首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate sex-specific differences in gene flow between Native American populations from South America and between those populations and recent immigrants to the New World, we examined the genetic diversity at uni- and biparental genetic markers of five Native American populations from Colombia and in published surveys from native South Americans. The Colombian populations were typed for five polymorphisms in mtDNA, five restriction sites in the beta-globin gene cluster, the DQA1 gene, and nine autosomal microsatellites. Elsewhere, we published results for seven Y-chromosome microsatellites in the same populations. Autosomal polymorphisms showed a mean G(ST) of 6.8%, in agreement with extensive classical marker studies of South American populations. MtDNA and Y-chromosome markers resulted in G(ST) values of 0.18 and 0.165, respectively. When only Y chromosomes of confirmed Amerind origin were used in the calculations (as defined by the presence of allele T at locus DYS199), G(ST) increased to 0.22. G(ST) values calculated from published data for other South American natives were 0.3 and 0.29 for mtDNA and Amerind Y chromosomes, respectively. The concordance of these estimates does not support an important difference in migration rates between the sexes throughout the history of South Amerinds. Admixture analysis of the Colombian populations suggests an asymmetric pattern of mating involving mostly immigrant men and native women.  相似文献   

2.
Genetic diversity of present American populations results from very complex demographic events involving different types and degrees of admixture. Through the analysis of lineage markers such as mtDNA and Y chromosome it is possible to recover the original Native American haplotypes, which remained identical since the admixture events due to the absence of recombination. However, the decrease in the effective population sizes and the consequent genetic drift effects suffered by these populations during the European colonization resulted in the loss or under-representation of a substantial fraction of the Native American lineages. In this study, we aim to clarify how the diversity and distribution of uniparental lineages vary with the different demographic characteristics (size, degree of isolation) and the different levels of admixture of extant Native groups in Colombia. We present new data resulting from the analyses of mtDNA whole control region, Y chromosome SNP haplogroups and STR haplotypes, and autosomal ancestry informative insertion-deletion polymorphisms in Colombian individuals from different ethnic and linguistic groups. The results demonstrate that populations presenting a high proportion of non-Native American ancestry have preserved nevertheless a substantial diversity of Native American lineages, for both mtDNA and Y chromosome. We suggest that, by maintaining the effective population sizes high, admixture allowed for a decrease in the effects of genetic drift due to Native population size reduction and thus resulting in an effective preservation of the Native American non-recombining lineages.  相似文献   

3.
To scrutinize the male ancestry of extant Native American populations, we examined eight biallelic and six microsatellite polymorphisms from the nonrecombining portion of the Y chromosome, in 438 individuals from 24 Native American populations (1 Na Dené and 23 South Amerinds) and in 404 Mongolians. One of the biallelic markers typed is a recently identified mutation (M242) characterizing a novel founder Native American haplogroup. The distribution, relatedness, and diversity of Y lineages in Native Americans indicate a differentiated male ancestry for populations from North and South America, strongly supporting a diverse demographic history for populations from these areas. These data are consistent with the occurrence of two major male migrations from southern/central Siberia to the Americas (with the second migration being restricted to North America) and a shared ancestry in central Asia for some of the initial migrants to Europe and the Americas. The microsatellite diversity and distribution of a Y lineage specific to South America (Q-M19) indicates that certain Amerind populations have been isolated since the initial colonization of the region, suggesting an early onset for tribalization of Native Americans. Age estimates based on Y-chromosome microsatellite diversity place the initial settlement of the American continent at approximately 14,000 years ago, in relative agreement with the age of well-established archaeological evidence.  相似文献   

4.
The high prevalence of rare genetic diseases in Finland has been attributed to a founder effect some 2,000 years ago. However, this hypothesis has not been supported from mtDNA sequence and autosomal microsatellite data which indicate high levels of gene diversity. Here we have identified genetic evidence for a population bottleneck by examining variable microsatellite loci on the nonrecombining portion of Y chromosomes from Finland and four populations from Europe and the Americas. Sequence data from segment I of the control region (HVS-1) of mtDNA (360 bases) and 20 autosomal dinucleotide repeat markers were also analyzed. Partitions of genetic variance within and between populations revealed significant levels of Y-chromosome differentiation between populations. Phylogenetic and diversity analyses revealed divergent Finnish Y-haplotype clades and significantly lower Y-haplotype diversity among Finns as compared to other populations. Surprisingly, Finnish Y-haplotype diversity was even lower than the Native American populations. These results provide support for the Finnish bottleneck hypothesis. Evidence for two separate founding Finnish Y-chromosome lineages was also observed from the Y-chromosome phylogeny. A limited number of closely related founding males may have contributed to the low number of paternal lineages in the Finnish population. In contrast, high levels of genetic diversity for mtDNA and autosomal STRs may be the result of sex-biased gene flow and recent immigration to urban areas from established internal isolates within Finland.  相似文献   

5.
Ancestral Asian source(s) of new world Y-chromosome founder haplotypes   总被引:15,自引:0,他引:15       下载免费PDF全文
Haplotypes constructed from Y-chromosome markers were used to trace the origins of Native Americans. Our sample consisted of 2,198 males from 60 global populations, including 19 Native American and 15 indigenous North Asian groups. A set of 12 biallelic polymorphisms gave rise to 14 unique Y-chromosome haplotypes that were unevenly distributed among the populations. Combining multiallelic variation at two Y-linked microsatellites (DYS19 and DXYS156Y) with the unique haplotypes results in a total of 95 combination haplotypes. Contra previous findings based on Y- chromosome data, our new results suggest the possibility of more than one Native American paternal founder haplotype. We postulate that, of the nine unique haplotypes found in Native Americans, haplotypes 1C and 1F are the best candidates for major New World founder haplotypes, whereas haplotypes 1B, 1I, and 1U may either be founder haplotypes and/or have arrived in the New World via recent admixture. Two of the other four haplotypes (YAP+ haplotypes 4 and 5) are probably present because of post-Columbian admixture, whereas haplotype 1G may have originated in the New World, and the Old World source of the final New World haplotype (1D) remains unresolved. The contrasting distribution patterns of the two major candidate founder haplotypes in Asia and the New World, as well as the results of a nested cladistic analysis, suggest the possibility of more than one paternal migration from the general region of Lake Baikal to the Americas.  相似文献   

6.
A total of 63 binary polymorphisms and 10 short tandem repeats (STRs) were genotyped on a sample of 2,344 Y chromosomes from 18 Native American, 28 Asian, and 5 European populations to investigate the origin(s) of Native American paternal lineages. All three of Greenberg's major linguistic divisions (including 342 Amerind speakers, 186 Na-Dene speakers, and 60 Aleut-Eskimo speakers) were represented in our sample of 588 Native Americans. Single-nucleotide polymorphism (SNP) analysis indicated that three major haplogroups, denoted as C, Q, and R, accounted for nearly 96% of Native American Y chromosomes. Haplogroups C and Q were deemed to represent early Native American founding Y chromosome lineages; however, most haplogroup R lineages present in Native Americans most likely came from recent admixture with Europeans. Although different phylogeographic and STR diversity patterns for the two major founding haplogroups previously led to the inference that they were carried from Asia to the Americas separately, the hypothesis of a single migration of a polymorphic founding population better fits our expanded database. Phylogenetic analyses of STR variation within haplogroups C and Q traced both lineages to a probable ancestral homeland in the vicinity of the Altai Mountains in Southwest Siberia. Divergence dates between the Altai plus North Asians versus the Native American population system ranged from 10,100 to 17,200 years for all lineages, precluding a very early entry into the Americas.  相似文献   

7.
We report a comparative genetic characterization of two population isolates with parallel demographic histories: the Central Valley of Costa Rica (CVCR) and Antioquia (in northwest Colombia). The analysis of mtDNA, Y-chromosome and autosomal polymorphisms shows that Antioquia and the CVCR are genetically very similar, indicating that closely related parental populations founded these two isolates. In both populations, the male ancestry is predominantly European, whereas the female ancestry is mostly Amerind. In agreement with their isolation, the Amerindian mtDNA diversity of Antioquia and the CVCR is typical of ethnically-defined native populations and is markedly lower than in other Latin American populations. A comparison of linkage disequilibrium (LD) at 18 marker pairs in Antioquia and the CVCR shows that markers in LD in both populations are located at short genetic distances (相似文献   

8.
The Cham people are the major Austronesian speakers of Mainland Southeast Asia (MSEA) and the reconstruction of the Cham population history can provide insights into their diffusion. In this study, we analyzed non-recombining region of the Y chromosome markers of 177 unrelated males from four populations in MSEA, including 59 Cham, 76 Kinh, 25 Lao, and 17 Thai individuals. Incorporating published data from mitochondrial DNA (mtDNA), our results indicated that, in general, the Chams are an indigenous Southeast Asian population. The origin of the Cham people involves the genetic admixture of the Austronesian immigrants from Island Southeast Asia (ISEA) with the local populations in MSEA. Discordance between the overall patterns of Y chromosome and mtDNA in the Chams is evidenced by the presence of some Y chromosome lineages that prevail in South Asians. Our results suggest that male-mediated dispersals via the spread of religions and business trade might play an important role in shaping the patrilineal gene pool of the Cham people.  相似文献   

9.
S. Boissinot  P. Boursot 《Genetics》1997,146(3):1019-1034
We have compared patterns of geographic variation and molecular divergence of mitochondrial DNA (mtDNA) and Y chromosome over the range of the different subspecies of Mus musculus. MtDNA was typed for 305 nucleotides in the control region, the Y chromosome for 834 base pairs (bp) in Zfy introns and 242 bp in Sry, a Zfy2 18-bp deletion, and two microsatellites. Apparent discrepancies exist between the distributions of the lineages of mtDNA and of the two major Y-chromosome lineages thus defined: some subspecies share the same mtDNA lineage but have different Y-chromosome lineages or vice versa. One microsatellite reveals a geographically clustered variation inside the distribution of each Y-chromosome lineage, showing that new Y-chromosome variants can rapidly spread locally. The two major Y-chromosome lineages have a divergence time only about one fourth of that between mtDNA lineages. Although this recent coalescence of the Y chromosomes between subspecies could partly be due to a lower ancestral polymorphism of the Y chromosome, it suggests that secondary introgression after the radiation of the subspecies might have occurred. There is evidence that the differentiation of the Y-chromosome lineages contributes to partial reproductive isolation between subspecies, and patterns of molecular evolution suggest that selection has played a role in the rapid spread across subspecies.  相似文献   

10.
The identification of a growing number of novel Mendelian disorders and private mutations in the Roma (Gypsies) points to their unique genetic heritage. Linguistic evidence suggests that they are of diverse Indian origins. Their social structure within Europe resembles that of the jatis of India, where the endogamous group, often defined by profession, is the primary unit. Genetic studies have reported dramatic differences in the frequencies of mutations and neutral polymorphisms in different Romani populations. However, these studies have not resolved ambiguities regarding the origins and relatedness of Romani populations. In this study, we examine the genetic structure of 14 well-defined Romani populations. Y-chromosome and mtDNA markers of different mutability were analyzed in a total of 275 individuals. Asian Y-chromosome haplogroup VI-68, defined by a mutation at the M82 locus, was present in all 14 populations and accounted for 44.8% of Romani Y chromosomes. Asian mtDNA-haplogroup M was also identified in all Romani populations and accounted for 26.5% of female lineages in the sample. Limited diversity within these two haplogroups, measured by the variation at eight short-tandem-repeat loci for the Y chromosome, and sequencing of the HVS1 for the mtDNA are consistent with a small group of founders splitting from a single ethnic population in the Indian subcontinent. Principal-components analysis and analysis of molecular variance indicate that genetic structure in extant endogamous Romani populations has been shaped by genetic drift and differential admixture and correlates with the migrational history of the Roma in Europe. By contrast, social organization and professional group divisions appear to be the product of a more recent restitution of the caste system of India.  相似文献   

11.
Colombia is a country with great geographic heterogeneity and marked regional differences in pre‐Columbian native population density and in the extent of past African and European immigration. As a result, Colombia has one of the most diverse populations in Latin America. Here we evaluated ancestry in over 1,700 individuals from 24 Colombian populations using biparental (autosomal and X‐Chromosome), maternal (mtDNA), and paternal (Y‐chromosome) markers. Autosomal ancestry varies markedly both within and between regions, confirming the great genetic diversity of the Colombian population. The X‐chromosome, mtDNA, and Y‐chromosome data indicate that there is a pattern across regions indicative of admixture involving predominantly Native American women and European and African men. Am J Phys Anthropol 143:13–20, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Genetic variation of the Y chromosome in five Chibchan tribes (Bribri, Cabecar, Guaymi, Huetar, and Teribe) of Costa Rica and Panama was analyzed using six microsatellite loci (DYS19, DYS389A, DYS389B, DYS390, DYS391, and DYS393), the Y-chromosome-specific alphoid system (alphah), the Y-chromosome Alu polymorphism (YAP), and a specific pre-Columbian transition (C-->T) (M3 marker) in the DYS 199 locus that defines the Q-M3 haplogroup. Thirty-nine haplotypes were found, resulting in a haplotype diversity of 0.937. The Huetar were the most diverse tribe, probably because of their high levels of interethnic admixture. A candidate founder Y-chromosome haplotype was identified (15.1% of Chibchan chromosomes), with the following constitution: YAP-, DYS199*T, alphah-II, DYS19*13, DYS389A*17, DYS389B*10, DYS390*24, DYS391*10, and DYS393*13. This haplotype is the same as the one described previously as one of the most frequent founder paternal lineages in native American populations. Analysis of molecular variance indicated that the between-population variation was smaller than the within-population variation, and the comparison with mtDNA restriction data showed no evidence of differential structuring between maternally and paternally inherited genes in the Chibchan populations. The mismatch-distribution approach indicated estimated coalescence times of the Y chromosomes of the Q-M3 haplogroup of 3,113 and 13,243 years before present; for the mtDNA-restriction haplotypes the estimated coalescence time was between 7,452 and 9,834 years before present. These results are compatible with the suggested time for the origin of the Chibchan group based on archeological, linguistic, and genetic evidence.  相似文献   

13.
Native Americans have been divided into three linguistic groups: the reasonably well-defined Eskaleut and Nadene of northern North America and the highly heterogeneous Amerind of North, Central, and South America. The heterogeneity of the Amerinds has been proposed to be the result of either multiple independent migrations or a single ancient migration with extensive in situ radiation. To investigate the origin and interrelationship of the American Indians, we examined the mitochondrial DNA (mtDNA) variation in 87 Amerinds (Pima, Maya, and Ticuna of North, Central, and South America, respectively), 80 Nadene (Dogrib and Tlingit of northwest North America and Navajo of the southwest North America), and 153 Asians from 7 diverse populations. American Indian mtDNAs were found to be directly descended from five founding Asian mtDNAs and to cluster into four lineages, each characterized by a different rare Asian mtDNA marker. Lineage A is defined by a HaeIII site gain at np 663, lineage B by a 9-bp deletion between the COII and tRNA(Lys) genes, lineage C by a HincII site loss at np 13259, and lineage D by an AluI site loss at np 5176. The North, Central, and South America Amerinds were found to harbor all four lineages, demonstrating that the Amerinds originated from a common ancestral genetic stock. The genetic variation of three of the four Amerind lineages (A, C, and D) was similar with a mean value of 0.084%, whereas the sequence variation in the fourth lineage (B) was much lower, raising the possibility of an independent arrival. By contrast, the Nadene mtDNAs were predominantly from lineage A, with 27% of them having a Nadene-specific RsaI site loss at np 16329. The accumulated Nadene variation was only 0.021%. These results demonstrate that the Amerind mtDNAs arose from one or maybe two Asian migrations that were distinct from the migration of the Nadene and that the Amerind populations are about four times older than the Nadene.  相似文献   

14.
Wang W  Wise C  Baric T  Black ML  Bittles AH 《Human genetics》2003,113(3):244-252
A genome-based investigation of three Muslim populations, the Salar, Bo'an, and Dongxiang, was conducted on 212 individuals (148 males, 64 females) co-resident in Jishisan County, a minority autonomous region located in the province of Gansu, PR China. The Salar are believed to be of Turkic origin, whereas the Bo'an and Dongxiang both speak Mongolian. Biparental dinucleotide markers on chromosomes 13 and 15 indicated elevated mean homozygosity in the Salar (0.32), Bo'an (0.32), and Dongxiang (0.27), equivalent to inbreeding coefficients ( F(is) ) of 0.16; 0.12; 0.01, confirming varying levels of endogamous and consanguineous marriage in all three communities. Y-chromosome unique event polymorphisms (UEPs) showed that males in the three communities shared common ancient origins, with 80-90% of haplotypes in common. However, the high levels of community-specific Y-chromosome STR haplotypes strongly suggested the action(s) of founder effect, genetic drift and preferential consanguinity during more recent historical time. By comparison with the marked inter-community differentiation revealed by the Y-chromosome STRs (29.4%), the mtDNA data indicated similarity between the female lineages of each community with just 1.2% inter-community variation. The combined use of these different marker systems gives an in-depth historical perspective, and provides evidence of past inter-marriage between genetically diverse male founders of each community and Han Chinese females with subsequent community endogamy.  相似文献   

15.
Aicu?a is a village in the northwest of Argentina, located about 300 km south of La Rioja city, in the province of La Rioja. The population of Aicu?a derives from a founder couple established in the uninhabited Aicu?a valley in the early years of the 17th century. Due to land ownership litigation, the descendants maintained a well-documented genealogy that extends for 12 generations, comprising more than 8,000 individuals. From the historical pedigree of Aicu?a, we selected 14 males with direct patrilineal descent from the 2 most ancient male founders, and 23 donors (9 females and 14 males) with direct matrilineal descent from the most ancient female founder. All 3 founders lived in the 17th century. We collected DNA from buccal swabs and characterized the mitochondrial DNA (mtDNA) and Y haplotypes using 14 Y-specific markers, 11 mtDNA polymorphic markers and sequencing of the mt hypervariable regions 1 and 2. We found four different Y haplotypes: Y1 and Y2 haplotypes of European origin corresponding to the founder ancestors Francisco Páez de Espinoza and Apolinario Orme?o, which were shared by 6 and 3 donors, respectively. Three males selected as Orme?o patrilineal descendants showed a different Y haplotype (Y3), probably originated by erroneous paternity registration due to illegitimacy. The remaining case (haplotype Y4), also assumed to belong to the Orme?o lineage, was probably also due to an erroneously registered paternity. Twenty-two donors showed an association of mtDNA markers corresponding to the Amerindian haplotype A2. The founder of this matrilineage could be traced back for more than 14 generations. The haplotype B of one remaining female did not correspond with the historical pedigree and could be due to an error in the genealogy registration. Our results showed an 85% agreement between conventional and molecular genealogies, with mtDNA markers being Amerindian, and Y markers being European. The methodology used in this report is a tool which could potentially be employed as a precedent for land ownership by Aicu?a villagers and Amerindian populations.  相似文献   

16.
The northeast Indian passageway connecting the Indian subcontinent to East/Southeast Asia is thought to have been a major corridor for human migrations. Because it is also an important linguistic contact zone, it is predicted that northeast India has witnessed extensive population interactions, thus, leading to high genetic diversity within groups and heterogeneity among groups. To test this prediction, we analyzed 14 biallelic and five short tandem-repeat Y-chromosome markers and hypervariable region 1 mtDNA sequence variation in 192 northeast Indians. We find that both northeast Indian Y chromosomes and mtDNAs consistently show strikingly high homogeneity among groups and strong affinities to East Asian groups. We detect virtually no Y-chromosome and mtDNA admixture between northeast and other Indian groups. Northeast Indian groups are also characterized by a greatly reduced Y-chromosome diversity, which contrasts with extensive mtDNA diversity. This is best explained by a male founder effect during the colonization of northeast India that is estimated to have occurred within the past 4,000 years. Thus, contrary to the prediction, these results provide strong evidence for a genetic discontinuity between northeast Indian groups and other Indian groups. We, therefore, conclude that the northeast Indian passage way acted as a geographic barrier rather than as a corridor for human migrations between the Indian subcontinent and East/Southeast Asia, at least within the past millennia and possibly for several tens of thousand years, as suggested by the overall distinctiveness of the Indian and East Asian Y chromosome and mtDNA gene pools.  相似文献   

17.
An unequal contribution of male and female lineages from parental populations to admixed ones is not uncommon in the American continents, as a consequence of directional gene flow from European men into African and Hispanic Americans in the past several centuries. However, little is known about sex-biased admixture in East Asia, where substantial migrations are recorded. Tibeto-Burman (TB) populations were historically derived from ancient tribes of northwestern China and subsequently moved to the south, where they admixed with the southern natives during the past 2600 years. They are currently extensively distributed in China and Southeast Asia. In this study, we analyze the variations of 965 Y chromosomes and 754 mtDNAs in >20 TB populations from China. By examining the haplotype group distributions of Y-chromosome and mtDNA markers and their principal components, we show that the genetic structure of the extant southern Tibeto-Burman (STB) populations were primarily formed by two parental groups: northern immigrants and native southerners. Furthermore, the admixture has a bias between male and female lineages, with a stronger influence of northern immigrants on the male lineages (approximately 62%) and with the southern natives contributing more extensively to the female lineages (approximately 56%) in the extant STBs. This is the first genetic evidence revealing sex-biased admixture in STB populations, which has genetic, historical, and anthropological implications.  相似文献   

18.
African descended populations exhibit an increased prevalence of asthma and allergies compared to Europeans. One approach to distinguish between environmental and genetic explanations for this difference is to study relationships of asthma risk to individual admixture. We aimed to determine the admixture proportions of a case-control sample from the Caribbean Coast of Colombia currently participating in genetic studies for asthma, and to test for population stratification and association between African ancestry and asthma and total serum IgE levels (tIgE). We genotyped 368 asthmatics and 365 non-asthmatics for 52 autosomal ancestry informative markers, six mtDNA haplogroups and nine haplogroups and five microsatellites in Y chromosome. Autosomal admixture proportions, population stratification, and associations between ancestry and the phenotypes were estimated by ADMIXMAP. The average admixture proportions among asthmatics were 42.8% European, 39.9% African and 17.2% Native American and among non-asthmatics they were 44.2% (P = 0.068), 37.6% (P = 0.007) and 18.1% (P = 0.050), respectively. In the total sample, the paternal contributions were 71% European, 25% African and 4.0% Native American and the maternal lineages were 56.8% Native American, and 20.2% African; 22.9% of the individuals carried other non-Native American mtDNA haplogroups. African ancestry was significantly associated with asthma (OR: 2.97; 95% CI: 1.08–8.08), high tIgE (OR: 1.9; 95% CI: 1.17–3.12) and socioeconomic status (OR = 0.64; 95% CI: 0.47–0.87). Significant population stratification was observed in this sample. Our findings indicate that genetic factors can explain the association between asthma and African ancestry and suggest that this sample is a useful resource for performing admixture mapping for asthma.  相似文献   

19.
Discovered in the early 16th century by European colonists, Bermuda is an isolated set of islands located in the mid-Atlantic. Shortly after its discovery, Bermuda became the first English colony to forcibly import its labor by trafficking in enslaved Africans, white ethnic minorities, and indigenous Americans. Oral traditions circulating today among contemporary tribes from the northeastern United States recount these same events, while, in Bermuda, St. David's Islanders consider their histories to be linked to a complex Native American, European, and African past. To investigate the influence of historical events on biological ancestry and native cultural identity, we analyzed genetic variation in 111 members of Bermuda's self-proclaimed St. David's Island Native Community. Our results reveal that the majority of mitochondrial DNA (mtDNA) and Y-chromosome haplotypes are of African and West Eurasian origin. However, unlike other English-speaking New World colonies, most African mtDNA haplotypes appear to derive from central and southeast Africa, reflecting the extent of maritime activities in the region. In light of genealogical and oral historical data from the St. David's community, the low frequency of Native American mtDNA and NRY lineages may reflect the influence of genetic drift, the demographic impact of European colonization, and historical admixture with persons of non-native backgrounds, which began with the settlement of the islands. By comparing the genetic data with genealogical and historical information, we are able to reconstruct the complex history of this Bermudian community, which is unique among New World populations.  相似文献   

20.
On the basis of comprehensive RFLP analysis, it has been inferred that approximately 97% of Native American mtDNAs belong to one of four major founding mtDNA lineages, designated haplogroups "A"-"D." It has been proposed that a fifth mtDNA haplogroup (haplogroup X) represents a minor founding lineage in Native Americans. Unlike haplogroups A-D, haplogroup X is also found at low frequencies in modern European populations. To investigate the origins, diversity, and continental relationships of this haplogroup, we performed mtDNA high-resolution RFLP and complete control region (CR) sequence analysis on 22 putative Native American haplogroup X and 14 putative European haplogroup X mtDNAs. The results identified a consensus haplogroup X motif that characterizes our European and Native American samples. Among Native Americans, haplogroup X appears to be essentially restricted to northern Amerindian groups, including the Ojibwa, the Nuu-Chah-Nulth, the Sioux, and the Yakima, although we also observed this haplogroup in the Na-Dene-speaking Navajo. Median network analysis indicated that European and Native American haplogroup X mtDNAs, although distinct, nevertheless are distantly related to each other. Time estimates for the arrival of X in North America are 12,000-36,000 years ago, depending on the number of assumed founders, thus supporting the conclusion that the peoples harboring haplogroup X were among the original founders of Native American populations. To date, haplogroup X has not been unambiguously identified in Asia, raising the possibility that some Native American founders were of Caucasian ancestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号