首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The membranes of Synechocystis sp. PCC 6803 play a central role in photosynthesis, respiration and other important metabolic pathways. Comprehensive identification of the membrane proteins is of importance for a better understanding of the diverse functions of its unique membrane structures. Up to date, approximately 900 known or predicted membrane proteins, consisting 24.5% of Synechocystis sp. PCC 6803 proteome, have been indentified by large-scale proteomic studies.  相似文献   

2.

Background  

Antimicrobial peptides are found in all kingdoms of life. During the evolution of multicellular organisms, antimicrobial peptides were established as key elements of innate immunity. Most antimicrobial peptides are thought to work by disrupting the integrity of cell membranes, causing pathogen death. As antimicrobial peptides target the membrane structure, pathogens can only acquire resistance by a fundamental change in membrane composition. Hence, the evolution of pathogen resistance has been a slow process. Therefore antimicrobial peptides are valuable alternatives to classical antibiotics against which multiple drug-resistant bacteria have emerged. For potential therapeutic applications as antibiotics a thorough knowledge of their mechanism of action is essential. Despite the increasingly comprehensive understanding of the biochemical properties of these peptides, the actual mechanism by which antimicrobial peptides lyse microbes is controversial.  相似文献   

3.

Background  

Protein sequence insertions/deletions (indels) can be introduced during evolution or through alternative splicing (AS). Alternative splicing is an important biological phenomenon and is considered as the major means of expanding structural and functional diversity in eukaryotes. Knowledge of the structural changes due to indels is critical to our understanding of the evolution of protein structure and function. In addition, it can help us probe the evolution of alternative splicing and the diversity of functional isoforms. However, little is known about the effects of indels, in particular the ones involving core secondary structures, on the folding of protein structures. The long term goal of our study is to accurately predict the protein AS isoform structures. As a first step towards this goal, we performed a systematic analysis on the structural changes caused by short internal indels through mining highly homologous proteins in Protein Data Bank (PDB).  相似文献   

4.

Background  

In host erythrocytes, the malaria parasite must contend with ion and drug transport across three membranes; its own plasma membrane, the parasitophorous membrane and the host plasma membrane. Isolation of pure and intact Plasmodium falciparum plasma membrane would provide a suitable model to elucidate the possible role played by the parasite plasma membrane in ion balance and drug transport.  相似文献   

5.

Background  

The vestibular system provides the primary input of our sense of balance and spatial orientation. Dysfunction of the vestibular system can severely affect a person's quality of life. Therefore, understanding the molecular basis of vestibular neuron survival, maintenance, and innervation of the target sensory epithelia is fundamental.  相似文献   

6.

Background  

Aquaporins are integral membrane proteins that facilitate the transport of water and small solutes across cell membranes. These proteins are vital for maintaining water homeostasis in living organisms. In mammals, thirteen aquaporins (AQP0-12) have been characterized, but in lower vertebrates, such as fish, the diversity, structure and substrate specificity of these membrane channel proteins are largely unknown.  相似文献   

7.

Background  

Vestibular neuritis (VN) is commonly diagnosed by demonstration of unilateral vestibular failure, as unilateral loss of caloric response. As this test reflects the function of the superior part of the vestibular nerve only, cases of pure inferior nerve neuritis will be lost.  相似文献   

8.

Background  

Responses to extracellular stress are required for microbes to survive in changing environments. Although the stress response mechanisms have been characterized extensively, the evolution of stress response pathway remains poorly understood. Here, we studied the evolution of High Osmolarity Glycerol (HOG) pathway, one of the important osmotic stress response pathways, across 10 yeast species and underpinned the evolutionary forces acting on the pathway evolution.  相似文献   

9.

Background  

Outer membrane proteins (OMPs) are frequently found in the outer membranes of gram-negative bacteria, mitochondria and chloroplasts and have been found to play diverse functional roles. Computational discrimination of OMPs from globular proteins and other types of membrane proteins is helpful to accelerate new genome annotation and drug discovery.  相似文献   

10.

Background

Mammalian sperms are activated in the oviduct. This process, which involves extensive sperm surface remodelling, is required for fertilization and can be mimicked under in vitro fertilization conditions (IVF).

Methodology/Principal Findings

Here we demonstrate that such treatments caused stable docking and priming of the acrosome membrane to the apical sperm head surface without the emergence of exocytotic membrane fusion. The interacting membranes could be isolated as bilamellar membrane structures after cell disruption. These membrane structures as well as whole capacitated sperm contained stable ternary trans-SNARE complexes that were composed of VAMP 3 and syntaxin 1B from the plasma membrane and SNAP 23 from the acrosomal membrane. This trans-SNARE complex was not observed in control sperm.

Conclusions/Significance

We propose that this capacitation driven membrane docking and stability thereof is a preparative step prior to the multipoint membrane fusions characteristic for the acrosome reaction induced by sperm-zona binding. Thus, sperm can be considered a valuable model for studying exocytosis.  相似文献   

11.

Background  

Vestibular schwannoma (acoustic neuroma) most commonly presents with ipsilateral disturbances of acoustic, vestibular, trigeminal and facial nerves. Presentation of vestibular schwannoma with contralateral facial pain is quite uncommon.  相似文献   

12.

Background

Vestibulo-ocular reflex (VOR) gain adaptation, a longstanding experimental model of cerebellar learning, utilizes sites of plasticity in both cerebellar cortex and brainstem. However, the mechanisms by which the activity of cortical Purkinje cells may guide synaptic plasticity in brainstem vestibular neurons are unclear. Theoretical analyses indicate that vestibular plasticity should depend upon the correlation between Purkinje cell and vestibular afferent inputs, so that, in gain-down learning for example, increased cortical activity should induce long-term depression (LTD) at vestibular synapses.

Methodology/Principal Findings

Here we expressed this correlational learning rule in its simplest form, as an anti-Hebbian, heterosynaptic spike-timing dependent plasticity interaction between excitatory (vestibular) and inhibitory (floccular) inputs converging on medial vestibular nucleus (MVN) neurons (input-spike-timing dependent plasticity, iSTDP). To test this rule, we stimulated vestibular afferents to evoke EPSCs in rat MVN neurons in vitro. Control EPSC recordings were followed by an induction protocol where membrane hyperpolarizing pulses, mimicking IPSPs evoked by flocculus inputs, were paired with single vestibular nerve stimuli. A robust LTD developed at vestibular synapses when the afferent EPSPs coincided with membrane hyperpolarisation, while EPSPs occurring before or after the simulated IPSPs induced no lasting change. Furthermore, the iSTDP rule also successfully predicted the effects of a complex protocol using EPSP trains designed to mimic classical conditioning.

Conclusions

These results, in strong support of theoretical predictions, suggest that the cerebellum alters the strength of vestibular synapses on MVN neurons through hetero-synaptic, anti-Hebbian iSTDP. Since the iSTDP rule does not depend on post-synaptic firing, it suggests a possible mechanism for VOR adaptation without compromising gaze-holding and VOR performance in vivo.  相似文献   

13.

Background  

Barrier materials as cellulose membranes are used for guided tissue repair. However, it is essential that the surrounding tissues accept the device. The present study histologically evaluated tissue reaction to a microbial cellulose membrane after subcutaneous implantation in mice. Furthermore, the interaction between mesenchymal stem cells and the biomaterial was studied in vitro to evaluate its ability to act as cellular scaffold for tissue engineering.  相似文献   

14.
During the photosynthetic process, highly organized membranal assemblies convert light into biochemical energy with high efficiency. We have used whole-mount cryo-electron tomography to study the intracellular architecture of the photosynthetic membranes of the anaerobic purple photosynthetic bacterium Rhodopseudomonas viridis, as well as the organization of the photosynthetic units within the membranes. Three-dimensional reconstruction demonstrates a continuity of the plasma membrane with the photosynthetic membranes that form tunnel-like structures with an average diameter of 31 nm ± 8 nm at the connection sites. The spacing between the photosynthetic membranes at their cytoplasmic faces was found to be 11 nm, thus enforcing a highly close packaging of the photosynthetic membranes. Analysis of successive tomographic slices allowed for derivation of the spacing between adjacent photosynthetic core complexes from a single-layered photosynthetic membrane, in situ. This analysis suggests that most, if not all, photosynthetic membranes in R. viridis are characterized by a similar two-dimensional hexagonal lattice organization.  相似文献   

15.

Background  

Pathogens tolerate stress conditions that include low pH, oxidative stress, high salt and high temperature in order to survive inside and outside their hosts. Lipopolysaccharide (LPS), which forms the outer-leaflet of the outer membrane in Gram-negative bacteria, acts as a permeability barrier. The lipid A moiety of LPS anchors it to the outer membrane bilayer. The MsbB enzyme myristoylates the lipid A precursor and loss of this enzyme, in Salmonella, is correlated with reduced virulence and severe growth defects that can both be compensated with extragenic suppressor mutations.  相似文献   

16.

Background  

Soluble Alzheimer's Aβ oligomers autoinsert into neuronal cell membranes, contributing to the pathology of Alzheimer's Disease (AD), and elevated serum cholesterol is a risk factor for AD, but the reason is unknown. We investigated potential connections between these two observations at the membrane level by testing the hypothesis that Aβ(1–42) relocates membrane cholesterol.  相似文献   

17.

Background  

Under conditions of salt stress, plants respond by initiating phosphorylation cascades. Many key phosphorylation events occur at the membrane. However, to date only limited sites have been identified that are phosphorylated in response to salt stress in plants.  相似文献   

18.

Background  

LePRK1 and LePRK2 are two pollen receptor kinases localized to the plasma membrane, where they are present in a high molecular weight complex (LePRK complex). LePRK2 is phosphorylated in mature and germinated pollen, but is dephosphorylated when pollen membranes are incubated with tomato or tobacco style extracts.  相似文献   

19.

Background

Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria.

Methodology/Principal Findings

We have investigated the effects of histones on mitochondrial function and membrane integrity. We demonstrate that both linker histone H1 and core histones H2A, H2B, H3, and H4 bind strongly to isolated mitochondria. All histones caused a rapid and massive release of the pro-apoptotic intermembrane space proteins cytochrome c and Smac/Diablo, indicating that they permeabilize the outer mitochondrial membrane. In addition, linker histone H1, but not core histones, permeabilized the inner membrane with a collapse of the membrane potential, release of pyridine nucleotides, and mitochondrial fragmentation.

Conclusions

We conclude that histones destabilize the mitochondrial membranes, a mechanism that may convey genotoxic signals to mitochondria and promote apoptosis following DNA damage.  相似文献   

20.

Background  

The origin and early evolution of the active site of the ribosome can be elucidated through an analysis of the ribosomal proteins' taxonomic block structures and their RNA interactions. Comparison between the two subunits, exploiting the detailed three-dimensional structures of the bacterial and archaeal ribosomes, is especially informative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号