首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Granulocyte colony-stimulating factor (G-CSF) demonstrates neuroprotective effects through different mechanisms, including mobilization of bone marrow cells. However, the influence of G-CSF-mediated mobilization of bone marrow-derived cells on injured sciatic nerves remains to be elucidated. The administration of G-CSF promoted a short-term functional recovery 7 days after crush injury in sciatic nerves. A double-immunofluorescence study using green fluorescent protein-chimeric mice revealed that bone marrow-derived CD34+ cells were predominantly mobilized and migrated into injured nerves after G-CSF treatment. G-CSF-mediated beneficial effects against sciatic nerve injury were associated with increased CD34+ cell deposition, vascular endothelial growth factor (VEGF) expression, and vascularization/angiogenesis as well as decreased CD68+ cell accumulation. However, cell differentiation and VEGF expression were not demonstrated in deposited cells. The results suggest that the promotion of short-term functional recovery in sciatic nerve crush injury by G-CSF involves a paracrine modulatory effect and a bone marrow-derived CD34+ cell mobilizing effect.  相似文献   

2.
3.
Intercellular adhesion molecule 1 (ICAM-1) is a widely expressed glycoprotein involved in leukocyte extravasation and the interaction of lymphocytes with antigen-presenting cells. We examined these aspects of ICAM-1 function in the central nervous system after axonal injury in wild-type and ICAM-1-deficient mice. ICAM-1 immunoreactivity in the normal mouse facial nucleus was restricted to the vascular endothelium. Transection of the facial nerve led to a fast upregulation of ICAM-1 on activated microglia in the axotomized facial nucleus and the infiltration of ICAM-1-positive lymphocytes. Labeling elsewhere was unchanged. In homozygous ICAM-1 mutant mice, ICAM-1 was absent from endothelial cells and lymphocytes, but low levels of ICAM-1 were detected on cell membranes of reactive microglial cells. Comparison of wild-type animals with homozygously bred, ICAM-1-deficient mice showed a reduction of astrocytic and microglial activation, massive late axonal sprouting, and decreased lymphocyte infiltration. These experiments were repeated in F1 progeny of heterozygous mice on a C57BL/6 background. Neuroglial activation and lymphocyte infiltration in F1 homozygously deficient mice was unaffected compared with wild-type siblings. The invading ICAM-1-deficient lymphocytes also adhered to the ICAM-1-positive phagocytotic microglial cells in the ICAM-1 mutants. No change in the recruitment of macrophages and granulocytes into the crushed facial nerve, and no effect on axonal regeneration occurred. These data argue against the requirement of endothelial ICAM-1 in the recruitment of leukocytes into the crushed peripheral nerve or the axotomized facial motor nucleus and stress the importance of adequately matched controls in studying the effects of gene deletion in experimental animals.  相似文献   

4.
Tissue plasminogen activator (tPA) is a serine protease that converts plasminogen to plasmin and can trigger the degradation of extracellular matrix proteins. In the nervous system, under noninflammatory conditions, tPA contributes to excitotoxic neuronal death, probably through degradation of laminin. To evaluate the contribution of extracellular proteolysis in inflammatory neuronal degeneration, we performed sciatic nerve injury in mice. Proteolytic activity was increased in the nerve after injury, and this activity was primarily because of Schwann cell-produced tPA. To identify whether tPA release after nerve damage played a beneficial or deleterious role, we crushed the sciatic nerve of mice deficient for tPA. Axonal demyelination was exacerbated in the absence of tPA or plasminogen, indicating that tPA has a protective role in nerve injury, and that this protective effect is due to its proteolytic action on plasminogen. Axonal damage was correlated with increased fibrin(ogen) deposition, suggesting that this protein might play a role in neuronal injury. Consistent with this idea, the increased axonal degeneration phenotype in tPA- or plasminogen-deficient mice was ameliorated by genetic or pharmacological depletion of fibrinogen, identifying fibrin as the plasmin substrate in the nervous system under inflammatory axonal damage. This study shows that fibrin deposition exacerbates axonal injury, and that induction of an extracellular proteolytic cascade is a beneficial response of the tissue to remove fibrin. tPA/plasmin-mediated fibrinolysis may be a widespread protective mechanism in neuroinflammatory pathologies.  相似文献   

5.
Neuritin 1 (Nrn1) is an extracellular glycophosphatidylinositol-linked protein that stimulates axonal plasticity, dendritic arborization and synapse maturation in the central nervous system (CNS). The purpose of this study was to evaluate the neuroprotective and axogenic properties of Nrn1 on axotomized retinal ganglion cells (RGCs) in vitro and on the in vivo optic nerve crush (ONC) mouse model. Axotomized cultured RGCs treated with recombinant hNRN1 significantly increased survival of RGCs by 21% (n=6–7, P<0.01) and neurite outgrowth in RGCs by 141% compared to controls (n=15, P<0.05). RGC transduction with AAV2-CAG–hNRN1 prior to ONC promoted RGC survival (450%, n=3–7, P<0.05) and significantly preserved RGC function by 70% until 28 days post crush (dpc) (n=6, P<0.05) compared with the control AAV2-CAG–green fluorescent protein transduction group. Significantly elevated levels of RGC marker, RNA binding protein with multiple splicing (Rbpms; 73%, n=5–8, P<0.001) and growth cone marker, growth-associated protein 43 (Gap43; 36%, n=3, P<0.01) were observed 28 dpc in the retinas of the treatment group compared with the control group. Significant increase in Gap43 (100%, n=5–6, P<0.05) expression was observed within the optic nerves of the AAV2–hNRN1 group compared to controls. In conclusion, Nrn1 exhibited neuroprotective, regenerative effects and preserved RGC function on axotomized RGCs in vitro and after axonal injury in vivo. Nrn1 is a potential therapeutic target for CNS neurodegenerative diseases.Central nervous system (CNS) trauma and neurodegenerative disorders trigger a cascade of intrinsic and extrinsic cellular events resulting in regenerative failure and subsequent damage to neurons.1, 2, 3, 4, 5 The intrinsic factors include deregulation in growth-promoting factors, apoptotic factors, intracellular signaling molecules and trophic factors.6 Similarly, the extrinsic factors correlate to growth inhibition due to inhibitory cues3, 7, 8, 9, 10, 11, 12, 13 that include myelin and myelin associated inhibitors, glial scarring,5, 14 slow clearance of axonal debris,7 incorrect development of neuronal projections6 and CNS inflammation.15, 16 Progressive degeneration of mature retinal ganglion cells (RGCs) has been associated with loss of trophic support,8, 9 detrimental inflammatory processes/immune regulation10, 11 and apoptotic effectors.9, 12, 13, 15, 17After injury, mammalian RGC axons show only a short-lived sprouting response but no long-distance regeneration through the optic nerve (ON).16 Glial responses around the affected area are initiated by injured CNS axons.18 Axons undergoing Wallerian degeneration are surrounded by astrocytes that upregulate glial fibrillary acidic protein (Gfap) expression and these reactive astrocytes contribute to trauma-induced neurodegeneration.19 Glial scarring inhibits axonal transport after ON crush (ONC)5, 14 decreasing transport of proteins involved in neuroprotection and synaptic plasticity. Regenerative failure is a critical endpoint of these destructive triggers culminating in neuronal apoptosis3, 20, 21 and inhibition of functional recovery. Intrinsic factors affecting axonal regeneration after CNS injury are crucial for recovery and thus, dysregulation of genes involved in axonal plasticity and outgrowth can prove detrimental to the neuronal recovery.22, 23, 24Current neuroprotection approaches include promoting survival of RGCs by intraocular injections of recombinant factors like ciliary neurotrophic factor (CNTF) and peripheral nerve (PN) transplantations in vitro25 and in vivo after injury.26 Studies performed with glial cell-line-derived neurotrophic factor and neurturin protect RGCs from axotomy-induced apoptosis.27 Further, in the ON injury model, RGC survival was promoted after deletion of CCAAT/enhancer binding protein homologous protein28 and enhanced regeneration observed with co-deletion of kruppel-like factor 4 (Klf4) and suppressor of cytokine signaling 3 (Socs3).29 Intraocular administration of neurotrophin-4 (NT-4) and brain-derived neurotrophic factor (BDNF) after ON transection has also exerted neuroprotective effects on axotomized RGCs. In addition, PNs transplanted adjacent to ONs, ex vivo PN grafts with lenti-viral transduced Schwann cells, and stimulation of inflammatory processes have strong pro-regenerative effects on injured RGCs.26, 30, 31, 32, 33In addition, using adeno-associated-virus (AAV) therapy, AAV mediated expression of CNTF in bcl2 overexpressing transgenic mice increases cell viability and axonal regeneration,34 whereas BDNF promotes survival of RGCs.35 Likewise, experiments with AAV–BDNF, –CNTF and –growth-associated protein 43 (GAP43) have shown that AAV–CNTF was the most crucial for promoting both long-term survival and regeneration.36 The positive effects of CNTF are observed mainly through simultaneous deletion of both PTEN and SOCS337 and the concurrent activation of mTOR and STAT3 pathways.38 Although CNTF shows robust increase and sustained axon regeneration in injured ONs of rodents, it causes axonal misguidance and aberrant growth.39 Furthermore, it has been shown that CNTF acts as a chemoattractant. CNTF administration onto autologous PN grafts transplanted within transected ON increased regeneration, but these effects were significantly reduced after removal of macrophages from this site.40 In addition, the effects of CNTF using PN grafts at ON transection sites are further subject to debate, as previously it has been shown that Ad-CNTF injections preserved RGC axons but did not induce regeneration of axotomized RGCs.41 Thus, other studies have addressed RGC survivability and axonal regeneration with CNTF and other growth factors,35, 36 but most trophic factors affect neuronal survival and regeneration differentially.Previous studies targeting neuronal apoptosis by overexpressing intrinsic growth factors, inhibiting apoptosis and enhancing regeneration in CNS trauma models have established that a multifactorial approach is required for successful and long-lasting therapeutic outcomes.6, 36 Current gaps still exist for a key gene that could effectively target neuroprotection, enhance neuron regeneration and sustain neuronal function.One key gene implicated in neuronal plasticity is Neuritin 1 (Nrn1), also known as candidate plasticity gene 15. It has multiple functions and was first identified and characterized when screening for candidate plasticity genes in the rat hippocampal dentate gyrus activated by kainate.42, 43, 44 Nrn1 is highly conserved across species45 and translates to an extracellular, glycophosphatidylinositol-linked protein (GPI-linked protein), which can be secreted as a soluble form. Nrn1 stimulates axonal plasticity, dendritic arborization and synapse maturation in the CNS.46 During early embryonic development, Nrn1 promotes the survival of neural progenitors and differentiated neurons,47 while later in development it promotes axonal and dendritic growth and stabilization, allowing maturation and formation of synapses.43, 46, 48 In the adult brain, Nrn1 has been correlated with activity-dependent functional plasticity45, 49 and is expressed in post mitotic neurons.Nrn1 may be a crucial gene for neuroprotection and regeneration because growth factors such as nerve growth factor (NGF), BDNF and NT-3 as well as neuronal activity can potentiate the expression of Nrn1.44, 50 In addition, we reported that Nrn1 mRNA expression appears to be biphasic after ON axonal trauma, indicating a transient attempt by RGCs at neuroprotection/neuroregeneration in response to ONC injury.51 The dynamic regulation of Nrn1 coupled with neurotrophic effects may promote axonal regeneration in the CNS. To overcome CNS trauma, a new therapy geared towards neuroprotection and effective axonal regeneration is required to enhance a future multifactorial approach. The purpose of this study is to evaluate the therapeutic effects of Nrn1 in mouse RGC cultures as well as in the mouse ONC model. We have identified a distinct neuroprotective and regenerative strategy that prevents neurodegeneration after ON injury. AAV2–hNRN1 expression vectors partially rescued RGCs from apoptosis, maintained RGC function, and initiated regeneration of injured axons.  相似文献   

6.
7.
8.
Basic fibroblast growth factor (FGF-2) is expressed in the peripheral nervous system and is up-regulated after nerve lesion. It has been demonstrated that administration of FGF-2 protects neurons from injury-induced cell death and promotes axonal regrowth. Using transgenic mice over-expressing FGF-2 (TgFGF-2), we addressed the importance of endogenously generated FGF-2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild-type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF-2. Morphometric evaluation of intact nerves from TgFGF-2 mice revealed no difference in number and size of myelinated fibers compared to wild-type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF-2 over-expression on Schwann cell proliferation during the early regeneration process, we used BrdU-labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild-types. We propose that endogenously synthesized FGF-2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination.  相似文献   

9.
The rates of axonal regeneration and initial delay in motor and sensory axons of cyclophosphamide-treated and control rat sciatic nerves after cold injury were determined by using fast axoplasmic transport. The rates in motor and sensory nerves were not significantly different between the two groups. The difference of initial delay in motor nerve was not significant, but in sensory nerve the drug-treated group showed a longer initial delay than the control. These results suggest that the enhancement of motor function recovery by cyclophosphamide is not due directly to an increased rate of axonal regeneration, nor to a decreased initial delay.  相似文献   

10.
11.
12.
The Department of Physical Medicine, Rehabilitation and Electrodiagnosis of Shaheed Beheshti Medical University in collaboration with the Iranian Society of Physical Medicine and Rehabilitation (ISPMR) held the 1st Congress of Electrodiagnostic Medicine in Peripheral Nerve Lesions on December 21–22, 2006. Electrodiagnostic medicine is a specific branch of medicine used by specialist physicians in the field of physical medicine and rehabilitation and/or neurology to diagnose, prognosticate and plan treatment options of peripheral nerve lesions. This meeting was hold to discuss multidisciplinary approaches to this common and important topic in the medical field.  相似文献   

13.
Basic fibroblast growth factor (FGF‐2) is expressed in the peripheral nervous system and is up‐regulated after nerve lesion. It has been demonstrated that administration of FGF‐2 protects neurons from injury‐induced cell death and promotes axonal regrowth. Using transgenic mice over‐expressing FGF‐2 (TgFGF‐2), we addressed the importance of endogenously generated FGF‐2 on sensory neuron loss and sciatic nerve regeneration. After sciatic nerve transection, wild‐type and transgenic mice showed the same degree of cell death in L5 spinal ganglia. Also, the number of chromatolytic, eccentric, and pyknotic sensory neurons was not changed under elevated levels of FGF‐2. Morphometric evaluation of intact nerves from TgFGF‐2 mice revealed no difference in number and size of myelinated fibers compared to wild‐type mice. One week after crush injury, the number of regenerated axons was doubled and the myelin thickness was significantly smaller in transgenic mice. After 2 and 4 weeks, morphometric analysis and functional tests revealed no differences in recovery of sensory and motor nerve fibers. To study the role of FGF‐2 over‐expression on Schwann cell proliferation during the early regeneration process, we used BrdU‐labeling to mark dividing cells. In transgenic mice, the number of proliferating cells was significantly increased distal to the crush site compared to wild‐types. We propose that endogenously synthesized FGF‐2 influences early peripheral nerve regeneration by regulating Schwann cell proliferation, axonal regrowth, and remyelination. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

14.
目的:探讨他汀类(statins)药物Simvastatin在大鼠坐骨神经损伤修复中的作用及可能的作用机制。方法:制作SD大鼠标准坐骨神经钳夹损伤(crush)模型后,分别予Simvastatin和溶媒对照干预2周。手术前后不同时间点进行趾展功能指数测定、神经电生理学、血脂水平、血清IL-6检测和组织学评价。结果:Simvastatin干预组与对照组比较,趾展功能指数在术后5d和8d显著增大(P〈0.05),足趾展开速度快;2周肌肉复合动作电位幅度高,4周神经传导速度快;组织学显示有髓神经纤维数量多,髓鞘厚,排列相对整齐。各组手术前血脂水平无差异,手术后2周均有不同程度的降低,但Simvastatin干预组总胆固醇降低程度最轻,与对照组比较有显著差异(P〈0.05);Simvastatin干预组手术后5d,血清IL-6水平明显低于对照组(P〈0.05)。结论:本研究发现,Simvastatin可能通过抑制免疫炎症反应,维持神经损伤后胆固醇的平衡,促进大鼠坐骨神经损伤的修复和再生。  相似文献   

15.
GABAB1-/- mice, which are devoid of functional GABAB receptors, consistently exhibit marked hyperlocomotion when exposed to a novel environment. Telemetry recordings now revealed that, in a familiar environment, GABAB1-/- mice display an altered pattern of circadian activity but no hyperlocomotion. This indicates that hyperlocomotion is only triggered when GABAB1-/- mice are aroused by novelty. In microdialysis experiments, GABAB1-/- mice exhibited a 2-fold increased extracellular level of dopamine in the striatum. Following D-amphetamine administration, GABAB1-/- mice released less dopamine than wild-type mice, indicative of a reduced cytoplasmic dopamine pool. The hyperdopaminergic state of GABAB1-/- mice is accompanied by molecular changes, including reduced levels of tyrosine hydroxylase mRNA, D1 receptor binding-sites and Ser40 phosphorylation of tyrosine hydroxylase. Tyrosine hydroxylase activity, tissue dopamine content and dopamine metabolism do not appear to be measurably altered. Pharmacological and electrophysiological experiments support that the hyperdopaminergic state of GABAB1-/- mice is not severe enough to inactivate dopamine D2 receptors and to disrupt D2-mediated feedback inhibition of tyrosine hydroxylase activity. The data support that loss of GABAB activity results in a sustained moderate hyperdopaminergic state, which is phenotypically revealed by contextual hyperlocomotor activity. Importantly, the presence of an inhibitory GABA tone on the dopaminergic system mediated by GABAB receptors provides an opportunity for therapeutic intervention.  相似文献   

16.
Using an antibody specific for creatine phosphokinase (CPK), we have discovered an association between that enzyme and the cytoskeleton. Immunofluorescence observations show that CPK is associated with intermediate filaments in PTK cells and BALB/3T3 cells. The CPK distribution also follows intermediate filaments when cells are treated with colchicine.  相似文献   

17.
The proximo-distal intra-axonal transport of acetylcholine (ACh) and cholinergic enzymes (choline acetyltransferase, CAT, and ACh-esterase, AChE) in rat regenerating sciatic nerve was studied by accumulation technique. Four types of axonal trauma were performed: freezing with solid CO2, crushing, ligating the nerve with remaining tight silk ligature, and cutting the nerve. Normal and sham-operated rats were used as controls. One to twenty-nine days later, the nerves were crushed about 15 mm proximal to the trauma. The nerve segment proximal to this crush was dissected out 12 hr later and assayed for ACh-content and enzyme activities. The increase in this segment 12 hr after crushing was taken as an indication of proximo-distal transport in the regenerating nerves. ACh transport did not seem to vary during regeneration as compared to controls. In contrast, the transport of both CAT and AChE was initially markedly depressed. Towards the end of the observation period (29 days), a recovery of CAT-transport occurred in all groups. Recovery of AChE-transport was marked in the freeze and crush groups. In the cut group no recovery was seen and in the ligated group only a small recovery occurred. Thus, in the nerves where regeneration was facilitated by the presence of intact connective tissue sheaths (freezing and crushing) recovery of transport occurred earlier than in cut or ligated nerves.  相似文献   

18.
19.
Multiple injections of low-dose streptozotocin (LDSZ) induce immune-mediated insulitis and diabetes in C57BL/6 (H-2b) mice. To evaluate the role of the intercellular adhesion molecule-1 (ICAM-1) for LDSZ induced immune-mediated diabetes, we have investigated mice genetically deficient in the ICAM-1 gene (ICAM-1-/-) in comparison to wild-type (ICAM-1+/+) mice. ICAM-1-/- mice, which had a mixed genetic background of C57BL/6 and DBA/2 mice, were backcrossed to C57BL/6 mice and screened for H2b homogenicity. Mice received five daily injections of 40 mg/kg streptozotocin. On day 21 after the first LDSZ injection 55% of the ICAM-1+/+ (female 33%, male 80%) and 50% of the ICAM-1-/- (female 20%, male 100%), mice had blood glucose levels over 200 mg/dl. Mean blood glucose levels increased in response to LDSZ treatment, however, no differences between ICAM-1+/+ and ICAM-1-/- mice were noted. Histological examinations of pancreatic islets revealed mononuclear infiltration of pancreatic islets without significant differences between both groups of mice. In summary, LDSZ-induced immune-mediated insulitis and diabetes development occurs in ICAM-1-/- mice similarly than in ICAM-1+/+ mice. These results do not support the hypothesis that ICAM-1 plays a key role during immune-mediated infiltration and destruction of pancreatic islets in LDSZ induced diabetes.  相似文献   

20.
An altered T cell repertoire in MECL-1-deficient mice   总被引:1,自引:0,他引:1  
Immunoproteasome subunits low-molecular mass polypeptide (LMP)2 and LMP7 affect Ag presentation by MHC class I molecules. In the present study, we investigated the function of the third immunosubunit LMP10/multicatalytic endopeptidase complex-like (MECL)-1 (beta2i) in MECL-1 gene-targeted mice. The number of CD8+ splenocytes in MECL-1-/- mice was 20% lower than in wild-type mice. Infection with lymphocytic choriomeningitis virus (LCMV) elicited a markedly reduced cytotoxic T cell (CTL) response to the LCMV epitopes GP276-286/Db and NP205-212/Kb in MECL-1-/- mice. The weak CTL response to GP276-286/Db was not due to an impaired generation of this epitope but was attributed to a decreased precursor frequency of GP276-286/Db-specific T cells. The expansion of TCR-Vbeta10+ T cells, which contain GP276-286/Db-specific cells, was reduced in LCMV-infected MECL-1-/- mice. Taken together, our data reveal an in vivo function of MECL-1 in codetermining the T cell repertoire for an antiviral CTL response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号