首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to prepare alginate-immobilized freeze-dried cultures of Streptococcus thermophilus and to compare the acidifying activities of these rehydrated cultures with classical free cell liquid inoculants. Streptococcus thermophilus BT1 grew in alginate beads and the population reached 10(10) cfu g(-1) after 6 h incubation. Re-inoculation of the beads in fresh medium with a further 6 h incubation did not improve the biomass level, but extending the incubation at 42 degrees C to 24 h caused significant death. The rehydrated immobilized cell technology (ICT) starter contained 13% free cells. In acidifying activity tests, the ICT culture had a similar acidification curve to that of a classical milk-grown free cell culture, except that it reached lower final pH values. Although the differences between the ICT and liquid cultures were not important, there were significant effects of inoculation level on lag time, maximum acidification rate and on the pH and time at which the acidification rate was at its highest.  相似文献   

2.
By screening for bacteriocin-producing lactic acid bacteria of 1,428 strains isolated from authentic Bulgarian dairy products, Lb. bulgaricus BB18 strain obtained from kefir grain was selected. Out of 11 yogurt starters containing Lb. bulgaricus BB18 and S. thermophilus strains resistant to bacteriocin secreted by Lb. bulgaricus BB18 a yogurt culture (S. thermophilus 11A+Lb. bulgaricus BB18) with high growth and bacteriocinogenic activity in milk was selected. Continuous (pH-stat 5.7) prefermentation processes were carried out in milk at 37 degrees C in a 2l MBR bioreactor (MBR AG, Zurich, Switzerland) with an IMCS controller for agitation speed, temperature, dissolved oxygen, CO2 and pH. Prefermented milk with pH 5.7 coagulated in a thermostat at 37 degrees C until pH 4.8-4.9. S. thermophilus 11A and Lb. bulgaricus BB18 grew independently in a continuous mode at similar and sufficiently high-dilution rates (D=1.83 h(-1)-S. thermophilus 11A; D=1.80 h(-1)-Lb. bulgaricus BB18). The yogurt cultures developed in a stream at a high-dilution rate (D=2.03-2.28 h(-1)). The progress of both processes (growth and bacteriocin production) depended on the initial ratio between the two microorganisms. The continuous prefermentation process promoted conditions for efficient fermentation and bacteriocinogenesis of the starter culture during the batch process: strong reduction of the times for bacteriocin production and coagulation of milk (to 4.5-5.0 h); high cell productivity (lactobacilli-4x10(12) CFU ml(-1), streptococci-6x10(12) CFU ml(-1)); high productivity of bacteriocins (4,500 BU ml(-1))-1.7 times higher than the bacteriocinogenic activity of the batch starter culture.  相似文献   

3.
Ability of Cr (VI) biosorption with immobilized Trichoderma viride biomass and cell free Ca-alginate beads was studied in the present study. Biosorption efficiency in the powdered fungal biomass entrapped in polymeric matric of calcium alginate compared with cell free calcium alginate beads. Effect of pH, initial metal ion concentration, time and biomass dose on the Cr (VI) removal by immobilized and cell free Ca-alginate beads were also determined. Biosorption of Cr (VI) was pH dependent and the maximum adsorption was observed at pH 2.0. The adsorption equilibrium was reached in 90 min. The maximum adsorption capacity of 16.075 mgg(-1) was observed at dose 0.2 mg in 100 ml of Cr (VI) solution. The high value of kinetics rate constant Kad (3.73 x 10(-2)) with immobilized fungal biomass and (3.75 x 10(-2)) with cell free Ca- alginate beads showed that the sorption of Cr (VI) ions on immobilized biomass and cell free Ca-alginate beads followed pseudo first order kinetics. The experimental results were fitted satisfactory to the Langmuir and Freundlich isotherm models. The hydroxyl (-OH) and amino (-NH) functional groups were responsible in biosorption of Cr (VI) with fungal biomass spp. Trichoderma viride analysed using Fourier Transform Infrared (FTIR) Spectrometer.  相似文献   

4.
Bifidobacterium longum ATCC 15707 cell production was studied in MRS medium supplemented with whey permeate (MRS-WP) during free-cell batch fermentations and continuous immobilized-cell cultures. Very high populations were measured after 12 h batch cultures in MRS-WP medium controlled at pH 5.5 (1.7+/-0.5x10(10) cfu/ml), approximately 2-fold higher than in non-supplemented MRS. Our study showed that WP is a low-cost source of lactose and other components that can be used to increase bifidobacteria cell production in MRS medium. Continuous fermentation in MRS-WP of B. longum immobilized in gellan gum gel beads produced the highest cell concentrations in the effluent (4.9+/-0.9x10(9) cfu/ml) at a dilution rate (D) of 0.5 h(-1). However, maximal volumetric productivity (6.9+/-0.4x10(9) cfu ml(-1)h(-1)) during continuous cultures was obtained at D =2.0 h(-1), and was approximately 9.5-fold higher than during free-cell batch cultures at an optimal pH of 5.5 (7.2x10(8) cfu ml(-1)h(-1)).  相似文献   

5.
Summary Immobilized cell technology was used to prepare concentrated cultures ofLactococcus lactis that lost only 22% of viability over a 30-day storage period at 4°C. Concentrated cultures ofL lactis CRA-1 were immobilized in calcium alginate beads and added to glycerol, NaCl or sucrose-NaCl solutions in order to obtain aw readings ranging from 0.91 to 0.97. The suspensions were subsequently placed at 4°C and viability (CFU g–1 of bead) was followed during storage. Viability losses were high at aw readings of 0.95 and 0.97 and pH dropped significantly (up to one unit) in the unbuffered solutions. Addition of 1% soytone or glycerophosphate helphed stabilize pH, and a beneficial effect on viability during storage was observed in the glycerol-soytone mix when the beads were added to the conservation solutions immediately following immobilization. When beads were added to the conservation solution immediately following immobilization, a 70% drop in cell counts occurred during the first 5 days of incubation. Dipping theL lactis-carrying beads in milk for 2h before mixing with the glycerolsoytone 0.93 aw solution reduced this initial 5-day viability loss. Cultures grown in the alginate beads also had good stability in the 0.93 aw glycerol-soytone solution, where 78% of the population was viable after 30 days at 4°C. The process could be used to store immobilized cells at a processing plant, or by suppliers of lactic starters who wish to ship cultures without freezing or drying.  相似文献   

6.
Lactococcus lactis release from calcium alginate beads.   总被引:1,自引:0,他引:1  
Cell release during milk fermentation by Lactococcus lactis immobilized in calcium alginate beads was examined. Numbers of free cells in the milk gradually increased from 1 x 10(6) to 3 x 10(7) CFU/ml upon successive reutilization of the beads. Rinsing the beads between fermentations did not influence the numbers of free cells in the milk. Cell release was not affected by initial cell density within the beads or by alginate concentration, although higher acidification rates were achieved with increased cell loading. Coating alginate beads with poly-L-lysine (PLL) did not significantly reduce the release of cells during five consecutive fermentations. A double coating of PLL and alginate reduced cell release by a factor of approximately 50. However, acidification of milk with beads having the PLL-alginate coating was slower than that with uncoated beads. Immersing the beads in ethanol to kill cells on the periphery reduced cell release, but acidification activity was maintained. Dipping the beads in aluminum nitrate or a hot CaCl2 solution was not as effective as dipping them in ethanol. Ethanol treatment or heating of the beads appears to be a promising method for maintaining acidification activity while minimizing viable cell release due to loosely entrapped cells near the surface of the alginate beads.  相似文献   

7.
Lactococcus lactis release from calcium alginate beads.   总被引:1,自引:0,他引:1       下载免费PDF全文
Cell release during milk fermentation by Lactococcus lactis immobilized in calcium alginate beads was examined. Numbers of free cells in the milk gradually increased from 1 x 10(6) to 3 x 10(7) CFU/ml upon successive reutilization of the beads. Rinsing the beads between fermentations did not influence the numbers of free cells in the milk. Cell release was not affected by initial cell density within the beads or by alginate concentration, although higher acidification rates were achieved with increased cell loading. Coating alginate beads with poly-L-lysine (PLL) did not significantly reduce the release of cells during five consecutive fermentations. A double coating of PLL and alginate reduced cell release by a factor of approximately 50. However, acidification of milk with beads having the PLL-alginate coating was slower than that with uncoated beads. Immersing the beads in ethanol to kill cells on the periphery reduced cell release, but acidification activity was maintained. Dipping the beads in aluminum nitrate or a hot CaCl2 solution was not as effective as dipping them in ethanol. Ethanol treatment or heating of the beads appears to be a promising method for maintaining acidification activity while minimizing viable cell release due to loosely entrapped cells near the surface of the alginate beads.  相似文献   

8.
The rate of diffusion of serum albumin (MW 6.9 x 10(4) D) out of beads of calcium alginate gels depends upon the concentration and uronic acid composition of the alginate (ManA/GulA ratio), the conditions under which the beads are produced, the pH, and the temperature. The diffusion coefficient decreases with increasing alginate concentration, and (ManA/GulA) ratio and with decreasing pH. Diffusion out of the beads, in which the alginate is uniformly distributed (homogeneous gel), is faster than out of the beads in which the alginate is concentrated at the surface (inhomogeneous gel). The temperature dependence of the diffusion coefficient follows the Arrhenius law, with an activation energy of approximately 23 kJ x mol(-1).  相似文献   

9.
One hundred and twenty (120) strains of lactic acid bacteria (LAB) were enumerated and isolated from raw dromedary milk in Morocco using various cultured media. Strains isolated were characterized by phenotypic, physiological and biochemical properties. Results showed that high counts of LAB were found. Presumptive lactobacilli counts ranged from 2.5x10(2) to 6x10(7)cfu/ml, presumptive lactococci levels varied from 5x10(2) to 6x10(7)cfu/ml, presumptive streptococci counts varied from 4.2x10(2) to 8x10(7)cfu/ml, presumptive leuconostoc levels ranged from 5.4x10(2) to 5.4x10(7)cfu/ml. Results showed also that Lactobacillus and Lactococcus were the predominant genera with 37.5% and 25.8%, respectively. The dominated species found were Lactococcus lactis subsp. lactis (17.5%), Lactobacillus helveticus (10%), Streptococcus salivarius subsp. thermophilus (9.20%), Lactobacillus casei subsp. casei (5.80%) and Lactobacillus plantarum (5%). This is the first report on the characterization of LAB strains isolated from the one humped camel milk produced in Morocco.  相似文献   

10.
An artificial biofilm system consisting of Pseudomonas aeruginosa entrapped in alginate and agarose beads was used to demonstrate transport limitation of the rate of disinfection of entrapped bacteria by chlorine. Alginate gel beads with or without entrapped bacteria consumed chlorine. The specific rate of chlorine consumption increased with increasing cell loading in the gel beads and decreased with increasing bead radius. The value of an observable modulus comparing the rates of reaction and diffusion ranged from less than 0.1 to 8 depending on the bead radius and cell density. The observable modulus was largest for large (3-mm-diameter) beads with high cell loading (1.8 x 10(9) cfu/cm(3)) and smallest for small beads (0.5 mm diameter) with no cells added. A chlorine microelectrode was used to measure chlorine concentration profiles in agarose beads (3.0 mm diameter). Chlorine fully penetrated cell-free agarose beads rapidly; the concentration of chlorine at the bead center reached 50% of the bulk concentration within approximately 10 min after immersion in chlorine solution. When alginate and bacteria were incorporated into an agarose bead, pronounced chlorine concentration gradients persisted within the gel bead. Chlorine did gradually penetrate the bead, but at a greatly retarded rate; the time to reach 50% of the bulk concentration at the bead center was approximately 46 h. The overall rate of disinfection of entrapped bacteria was strongly dependent on cell density and bead radius. Small beads with low initial cell loading (0.5 mm diameter, 1.1 x 10(7) cfu/cm(3)) experienced rapid killing; viable cells could not be detected (<1.6 x 10(5) cfu/cm(3)) after 15 min of treatment in 2.5 mg/L chlorine. In contrast, the number of viable cells in larger beads with a higher initial cell density (3.0 mm diameter, 2.2 x 10(9) cfu/cm(3)) decreased only about 20% after 6 h of treatment in the same solution. Spatially nonuniform killing of bacteria within the beads was demonstrated by measuring the transient release of viable cells during dissolution of the beads. Bacteria were killed preferentially near the bead surface. Experimental results were consistent with transport limitation of the penetration of chlorine into the artificial biofilm arising from a reaction-diffusion interaction. The methods reported here provide tools for diagnosing the mechanism of biofilm resistance to reactive antimicrobial agents in such applications as the treatment of drinking and cooling waters. (c) 1996 John Wiley & Sons, Inc.  相似文献   

11.
AIMS: To detect bacteria present in controlled dairy ecosystems with defined composition by length-heterogeneity (LH)-PCR. LH-PCR allows to distinguish different organisms on the basis of natural variations in the length of 16S rRNA gene sequences. METHODS AND RESULTS: LH-PCR was applied to depict population structure of the lactic acid bacteria (LAB) species recoverable from Grana Padano cheese whey starters. Typical bacterial species present in the LAB community were evidenced and well discriminated. Small differences in species composition, e.g. the frequent finding of Streptococcus thermophilus and the constant presence of thermophilic lactobacilli (Lactobacillus helveticus, Lact. delbrueckii subsp. lactis/bulgaricus and Lact. fermentum) were reliably highlighted. Specificity of LH-PCR was confirmed by species-specific PCR from total DNA of the cultures. CONCLUSIONS: LH-PCR is a useful tool to monitor microbial composition and population dynamics in dairy starter cultures. When present, non-dominant bacterial species present in the whey starters, such as Strep. thermophilus, can easily be visualized and characterized without isolating and cultivating single strains. A similar approach can be applied to more complex dairy ecosystems such as milk or cheese curd. SIGNIFICANCE AND IMPACT OF THE STUDY: Community members and differences in population structure of controlled dairy ecosystems such as whey starters for hard cheeses can be evaluated and compared in a relative easy, fast, reliable and highly reproducible way.  相似文献   

12.
Lee KH  Choi IS  Kim YG  Yang DJ  Bae HJ 《Bioresource technology》2011,102(17):8191-8198
Yeast immobilized on alginate beads produced a higher ethanol yield more rapidly than did free yeast cells under the same batch-fermentation conditions. The optimal fermentation conditions were 30 °C, pH 5.0, and 10% initial glucose concentration with 2% sodium alginate beads. The fermentation time using reused alginate beads was 10-14 h, whereas fresh beads took 24 h, and free cells took 36 h. All bead samples resulted in nearly a 100% ethanol yield, whereas the free cells resulted in an 88% yield. Transmission electron microscopy (TEM) showed that the shortened time and higher yield with the reused beads was due to a higher yeast population per bead as well as a higher porosity. The ultrastructure of calcium alginate beads and the alginate matrix structure known as the “egg-box” model were observed using TEM.  相似文献   

13.
Blends of natural polysaccharide sodium alginate (5%) with gelatin (3%) cross-linked with glutaraldehyde provide beads with excellent compressive strength (8 x 10(4) Pa) and regular structure on treatment with calcium chloride. Lipases from porcine pancreas, Pseudomonas cepacia, and Candida rugosa were immobilized in such a blend with excellent efficiency. The immobilized enzymes were stable and were reused several times without significant loss of enzyme activity both in aqueous and reverse micellar media. The beads were functionalized with succinic anhydride to obtain beads with extra carboxylic acid groups. These functionalized beads were then successfully used for 7.4-fold purification of crude porcine pancreatic lipase in a simple operation of protein binding at pH 5 and release at pH 8.5.  相似文献   

14.
Summary Calcium alginate beads containingLactococcus lactis cells were used for three batch fermentations of milk or a commercially available growth medium (Gold Complete, Nordica) with the aim of producing concentrated cultures. Repeated fermentations did not significantly increase bead CFU counts which were between 3.3–7.8×1010 CFU/g. During the second and third fermentations, which lasted 6 h each, the bead populations decreased if the incubation was extended over 2 h. There was cell release from the beads. Fermentation media and fermentation time all had an effect on free cell counts, but none of these factors statistically interacted. Free cell counts were higher at the end of fermentations 2 and 3 than in the first fermentation and approximately 50% of the population was in the free state. Free cell counts were higher when the beads were incubated in Gold complete than in milk. Although the total bacterial population of a standard free cell fermentation was always higher than those having immobilized cells, immobilized cell technology did enable the production of dense cultures.  相似文献   

15.
Hydrolysis of lactose by immobilized microorganisms.   总被引:1,自引:0,他引:1  
Cells of Lactobacillus bulgaricus, Escherichia coli, and Kluyveromyces (Saccharomyces) lactis immobilized in polyacrylamide gel beads retained 27 to 61% of the beta-galactosidase activity of intact cells. Optimum temperature and pH and thermostability of these microbial beta-galactosidases were negligibly affected by the immobilization. Km values of beta-galactosidase in immobilized cells of L. bulgaricus, E. coli, and K. lactis toward lactose were 4.2, 5.4, and 30 mM, respectively. Neither inhibition nor activation of beta-galactosidase in immobilized L. bulgaricus and E. coli appeared in the presence of galactose, but remarkable inhibition by galactose was detected in the case of the enzyme of immobilized K. lactis. Glucose inhibited noncompetitively the activity of three species of immobilized microbial cells. These kinetic properties were almost the same as those of free beta-galactosidase extracted from individual microorganisms. The activity of immobilized K. lactis was fairly stable during repeated runs, but those of E. coli and L. bulgaricus decreased gradually. These immobilized microbial cells, when introduced into skim milk, demonstrated high activity for converting lactose to monosaccharides. The flavor of skim milk was hardly affected by treatment with these immobilized cells, although the degree of sweetness was raised considerably.  相似文献   

16.
淮骏  张书祥 《工业微生物》2011,41(6):99-103
采用海藻酸钠包埋植物乳杆菌并通过测定固定化细胞发酵清液的抑菌效果,优化得到的固定化最佳工艺条件为:海藻酸钠浓度为3%,CaCl2浓度为1.5%,菌悬液体积为3.5 mL(4.0×108 cfu/mL).固定化细胞重复发酵多批次效果良好.固定化细胞发酵条件优化结果表明:最适pH为7.0,最适温度为36℃,培养基中添加0....  相似文献   

17.
Technique for immobilization using sodium alginate as the matrix to preserve Bacillus thuringiensis var. israelensis isolates for long time storage was developed. Two strains of B. thuringiensis var. israelensis viz., VCRC B-17 and WHO standard strain IPS-82 were immobilized in alginate matrix and preserved at 4 degrees C and when tested both were found to have maintained excellent viability and mosquito larvicidal activity for 10 years. Mosquito larvicidal activity of B-17 and IPS-82 alginate beads, in term of LC(50) values before storage was 72.07 ng/ml and 47.07 ng/ml, respectively and after storage at 4 degrees C for a period of 1 to 10 years the values ranged from 69.88 to 73.86 ng/ml with a mean of 72.38 ng/ml and 45.32 to 48.60 ng/ml with a mean of 47.49 ng/ml, respectively. Similarly spore count of the beads of the respective strains was 4.37 x 10(8) and 3.33 x 10(10) CFU/mg before storage. After storage at 4 degrees C for a period of 1 to 10 years the counts of the beads of the respective strains ranged from 4.23 x 10(8) to 4.83 x 10(8) CFU/mg (mean of 4.49 x 10(8) CFU/mg) and 3.2 x 10(10) to 3.87 x 10(10) CFU/mg (mean of 3.54 x 10(10) CFU/mg). The alginate matrix immobilization technique has many advantages over free cells are that they enhance the stability of both spores and toxin against several physicochemical conditions and confer reduced susceptibility to contamination.  相似文献   

18.
Cells of Lactobacillus bulgaricus, Escherichia coli, and Kluyveromyces (Saccharomyces) lactis immobilized in polyacrylamide gel beads retained 27 to 61% of the beta-galactosidase activity of intact cells. Optimum temperature and pH and thermostability of these microbial beta-galactosidases were negligibly affected by the immobilization. Km values of beta-galactosidase in immobilized cells of L. bulgaricus, E. coli, and K. lactis toward lactose were 4.2, 5.4, and 30 mM, respectively. Neither inhibition nor activation of beta-galactosidase in immobilized L. bulgaricus and E. coli appeared in the presence of galactose, but remarkable inhibition by galactose was detected in the case of the enzyme of immobilized K. lactis. Glucose inhibited noncompetitively the activity of three species of immobilized microbial cells. These kinetic properties were almost the same as those of free beta-galactosidase extracted from individual microorganisms. The activity of immobilized K. lactis was fairly stable during repeated runs, but those of E. coli and L. bulgaricus decreased gradually. These immobilized microbial cells, when introduced into skim milk, demonstrated high activity for converting lactose to monosaccharides. The flavor of skim milk was hardly affected by treatment with these immobilized cells, although the degree of sweetness was raised considerably.  相似文献   

19.
Whole cells of Lactobacillus helveticus were immobilized in calcium-alginate beads to produce lactic acid from cheese whey ultrafiltrate. Ca-alginate-entrapped cells were characterized by higher fermentation rates and optimum pH than free cells. No difference could be observed in the profile of cell activity against temperature for either type of cells. After a heat treatment, cell activity was higher for free cells than for immobilized cells. Continuous lactic acid fermentation using a packed bed reactor was investigated.  相似文献   

20.
Plasmid pIP501 was transferred by conjugation from Lactococcus lactis to Lactobacillus delbrückii subsp. bulgaricus and Lactobacillus helveticus. Only Lb. delbrückii subsp. bulgaricus transconjugants could act as a donor in crosses with Lc. lactis. No Lactobacillus transconjugants were detected after inter- or intra-species Lactobacillus crosses. Plasmid pIP501 has undergone no detectable deletion or rearrangement during transfer from Lc. lactis to Lactobacillus strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号