联合作用效果有明显差异,菌株MF-1和MF-2显著促进AM真菌生长,菌株MF-2更有利于黄瓜幼苗生长,而菌株MF-3主要改善土壤pH和有效磷含量。将几种木霉菌复合应用,有助于达到联合促生和改善土壤环境的综合效果。  相似文献   

14.
Martin CA  Stutz JC 《Mycorrhiza》2004,14(4):241-244
Capsicum annuum (pepper) plants were inoculated with the arbuscular mycorrhizal (AM) fungi Glomus intraradices Smith and Schenck, an undescribed Glomus sp. (AZ 112) or a mixture of these isolates. Control plants were non-mycorrhizal. Plants were grown for 8 weeks at moderate (20.7–25.4°C) or high (32.1–38°C) temperatures. Colonization of pepper roots by G. intraradices or the Glomus isolate mixture was lower at high than at moderate temperatures, but colonization by Glomus AZ112 was somewhat increased at high temperatures. Pepper shoot and root dry weights and leaf P levels were affected by an interaction between temperature and AM fungal treatments. At moderate temperatures, shoot dry weights of plants colonized by the Glomus isolate mixture or non-AM plants were highest, while root dry weights were highest for non-AM plants. At high temperatures, plants colonized by Glomus AZ112 or the non-AM plants had the lowest shoot and root dry weights. AM plants had generally higher leaf P levels at moderate temperatures and lower P levels at high temperatures than non-AM plants. AM plants also had generally higher specific soil respiration than non-AM plants regardless of temperature treatment. At moderate temperatures, P uptake by all AM plants was enhanced relative to non-AM plants but there was no corresponding enhancement of growth, possibly because less carbon was invested in root growth or root respiratory costs increased. At high temperatures, pepper growth with the G. intraradices isolate and the Glomus isolate mixture was enhanced relative to non-AM controls, despite reduced levels of AM colonization and, therefore, apparently less fungal P transfer to the plant.  相似文献   

15.
Beach replenishment is a widely used method of controlling coastal erosion. To reduce erosional losses from wind, beach grasses are often planted on the replenishment sands. However, there is little information on the microbial populations in this material that may affect plant establishment and growth. The objectives of this research were to document changes in the populations of vesicular-arbuscular mycorrhizal (VAM) fungi and other soil microorganisms in replenishment materials and to determine whether roots of transplanted beach grasses become colonized by beneficial microbes. The study was conducted over a 2-year period on a replenishment project in northeastern Florida. Three sampling locations were established at 1-km intervals along the beach. Each location consisted of three plots: an established dune, replenishment sand planted with Uniola paniculata and Panicum sp., and replenishment sand left unplanted. Fungal and bacterial populations increased rapidly in the rhizosphere of beach grasses in the planted plots. However, no bacteria were recovered that could fix significant amounts of N2. The VAM fungi established slowly on the transplanted grasses. Even after two growing seasons, levels of root colonization and sporulation were significantly below those found in the established dune. There was a shift in the dominant VAM fungi found in the planted zone with respect to those in the established dunes. The most abundant species recovered from the established dunes were Glomus deserticola, followed by Acaulospora scrobiculata and Scutellospora weresubiae. The VAM fungi that colonized the planted zone most rapidly were Glomus globiferum, followed by G. deserticola and Glomus aggregatum.  相似文献   

16.
Research into plant-mediated indirect interactions between arbuscular mycorrhizal (AM) fungi and insect herbivores has focussed on those between plant shoots and above-ground herbivores, despite the fact that only below-ground herbivores share the same part of the host plant as AM fungi. Using Plantago lanceolata L., we aimed to characterise how early root herbivory by the vine weevil (Otiorhynchus sulcatus F.) affected subsequent colonization by AM fungi (Glomus spp.) and determine how the two affected plant growth and defensive chemistry. We exposed four week old P. lanceolata to root herbivory and AM fungi using a 2×2 factorial design (and quantified subsequent effects on plant biomass and iridoid glycosides (IGs) concentrations. Otiorhynchus sulcatus reduced root growth by c. 64%, whereas plant growth was unaffected by AM fungi. Root herbivory reduced extent of AM fungal colonization (by c. 61%). O. sulcatus did not influence overall IG concentrations, but caused qualitative shifts in root and shoot IGs, specifically increasing the proportion of the more toxic catalpol. These changes may reflect defensive allocation in the plant against further attack. This study demonstrates that very early root herbivory during plant development can shape future patterns of AM fungal colonization and influence defensive allocation in the plant.  相似文献   

17.
The effect of soil flooding on arbuscular-mycorrhizal (AM) fungal colonization of wetland plants was investigated using Panicum hemitomon and Leersia hexandra , two semi-aquatic grasses (Graminaceae) that grow along a wide hydrologic gradient in Carolina bay wetlands of the southeastern US coastal plain. Three related investigations were conducted along the dry-to-wet gradient in these wetlands; a field survey of AM fungal root colonization in eight wetlands, monthly monitoring of colonization patterns in P. hemitomon over a growing season, and an inoculum potential bioassay of soils collected along the gradient. The field survey showed that AM fungal colonization was strongly negatively correlated with water depth, but colonization was present in most root samples. The monthly assessment indicated that AM fungal colonization was lowest in plots that were consistently wet but rose as some plots underwent seasonal drying. The inoculum potential assay of dry, intermediate, and wet soils performed under both dry and saturated conditions showed that soils that were wet for >1 yr had the same ability to form mycorrhizas in bait plants as those that had remained dry. These findings suggested that the lower degree of colonization in wet areas observed in the field survey was because of the presence of surface water rather than low numbers of mycorrhizal propagules in the soil. Overall, the results of these investigations show that flooding is partially but not totally inhibitory to AM fungal colonization of wetland grasses.  相似文献   

18.
Plant interactions with soil biota could have a significant impact on plant successional trajectory by benefiting plants in a particular successional stage over others. The influence of soil mutualists such as mycorrhizal fungi is thought to be an important feedback component, yet they have shown benefits to both early and late successional plants that could either retard or accelerate succession. Here we first determine if arbuscular mycorrhizal (AM) fungi differ among three stages of primary sand dune succession and then if they alter growth of plants from particular successional stages. We isolated AM fungal inoculum from early, intermediate or late stages of a primary dune succession and compared them using cloning and sequencing. We then grew eight plant species that dominate within each of these successional stages with each AM fungal inoculum. We measured fungal growth to assess potential AM functional differences and plant growth to determine if AM fungi positively or negatively affect plants. AM fungi isolated from early succession were more phylogenetically diverse relative to intermediate and late succession while late successional fungi consistently produced more soil hyphae and arbuscules. Despite these differences, inocula from different successional stages had similar effects on the growth of all plant species. Host plant biomass was not affected by mycorrhizal inoculation relative to un‐inoculated controls. Although mycorrhizal communities differ among primary dune successional stages and formed different fungal structures, these differences did not directly affect the growth of plants from different dune successional stages in our experiment and therefore may be less likely to directly contribute to plant succession in sand dunes.  相似文献   

19.
Given that arbuscular mycorrhizal (AM) fungi are not consistently beneficial to their host plants, it is difficult to explain the evolutionary persistence of this relationship. We tested the hypothesis that increasing either fungal or host biodiversity allows an AM fungus to persist on a host where it shows little benefit. We found that growing such a fungus (an isolate of Glomus custos associating with Plantago laceolata) in combination with certain fungi improved its success as measured by mtLSU DNA abundance. Increasing plant species richness facilitated the spread of this fungus as measured by spore density and fungal colonization; the role of host species richness was not as clear when looking at measures of root abundance. These results indicate that diversity in the AM symbiosis, both plant and fungal, can promote the persistence of low-quality fungi. By existing within a complex mycelial network fungal strains that show little growth benefit to their hosts have a better chance of persisting on that same host. This has the potential to promote selection for heterogeneous AM fungal communities on a small spatial scale.  相似文献   

20.
Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号