首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have examined the location, structure, and mechanism of synthesis of unintegrated viral DNA present in fully transformed cultures of avian sarcoma virus-infected duck cells. De novo synthesis of the unintegrated forms several weeks after the initial infection was documented by labeling unintegrated DNA in both strands with 5-bromodeoxyuridine. The unintegrated DNA is synthesized in, and probably confined to, the cytoplasm, and it consists of duplexes of short "plus" strands (ca. 0.5 X 10(6) to 1.0 X 10(6) daltons) and "minus" strands the length of a subunit of the viral genome (ca. 2.5 X 10(6) to 3.0 X 10(6) daltons). The structure of the duplex and the mode of incorporation of density label support the hypothesis that the unintegrated DNA is synthesized from an RNA templated by virus-coded DNA polymerase.  相似文献   

2.
Mouse mammary tumor virus (MMTV) DNA in chronically infected rat hepatoma cells is maintained in both the integrated and unintegrated state. Fractionation of DNA by the procedure of Hirt (1967) as well as by sedimentation through alkaline sucrose suggests that about two thirds of the viral DNA is associated with high molecular weight cell DNA. The remainder of the viral DNA is unintegrated and is present primarily as linear or open circular duplexes consisting of a genome-length strand complementary to the viral RNA ("minus" strand) and "plus" strands of subgenomic length. Approximately 20% of the unintegrated MMTV DNA is present as double-stranded, covently closed circles (form I) with a molecular weight of 6 X 10(6) daltons. Form I viral DNA is found primarily in the nucleus, whereas the open forms are both nuclear and cytoplasmic.  相似文献   

3.
The major species of unintegrated linear viral DNA identified in chicken embryonic fibroblasts infected with either the avian myeloblastosis-associated viruses (MAV-1, MAV-2) or the standard avian myeloblastosis virus complex (AMV-S) has a mass of 5.3 X 10(6) daltons. An additional minor DNA component observed only in AMV-S-infected cells has a mass of 4.9 X 10(6) daltons. The unintegrated linear viral DNAs and integrated proviruses of MAV-1 and MAV-2 have been analyzed by digestion with the restriction endonucleases EcoRI and HindIII. MAV-2 lacks a HindIII site present in MAV-1. These fragments have been compared to those generated by EcoRI and HindIII digestion of linear viral DNAs of AMV-S. Restriction enzyme digestion of AMV-S viral DNA produced unique fragments not found with either MAV-1 or MAV-2 viral DNAs. The major viral component present in AMV-S stocks has the HindIII restriction pattern of MAV-1. Restriction enzyme analysis of the 5.3 X 10(6)-dalton unintegrated MAV viral DNAs and their integrated proviruses suggests that the DNAs have a direct terminal redundancy of approximately 0.3 megadaltons and integrate colinearly with respect to the unintegrated linear DNA.  相似文献   

4.
We examined the integration site of avian oncornaviruses in the genome of different hosts with respect to the repetitive frequency of the cellular DNA sequences adjacent to the integrated proviral DNA. The following systems were studied: avian sarcoma virus (B-77) and avian leukosis virus (Rous-associated virus-61) in cultured duck embryonic cells and B-77 in cultured mouse 3T3 cells. These systems represent different host responses to viral infection, i.e., one in which both cellular transformation and viral replication occur (B-77-infected duck cells), one in which viral replication, but not transformation, occurs (Rous-associated virus-61-infected duck cells), and one in which transformation, but not viral replication, occurs (B-77-infected 3T3 cells). Two sequential hybridizations were used. First, large denatured DNA fragments (2.8 X 10(6) daltons) were reassociated to different C0t (mole-seconds per liter) values. Next, DNA remaining single stranded at different C0t values was isolated by hydroxylapatite column chromatography, immobilized on nitrocellulose filters, and hybridized with an excess of 3H-labeled 35S viral RNA to titrate the concentration of proviral DNA. Results show that B-77 sarcoma virus and Rous-associated virus-61 integrate in the unique region of duck DNA, whereas B-77 proviral DNA is associated with both repeated and unique host DNA sequences in transformed mouse 3T3 cells.  相似文献   

5.
Previous studies by Guntaka et al. have shown that the unintegrated DNA intermediates of avian RNA tumor virus replication can be readily isolated from cultures of the quail tumor line QT-6 at 1 day after infection. The intermediates include double-stranded linear and covalently closed circular DNA species. Using the analysis procedure of Southern together with previously obtained information regarding the sites of action of certain restriction endonucleases on avian sarcoma virus DNA, we have further characterized the viral DNA intermediates. Evidence is presented that, relative to the RNA genome, most of the linear species possess a direct terminal sequence redundancy equivalent to 0.5 X 10(6) +/- 0.3 X 10(6) daltons of double-stranded DNA. Some of the circular forms also possess a sequence redundancy of 0.21 X 10(6) +/- 0.03 X 10(6) daltons.  相似文献   

6.
Synthesis of Avian Oncornavirus DNA in Infected Chicken Cells   总被引:25,自引:15,他引:10       下载免费PDF全文
The intracellular synthesis and integration of viral DNA (vDNA) into the host cell genome was studied in cultured chicken embryo fibroblasts infected with avian sarcoma or leukemia viruses. The newly synthesized vDNA was detected by hybridization with 70S viral RNA. Extraction of infected cell DNA by the selective procedure of Hirt resulted in the enrichment of newly synthesized vDNA in the low molecular weight supernatant fraction while leaving the bulk of cellular DNA containing integrated vDNA in the high molecular weight pellet fraction. This approach led to detection of intracellular vDNA synthesis within 1 h after infection and to vDNA integration into cellular DNA within 24 h. There was a several-fold increase in the vDNA content of infected cells during the initial phase of virus infection. But only a part of this newly synthesized vDNA appeared to become covalently linked with high molecular weight cellular DNA. Most of the remaining unintegrated vDNA gradually disappeared. The sedimentation profiles of minimally sheared cellular DNA in alkaline sucrose velocity gradients suggest that vDNA is synthesized as free linear molecules of approximately 3 x 10(6) daltons which subsequently are covalently linked to host cell DNA.  相似文献   

7.
We have examined the arrangement of integrated avian sarcoma virus (ASV) DNA sequences in several different avian sarcoma virus transformed mammalian cell lines, in independently isolated clones of avian sarcoma virus transformed rat liver cells, and in morphologically normal revertants of avian sarcoma virus transformed rat embryo cells. By using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled avian sarcoma virus complementary DNA probes, we have compared the restriction enzyme cleavage maps of integrated viral DNA and adjacent cellular DNA sequences in four different mouse and rat cell lines transformed with either Bratislava 77 or Schmidt-Ruppin strains of avian sarcoma virus. The results of these experiments indicated that the integrated viral DNA resided at a different site within the host cell genome in each transformed cell line. A similar analysis of several independently derived clones of Schmidt-Ruppin transformed rat liver cells also revealed that each clone contained a unique cellular site for the integration of proviral DNA. Examination of several morphologically normal revertants and spontaneous retransformants of Schmidt-Ruppin transformed rat embryo cells revealed that the internal arrangement and cellular integration site of viral DNA sequences was identical with that of the transformed parent cell line. The loss of the transformed phenotype in these revertant cell lines, therefore, does not appear to be the result of rearrangement or deletions either within the viral genome or in adjacent cellular DNA sequences. The data presented support a model for ASV proviral DNA integration in which recombination can occur at multiple sites within the mammalian cell genome. The integration and maintenance of at least one complete copy of the viral genome appear to be required for continuous expression of the transformed phenotype in mammalian cells.  相似文献   

8.
The state of integration of avian sarcoma virus DNA in the genomes of transformed chicken, duck, and quail fibroblasts was deduced by means of restriction enzyme digestion of total cell DNA, gel electrophoresis, and subsequent analysis by the procedure of Southern. The cells used in these studies were either mass-infected cultures or clones of infected cells selected by their ability to form colonies in agar. For both mass-infected cultures and clones of cells of all three species, we found that integration occurred at a specific site on the viral genome but appeared to occur at many sites on the cell genome. At least some of the integrated viral DNA existed as intact nonpermuted species flanked by direct terminal repeats of at least 0.134 megadalton (217 base pairs). For each of 12 transformed quail clones studied, it was possible to detect, after digestion with Kpn I, unique junctions between viral and cellular DNA. That is, at our level of analysis, the integration site on the cell genome for each clone was different. However, within each of the 17 chicken and 9 duck clones of transformed cells, a heterogeneity presumably occurred during the outgrowth of the cell clone population, in that we could not readily detect identifiable cell-virus junction fragments.  相似文献   

9.
NIH 3T3 cells transformed with unintegrated Harvey sarcoma virus (HSV) linear DNA generally acquired a complete HSV provirus. Infection of these transformed cells with Moloney murine leukemia helper virus was followed by release of infectious particles. The HSV provirus within these transfected cells was convalently joined to nonviral DNA sequences and was termed "cell-linked" HSV DNA. The association of this cell-virus DNA sequence with the chromosomal DNA of a transfected cell was unclear. NIH 3T3 cells could also become transformed by transfection with this cell-linked HSV DNA. In this case, the recipient cells generally acquired a donor DNA fragment containing both the HSV provirus and its flanking nonviral sequences. After cells acquired either unintegrated or cell-linked HSV DNA, the newly established provirus and flanking cellular sequences underwent amplifications to between 5 and 100 copies per diploid cell. NIH 3T3 cells transfected with HSV DNA may acquire deleted proviral DNA lacking at least 1.3 kilobase pairs from the right end of full-length HSV 6-kilobase-pair DNA (corresponding to the 3'-proximal portion of wild-type HSV RNA). Cells bearing such deleted HSV genomes were transformed, indicating that the viral transformation gene lies in the middle or 5'-proximal portion of the HSV RNA genome. However, when these cells were infected with Moloney murine leukemia helper virus, only low levels of biologically active sarcoma virus particles were released. Therefore, the 3' end of full-length HSV RNA was required for efficient transmission of the viral genome.  相似文献   

10.
11.
12.
The cellular sites of integration of avian sarcoma virus (ASV) have been examined in clones of duck embryo cells infected with the Bratislava 77 strain of ASV using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled ASV complementary DNA probes. DNA prepared from 11 clones of duck embryo cells infected with the Bratislava 77 strain of ASV was digested with the restriction enzymes HpaI, which cleaves once within the viral genome, and Hind III, which cleaves twice within the viral genome, and the virus-cell DNA juncture fragments were resolved by agarose gel electrophoresis. Analysis of the virus-cell junctures present in individual ASV-infected duck embryo clones revealed that all clones contain at least one copy of nondefective proviral DNA with some clones containing as many as 5 to 6 copies of proviral DNA. A comparison of the virus-cell juncture fragments present in different ASV-infected clones showed that each clone contains a unique set of virus-cell junctures. These data suggest that ASV DNA can integrate at multiple sites within the duck embryo cell genome and that these sites appear to be different as defined by digestion with the restriction enzymes HpaI and HindIII.  相似文献   

13.
Avian leukosis viruses of subgroups B, D, and F are cytopathic for chicken cells, whereas viruses of subgroups A, C, and E are not. The amounts of unintegrated linear viral DNA in cells at different times after infection with cytopathic or noncytopathic viruses were determined by hybridization and transfection assays. Shortly after infection, there is a transient accumulation of unintegrated linear viral DNA in cells infected with cytopathic avian leukosis viruses. By 10 days after infection, the majority of this unintegrated viral DNA is not present in the infected cells. The transient cytopathic effect seen in these infected cells also disappears by this time. Low amounts of unintegrated linear viral DNA persist in these cells. Cells infected with noncytopathic viruses do not show this transient accumulation of unintegrated viral DNA. Cells infected with cytopathic viruses and subsequently grown in the presence of neutralizing antibody do not show the transient accumulation of unintegrated viral DNA or cytopathic effects. These results demonstrate a correlation between envelope subgroup, transient accumulation of unintegrated linear viral DNA, and transient cell killing by avian leukosis viruses. The cell killing appears to be the result of massive second-round superinfection by the cytopathic avian leukosis viruses.  相似文献   

14.
Cell killing by avian leukosis viruses.   总被引:16,自引:13,他引:3       下载免费PDF全文
Infection of chicken cells with a cytopathic avian leukosis virus resulted in the detachment of killed cells from the culture dish. The detached, dead cells contained more unintegrated viral DNA than the attached cells. These results confirm the hypothesis that cell killing after infection with a cytopathic avian leukosis virus is associated with accumulation of large amounts of unintegrated viral DNA. No accumulation of large amounts of integrated viral DNA was found in cells infected with cytopathic avian leukosis viruses.  相似文献   

15.
Integration of Rous sarcoma virus DNA during transfection   总被引:3,自引:0,他引:3  
We have investigated the organization and integration sites of Rous sarcoma virus (RSV) DNA in NIH 3T3 mouse cells transformed by transfection with unintegrated and integrated donor RSV DNAs. RSV DNAs of different cell lines transformed by unintegrated donor DNA were flanked by different cellular DNA sequences, indicating that RSV DNA integrates at multiple sites during transfection. The RSV genomes of cells transformed by transfection were colinear with unintegrated RSV DNA, except that deletions within the terminal repeat units of RSV DNA were detected in some cell lines. These results suggested that the terminal repeat sequences of RSV DNA did not necessarily provide a specific integration site for viral DNA during transfection. In addition, cell lines transformed by integrated RSV DNAs contained both the RSV genomes and flanking cellular sequences of the parental cell lines, indicating that integration of integrated viral DNA during transfection occurred by recombinational events within flanking cellular DNA sequences rather than at the terminal of viral DNA. Integration of RSV DNA during transfection thus appears to differ from integration of RSV DNA in virus-infected cells, where the terminal repeat units of viral DNA provide a highly specific integration site. Integration of donor DNA during transfection of NIH 3T3 cells instead appears to proceed by a pathway which is nonspecific for both donor and recipient DNA sequences.  相似文献   

16.
Quail embryo fibroblasts were infected at low multiplicity with avian sarcoma virus, and transformed cells were selected by their ability to form colonies in agar. Five clones that failed to produce focus-forming virus were examined for (i) intactness of the integrated proviral DNA, (ii) intracellular viral RNA production, (iii) intracellular viral antigen production, (iv) production of virus particles, and (v) rescue of a functional src gene and of parental host range determinants by superinfection with Rous-associated virus-60, an avian leukosis virus of subgroup E. Deletions in the integrated viral DNA were apparent in three of the five nonproducer clones. In one clone producing focus-forming virus, analysis of the integrated viral DNA revealed an insertion in the region of the genome that codes for src.  相似文献   

17.
Chicken embryo cells normally contain, in addition to deoxyribonucleic acid (DNA)-dependent DNA (D-DNA) polymerases, a novel "R-DNA-polymerase" which specifically copies polyriboadenylic acid strands. This R-DNA polymerase cannot copy natural ribonucleic acid or polyribocytidylic acid strands to a significant extent. Infection of cells with the leukovirus RAV-2 leads to the intracellular formation of large amounts of the viral RNA-dependent DNA polymerase whose properties differ from the cell R-DNA polymerase. Chicken cells transformed by a Rous sarcoma virus mutant which produce noninfectious alpha-type Rous sarcoma virus (f), a leukovirus known to be deficient in the viral RNA-dependent DNA polymerase, do not contain detectable viral RNA-dependent DNA polymerase, whereas the cellular R-DNA polymerase is found in normal amounts. There seems to be no relationship between the cellular R-DNA polymerase and the RNA-dependent DNA polymerase of the avian leukoviruses.  相似文献   

18.
Yang W  Summers J 《Journal of virology》1999,73(12):9710-9717
DNA of the avian hepadnavirus, duck hepatitis B virus, was found to be integrated at low abundance into the cellular DNA extracted from the livers of infected ducklings. The frequency of integration was estimated to be at least one viral genome per 10(3) to 10(4) cells by 6 days postinfection. The structures of virus-cell junctions determined by sequencing were compared with those of virus-virus junctions formed by nonhomologous recombination between the ends of linear viral DNA forms. This comparison allowed us to conclude that linear viral DNA was the preferential form used as an integration substrate. Potential factors promoting viral DNA integration during chronic infection are discussed.  相似文献   

19.
Single-stranded regions on unintegrated avian retrovirus DNA.   总被引:8,自引:6,他引:2  
Using chromatography on benzoylated naphthoylated DEAE-cellulose, we found that greater than 99.5% of the unintegrated linear viral DNA species detected in quail embryo cells infected with Rous sarcoma virus contained single-stranded regions, even at 16 h after infection. These regions were distributed across the genome and, on average, were primarily of plus-strand DNA. Within most of the linear viral DNA species, the minus strand was interpreted as being of genome size with two copies of the large terminal redundancy, LTR. In contrast, the plus strands in the linear viral DNA species were exclusively subgenomic.  相似文献   

20.
Spleen necrosis virus productively infects avian and rat cells. The average number of molecules of unintegrated and integrated viral DNA in cells at different times after infection was determined by hybridization and transfection assays. Shortly after infection, there was a transient accumulation of an average of about 150 to 200 molecules of unintegrated linear spleen necrosis virus DNA per chicken, turkey, or pheasant cell. No such accumulation was seen in infected rat cells. Soon after infection there was in chicken cells, but not inturkey, pheasant, or rat cells, also a transient integration of an average of 35 copies of viral DNA per cell. By 10 days after infection, the majority of this integrated viral DNA was lost from the population of infected chicken cells. At the same time, the majority of the unintegrated viral DNA was also lost from infected chicken, turkey, and pheasant cells. The transient cytopathic effect seen in these infected cells also occurred at this time. Late after infection about five copies of apparently nondefective spleen necrosis proviruses were stably integrated at multiple sites in chicken, turkey, pheasant, and rat DNA. These results demonstrate a correlation between the transient accumulation of large numbers of spleen necrosis virus DNA molecules and the transient occurrence of cytopathic effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号