首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mi D  Kim HJ  Hadziselimovic A  Sanders CR 《Biochemistry》2006,45(33):10072-10084
Escherichia coli diacylglycerol kinase (DAGK) is a homotrimeric helical integral membrane protein in which a number of single-site mutations to cysteine are known to promote misfolding. Here, effects of other amino acid replacements have been explored using a folding assay based on the dilution of acidic urea/DAGK stock solutions into detergent/lipid mixed micelles. DAGK with an I110P or I110R mutation in the third transmembrane helix could not be purified because its expression was toxic to the E. coli host, most likely because of severe folding defects. Other mutations at Ile110 enhanced irreversible misfolding to varying degrees that generally correlated both with the polarity of the inserted amino acid and with the degree of protein destabilization. However, the I110W mutant was an exception in that it was highly misfolding prone while at the same time being more stable than the wild-type protein. This contrasts with I110Y, which also exhibited enhanced stability but folded with an efficiency similar to that of the wild type. For most mutants, the critical step leading to irreversible misfolding occurred for monomeric DAGK prior to trimerization and independent of association with mixed micelles. Misfolding of DAGK evidently involves the formation of incorrect monomer tertiary structure. Mutations appear to enhance misfolding by disfavoring the formation of correct structure rather than by directly stabilizing the misfolded state. Finally, when urea-solubilized DAGK was diluted into detergent/lipid-free buffer, it retained a significant degree of folding competency over a period of minutes. This property may be relevant to membrane protein folding in cells under conditions where the usual machinery associated with membrane integration is saturated, dysregulated, or dysfunctional.  相似文献   

2.
Nagy JK  Lonzer WL  Sanders CR 《Biochemistry》2001,40(30):8971-8980
Despite the relevance of membrane protein misfolding to a number of common diseases, our understanding of the folding and misfolding of membrane proteins lags well behind soluble proteins. Here, the overall kinetics of membrane insertion and folding of the homotrimeric integral membrane protein diacylglycerol kinase (DAGK) is addressed. DAGK was purified into lipid/detergent-free urea and guanidinium solutions and subjected to general structural characterization. In urea, the enzyme was observed to be monomeric but maintained considerable tertiary structure. In guanidinium, it was also monomeric but exhibited much less tertiary structure. Aliquots of these DAGK stock solutions were diluted 200-fold into lipid vesicles or into detergent/lipid mixed micelles, and the rates and efficiencies of folding/insertion were monitored. Reactions were also carried out in which micellar DAGK solutions were diluted into vesicular solutions. Productive insertion of DAGK from denaturant solutions into mixed micelles occurred much more rapidly than into lipid vesicles, suggesting that bilayer transversal represents the rate-limiting step for DAGK assembly in vesicles. The efficiency of productive folding/insertion into vesicles was highest in reactions initiated with micellar DAGK stock solutions (where DAGK maintains a nativelike fold and oligomeric state) and lowest in reactions starting with guanidinium stocks (where DAGK is an unfolded monomer). Moreover, the final ratio of irreversibly misfolded DAGK to reversibly misfolded enzyme was highest following reactions initiated with guanidinium stock solutions and lowest when micellar stocks were used. Finally, it was also observed that very low concentrations of detergents were able to both enhance the bilayer insertion rate and suppress misfolding.  相似文献   

3.
While the formation of kinetically trapped misfolded structural states by membrane proteins is related to a number of diseases, relatively few studies of misfolded membrane proteins in their purified state have been carried out and few methods for refolding such proteins have been reported. In this paper, misfolding of the trimeric integral membrane protein diacylglycerol kinase (DAGK) is documented and a method for refolding the protein is presented; 65 single-cysteine mutants of DAGK were examined. A majority were found to have lower-than-expected activities when purified into micellar solutions, with additional losses in activity often being observed following membrane reconstitution. A variety of evidence indicates that the low activities observed for most of these mutants results from kinetically based misfolding of the protein, with misfolding often being manifested by the formation of aberrant oligomeric states. A method referred to as "reconstitutive refolding" for correcting misfolded DAGK is presented. This method is based upon reconstituting DAGK into multilamellar POPC vesicles by dialyzing the detergent dodecylphosphocholine out of mixed micellar mixtures. For 55 of the 65 mutants tested, there was a gain of DAGK activity during reconstitutive refolding. In 33 of these cases, the gain in activity was greater than 2-fold. The refolding results for cysteine replacement mutants at DAGK sites known to be highly conserved provide teleological insight into whether sites are conserved, because they are critical for catalysis, for maintenance of the proper folding pathway, or for some other reason.  相似文献   

4.
In this work, the relationship between stability and propensity to misfold was probed for a series of purified variants of the polytopic integral membrane protein diacylglycerol kinase. It was observed that there was a strong correlation between stability and folding efficiency. The most common mutations that promoted misfolding were those which also destabilized the protein. These results imply that by targeting unstable membrane proteins for degradation, cellular protein folding quality control can eliminate proteins that have a high intrinsic propensity to misfold into aberrant structures. Moreover, the more rare class of amino acid mutations that promote misfolding without perturbing stability may be particularly dangerous because the mutant proteins may evade the surveillance of cellular quality control systems.  相似文献   

5.
Mutations in the preproinsulin protein that affect processing of preproinsulin to proinsulin or lead to misfolding of proinsulin are associated with diabetes. We examined the subcellular localization and secretion of 13 neonatal diabetes-associated human proinsulin proteins (A24D, G32R, G32S, L35P, C43G, G47V, F48C, G84R, R89C, G90C, C96Y, S101C and Y108C) in rat INS-1 insulinoma cells. These mutant proinsulin proteins accumulate in the endoplasmic reticulum (ER) and are poorly secreted except for G84R and in contrast to wild-type and hyperproinsulinemia-associated mutant proteins (H34D and R89H) which were sorted to secretory granules and efficiently secreted. We also examined the effect of C96Y mutant proinsulin on the synthesis and secretion of wild-type insulin and observed a dominant-negative effect of the mutant proinsulin on the synthesis and secretion of wild-type insulin due to induction of the unfolded protein response and resulting attenuation of overall translation.  相似文献   

6.
Rao DK  Prabhu NP  Bhuyan AK 《Biochemistry》2006,45(27):8393-8401
This work describes an extensively misfolded kinetic intermediate in the folding of horse ferrocytochrome c. Under absolute native conditions, the alkali-unfolded protein liganded with carbon-monoxide exhibits misfolding. The misfolded product, apparently an off-pathway intermediate, requires large-scale unfolding in order to have a chance to fold correctly to the native state. The rate of unfolding of the misfolded intermediate limits the overall rate of protein folding. The high level of observed misfolding possibly results from a failure of the polypeptide chain to achieve by stochastic search the transition state relevant for successful folding. Such misfolding may be analogous to the failure of a sizable set of proteins in the intracellular milieu to fold to the functionally active native state.  相似文献   

7.
Membrane topology of Escherichia coli diacylglycerol kinase.   总被引:1,自引:1,他引:0       下载免费PDF全文
The topology of Escherichia coli diacylglycerol kinase (DAGK) within the cytoplasmic membrane was elucidated by a combined approach involving both multiple aligned sequence analysis and fusion protein experiments. Hydropathy plots of the five prokaryotic DAGK sequences available were uniform in their prediction of three transmembrane segments. The hydropathy predictions were experimentally tested genetically by fusing C-terminal deletion derivatives of DAGK to beta-lactamase and beta-galactosidase. Following expression, the enzymatic activities of the chimeric proteins were measured and used to determine the cellular location of the fusion junction. These studies confirmed the hydropathy predictions for DAGK with respect to the number and approximate sequence locations of the transmembrane segments. Further analysis of the aligned DAGK sequences detected probable alpha-helical N-terminal capping motifs and two amphipathic alpha-helices within the enzyme. The combined fusion and sequence data indicate that DAGK is a polytopic integral membrane protein with three transmembrane segments with the N terminus of the protein in the cytoplasm, the C terminus in the periplasmic space, and two amphipathic helices near the cytoplasmic surface.  相似文献   

8.
Mechanisms of folding and misfolding of membrane proteins are of interest in cell biology. Recently, we have established single-molecule force spectroscopy to observe directly the stepwise folding of the Na+/H+ antiporter NhaA from Escherichia coli in vitro. Here, we improved this approach significantly to track the folding intermediates of a single NhaA polypeptide forming structural segments such as the Na+-binding site, transmembrane alpha-helices, and helical pairs. The folding rates of structural segments ranged from 0.31 s(-1) to 47 s(-1), providing detailed insight into a distinct folding hierarchy of an unfolded polypeptide into the native membrane protein structure. In some cases, however, the folding chain formed stable and kinetically trapped non-native structures, which could be assigned to misfolding events of the antiporter.  相似文献   

9.
PEX genes encode peroxins, which are proteins required for peroxisome assembly. The PEX19 gene of the yeast Yarrowia lipolytica was isolated by functional complementation of the oleic acid-nonutilizing strain pex19-1 and encodes Pex19p, a protein of 324 amino acids (34,822 Da). Subcellular fractionation and immunofluorescence microscopy showed Pex19p to be localized primarily to peroxisomes. Pex19p is detected in cells grown in glucose-containing medium, and its levels are not increased by incubation of cells in oleic acid-containing medium, the metabolism of which requires intact peroxisomes. pex19 cells preferentially mislocalize peroxisomal matrix proteins and the peripheral intraperoxisomal membrane peroxin Pex16p to the cytosol, although small amounts of these proteins could be reproducibly localized to a subcellular fraction enriched for peroxisomes. In contrast, the peroxisomal integral membrane protein Pex2p exhibits greatly reduced levels in pex19 cells compared with its levels in wild-type cells. Importantly, pex19 cells were shown by electron microscopy to contain structures that resemble wild-type peroxisomes in regards to size, shape, number, and electron density. Subcellular fractionation and isopycnic density gradient centrifugation confirmed the presence of vesicular structures in pex19 mutant strains that were similar in density to wild-type peroxisomes and that contained profiles of peroxisomal matrix and membrane proteins that are similar to, yet distinct from, those of wild-type peroxisomes. Because peroxisomal structures form in pex19 cells, Pex19p apparently does not function as a peroxisomal membrane protein receptor in Y. lipolytica. Our results are consistent with a role for Y. lipolytica Pex19p in stabilizing the peroxisomal membrane.  相似文献   

10.
Johnson AE 《FEBS letters》2005,579(4):916-920
During protein biosynthesis, a nascent protein is exposed to multiple environments and proteins both inside and outside the ribosome that influence nascent chain folding and trafficking. Fluorescence resonance energy transfer between two dyes incorporated into a single nascent chain using aminoacyl-tRNA analogs can directly and selectively monitor changes in nascent chain conformation. This approach recently revealed the existence and functional ramifications of ribosome-mediated folding of nascent membrane proteins inside the ribosome and can be extended to characterize the effects of chaperones and other proteins and ligands on nascent protein folding, interactions, assembly, and avoidance of misfolding and degradation.  相似文献   

11.
Oxenoid K  Sönnichsen FD  Sanders CR 《Biochemistry》2002,41(42):12876-12882
Prokaryotic diacylglycerol kinase (DAGK) functions as a homotrimer of 13 kDa subunits, each of which has three transmembrane segments. This enzyme is conditionally essential to some bacteria and serves as a model system for studies of membrane protein biocatalysis, stability, folding, and misfolding. In this work, the detailed topology and secondary structure of DAGK's N-terminus up through the loop following the first transmembrane domain were probed by NMR spectroscopy. Secondary structure was mapped by measuring 13C NMR chemical shifts. Residue-to-residue topology was probed by measuring 19F NMR relaxation rates for site-specifically labeled samples in the presence and absence of polar and hydrophobic paramagnetic probes. Most of DAGK's N-terminal cytoplasmic and first transmembrane segments are alpha-helical. The first and second transmembrane helices are separated by a short loop from residues 48 to 52. The first transmembrane segment extends from residues 32 to 48. Most of the N-terminal cytoplasmic domain lies near the interface but does not extend deeply into the membrane. Finally, catalytic activities measured for the single cysteine mutants before and after chemical labeling suggest that the N-terminal cytoplasmic domain likely contains a number of critical active site residues. The results, therefore, suggest that DAGK's active site lies very near to the water/bilayer interface.  相似文献   

12.
Recombinant expression of eukaryotic proteins in bacteria often results in misfolding and aggregation. The ribosome-binding Trigger factor (TF) is the first molecular chaperone that interacts with nascent polypeptide chains in bacteria. Here we show that mutant TF lacking the PPIase domain (TFNC) is more efficient than wild-type TF in enhancing the folding yield of multi-domain proteins such as firefly luciferase. We find that TFNC has a shorter residence time on nascent chains, thus facilitating co-translational folding. By delaying folding relative to translation, the PPIase domain may increase the propensity of misfolding for certain eukaryotic proteins that rely on a mechanism of co-translational, domain-wise folding.  相似文献   

13.
Data are presented which suggest that a class of amphiphilic polymers known as 'amphipols' may serve as a vehicle for delivering complex integral membrane proteins into membranes. The integral membrane protein diacylglycerol kinase (DAGK) was maintained in soluble form by either of two different amphipols. Small aliquots of these solutions were added to pre-formed lipid vesicles and the appearance of DAGK catalytic activity was monitored as an indicator of the progress of productive protein insertion into the bilayers. For one of the two amphipols tested, DAGK was observed to productively transfer from its amphipol complex into vesicles with moderate efficiency. Results were not completely clear for the other amphipol.  相似文献   

14.
There are proteins that are built of two structural domains and are deposited full-length in amyloid plaques formed in various diseases. In spite of the known differences in the mechanisms of folding of single- and multidomain proteins, no published studies can be found that address the role of the domain-domain interactions during misfolding and amyloid formation. By the discovery of the role of domain-domain interactions, here we provide important insight in the submolecular mechanism of amyloid formation. A model system based on yeast phosphoglycerate kinase was designed. This system includes the wild-type yeast phosphoglycerate kinase and single-tryptophan mutants of the individual N and C terminal domains and the complete protein. Electron microscopic measurements proved that amyloid fibrils grow from all mutants under identical conditions as for the wild-type protein. Misfolding and amyloid formation was followed in stopped-flow and manual mixing experiments on the 1 ms to 4 days timescale. Tryptophan fluorescence was used for selective detection of conformational changes accompanying the formation of the amyloidogenic intermediates and the growth of amyloid fibrils. The interactions between the polypeptide chains of the two domains direct the misfolding process from the early steps to the amyloid formation, and influence the final structure. The kinetics of misfolding is different for the individual domains, pointing to the significance of the amino acid sequence. Misfolding of the domains within the complete protein is synchronized indicating that domain-domain interactions direct the misfolding and amyloid formation mechanism.  相似文献   

15.
Fur regulation in Yersinia species   总被引:17,自引:0,他引:17  
  相似文献   

16.
DnaK-DnaJ-GrpE and GroEL-GroES are the best-characterized molecular chaperone systems in the cytoplasm of Escherichia coli. A number of additional proteins, including ClpA, ClpB, HtpG and IbpA/B, act as molecular chaperones in vitro, but their function in cellular protein folding remains unclear. Here, we examine how these chaperones influence the folding of newly synthesized recombinant proteins under heat-shock conditions. We show that the absence of either CIpB or HtpG at 42 degrees C leads to increased aggregation of preS2-beta-galactosidase, a fusion protein whose folding depends on DnaK-DnaJ-GrpE, but not GroEL-GroES. However, only the deltaclpB mutation is deleterious to the folding of homodimeric Rubisco and cMBP, two proteins requiring the GroEL-GroES chaperonins to reach a proper conformation. Null mutations in clpA or the ibpAB operon do not affect the folding of these model substrates. Overexpression of ClpB, HtpG, IbpA/B or ClpA does not suppress inclusion body formation by the aggregation-prone protein preS2-S'-beta-galactosidase in wild-type cells or alleviate recombinant protein misfolding in dnaJ259, grpE280 or groES30 mutants. By contrast, higher levels of DnaK-DnaJ, but not GroEL-GroES, restore efficient folding in deltaclpB cells. These results indicate that ClpB, and to a lesser extent HtpG, participate in de novo protein folding in mildly stressed E. coli cells, presumably by expanding the ability of the DnaK-DnaJ-GrpE team to interact with newly synthesized polypeptides.  相似文献   

17.
In this report, (19)F spin incorporation in a specific site of a specific membrane protein in E. coli was accomplished via trifluoromethyl-phenylalanine ((19) F-tfmF). Site-specific (19)F chemical shifts and longitudinal relaxation times of diacylglycerol kinase (DAGK), an E. coli membrane protein, were measured in its native membrane using in situ magic angle spinning (MAS) solid state nuclear magnetic resonance (NMR). Comparing with solution NMR data of the purified DAGK in detergent micelles, the in situ MAS-NMR data illustrated that (19)F chemical shift values of residues at different membrane protein locations were influenced by interactions between membrane proteins and their surrounding lipid or lipid mimic environments, while (19)F side chain longitudinal relaxation values were probably affected by different interactions of DAGK with planar lipid bilayer versus globular detergent micelles.  相似文献   

18.
Protein misfolding is implicated in neurodegenerative diseases and occurs in aging. However, the contribution of the misfolded ensembles to toxicity remains largely unknown. Here we introduce 2 primate cell models of destabilized proteins devoid of specific cellular functions and interactors, as bona fide misfolded proteins, allowing us to isolate the gain-of-function of non-native structures. Both GFP-degron and a mutant chloramphenicol-acetyltransferase fused to GFP (GFP-Δ9CAT) form perinuclear aggregates, are degraded by the proteasome, and colocalize with and induce the chaperone Hsp70 (HSPA1A/B) in COS-7 cells. We find that misfolded proteins neither significantly compromise chaperone-mediated folding capacity nor induce cell death. However, they do induce growth arrest in cells that are unable to degrade them and promote stress-induced death upon proteasome inhibition by MG-132 and heat shock. Finally, we show that overexpression of all heat-shock factor-1 (HSF1) and Hsp70 proteins, as well as wild-type and deacetylase-deficient (H363Y) SIRT1, rescue survival upon stress, implying a noncatalytic action of SIRT1 in response to protein misfolding. Our study establishes a novel model and extends our knowledge on the mechanism of the function-independent proteotoxicity of misfolded proteins in dividing cells.  相似文献   

19.
Kennedy's disease is a degenerative disorder of motor neurons caused by the expansion of a glutamine tract near the amino terminus of the androgen receptor (AR). Ligand binding to the receptor is associated with several post-translational modifications, but it is poorly understood whether these affect the toxicity of the mutant protein. Our studies now demonstrate that mutation of lysine residues in wild-type AR that are normally acetylated in a ligand-dependent manner mimics the effects of the expanded glutamine tract on receptor trafficking, misfolding, and aggregation. Mutation of lysines 630 or 632 and 633 to alanine markedly delays ligand-dependent nuclear translocation. The K632A/K633A mutant also undergoes ligand-dependent misfolding and aggregation similar to the expanded glutamine tract AR. This acetylation site mutant exhibits ligand-dependent 1C2 immunoreactivity, forms aggregates that co-localize with Hsp40, Hsp70, and the ubiquitin-protein isopeptide ligase (E3) ubiquitin ligase carboxyl terminus of Hsc70-interacting protein (CHIP), and inhibits proteasome function. Ligand-dependent nuclear translocation of the wild-type receptor and misfolding and aggregation of the K632A/K633A mutant are blocked by radicicol, an Hsp90 inhibitor. These data identify a novel role for the acetylation site as a regulator of androgen receptor subcellular distribution and folding and indicate that ligand-dependent aggregation is dependent upon intact Hsp90 function.  相似文献   

20.
Recent discoveries of severe bone disorders in patients with deficiencies in several endoplasmic reticulum chaperones are reshaping the discussion of type I collagen folding and related diseases. Type I collagen is the most abundant protein in all vertebrates and a crucial structural molecule for bone and other connective tissues. Its misfolding causes bone fragility, skeletal deformity and other tissue failures. Studies of newly discovered bone disorders indicate that collagen folding, chaperones involved in the folding process, cellular responses to misfolding and related bone pathologies might not follow conventional protein folding paradigms. In this review, we examine the features that distinguish collagen folding from that of other proteins and describe the findings that are beginning to reveal how cells manage collagen folding and misfolding. We discuss implications of these studies for general protein folding paradigms, unfolded protein response in cells and protein folding diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号