首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 31P NMR pressure response of guanine nucleotides bound to proteins has been studied in the past for characterizing the pressure perturbation of conformational equilibria. The pressure response of the 31P NMR chemical shifts of the phosphate groups of GMP, GDP, and GTP as well as the commonly used GTP analogs GppNHp, GppCH2p and GTPγS was measured in the absence and presence of Mg2+-ions within a pressure range up to 200 MPa. The pressure dependence of chemical shifts is clearly non-linear. For all nucleotides a negative first order pressure coefficient B 1 was determined indicating an upfield shift of the resonances with pressure. With exception of the α-phosphate group of Mg2+·GMP and Mg2+·GppNHp the second order pressure coefficients are positive. To describe the data of Mg2+·GppCH2p and GTPγS a Taylor expansion of 3rd order is required. For distinguishing pH effects from pressure effects a complete pH titration set is presented for GMP, as well as GDP and GTP in absence and presence of Mg2+ ions using indirect referencing to DSS under identical experimental conditions. By a comparison between high pressure 31P NMR data on free Mg2+-GDP and Mg2+-GDP in complex with the proto-oncogene Ras we demonstrate that pressure induced changes in chemical shift are clearly different between both forms.  相似文献   

2.
The free energy profiles for the chemical reaction of the guanosine triphosphate hydrolysis GTP + H2O → GDP + Pi by Ras‐GAP for the wild‐type and G13V mutated Ras were computed by using molecular dynamics protocols with the QM(ab initio)/MM potentials. The results are consistent with the recent measurements of reaction kinetics in Ras‐GAP showing about two‐order reduction of the rate constant upon G13V mutation in Ras: the computed activation barrier on the free energy profile is increased by 3 kcal/mol upon the G13V replacement. The major reason for a higher energy barrier is a shift of the “arginine finger” (R789 from GAP) from the favorable position in the active site. The results of simulations provide support for the mechanism of the reference reaction according to which the Q61 side chain directly participates in chemical transformations at the proton transfer stage. Proteins 2015; 83:1046–1053. © 2015 Wiley Periodicals, Inc.  相似文献   

3.
We present results of the modeling for the hydrolysis reaction of guanosine triphosphate (GTP) in the RAS–GAP protein complex using essentially ab initio quantum chemistry methods. One of the approaches considers a supermolecular cluster composed of 150 atoms at a consistent quantum level. Another is a hybrid QM/MM method based on the effective fragment potential technique, which describes interactions between quantum and molecular mechanical subsystems at the ab initio level of the theory. Our results show that the GTP hydrolysis in the RAS–GAP protein complex can be modeled by a substrate-assisted catalytic mechanism. We can locate a configuration on the top of the barrier corresponding to the transition state of the hydrolysis reaction such that the straightforward descents from this point lead either to reactants GTP+H2O or to products guanosine diphosphate (GDP)+H2PO4?. However, in all calculations such a single-step process is characterized by an activation barrier that is too high. Another possibility is a two-step reaction consistent with formation of an intermediate. Here the Pγ-O(Pβ) bond is already broken, but the lytic water molecule is still in the pre-reactive state. We present arguments favoring the assumption that the first step of the GTP hydrolysis reaction in the RAS–GAP protein complex may be assigned to the breaking of the Pγ-O(Pβ) bond prior to the creation of the inorganic phosphate.  相似文献   

4.
Activation of the water molecule involved in GTP hydrolysis within the HRas·RasGAP system is analyzed using a tailored approach based on hybrid quantum mechanics/molecular mechanics (QM/MM) simulation. A new path emerges: transfer of a proton from the attacking water molecule to a second water molecule, then a different proton is transferred from this second water molecule to the GTP. Gln(61) will stabilize the transient OH(-) and H(3)O(+) molecules thus generated. This newly proposed mechanism was generated by using, for the first time to our knowledge, the entire HRas-RasGAP protein complex in a QM/MM simulation context. It also offers a rational explanation for previous experimental results regarding the decrease of GTPase rate found in the HRas Q61A mutant and the increase exhibited by the HRas Q61E mutant.  相似文献   

5.
The structures of the complexes between Ras•GDP bound to RasGAP in the presence of three probable γ-phosphate analogs (AlF3, AlF4 and MgF3) for the transition state (TS) of the hydrolysis of guanosine triphosphate (GTP) by the Ras-RasGAP enzymes have been modeled by quantum mechanical—molecular mechanical (QM/MM) calculations. These simulations contribute to the dispute on the nature of the TS in the hydrolysis reaction, since medium resolution X-ray crystallography cannot discern among stereochemically similar isoelectronic species (e.g., AlF3 or MgF3). The optimized geometry for each structure has been found starting from experimental coordinates of one of them (PDBID: 1WQ1). Direct comparison of the experimental and computed geometry configurations in the immediate vicinity of the active site suggests that MgF3 is the most likely candidate for the phosphate analog in the experimental structure.  相似文献   

6.
A method to determine 18 O kinetic isotope effects (KIEs) in the hydrolysis of GTP that is generally applicable to reactions involving other nucleotide triphosphates is described. Internal competition, where the substrate of the reaction is a mixture of 18 O-labeled and unlabeled nucleotides, is employed, and the change in relative abundance of the two species in the course of the reaction is used to calculate KIE. The nucleotide labeled with 18 O at sites of mechanistic interest also contains 13C at all carbon positions, whereas the 16 O-labeled nucleotide is depleted of 13C. The relative abundance of the labeled and unlabeled substrates or products is reflected in the carbon isotope ratio (13C/12C) in GTP or GDP, which is determined by the use of a liquid chromatography-coupled isotope ratio mass spectrometer (LC-coupled IRMS). The LC is coupled to the IRMS by an Isolink interface. Carbon isotope ratios can be determined with accuracy and precision greater than 0.04% and are consistent over an order of magnitude in sample amount. KIE values for Ras/NF1(333)-catalyzed hydrolysis of [beta18 O3,13C]GTP were determined by change in the isotope ratio of GTP or GDP or the ratio of the isotope ratio of GDP to that of GTP. KIE values computed in the three ways agree within 0.1%, although the method using the ratio of isotope ratios of GDP and GTP gives superior precision (<0.1%). A single KIE measurement can be conducted in 25 min with less than 5 microg nucleotide reaction product.  相似文献   

7.
Deubiquitinase USP20/VDU2 has been identified as a regulator of multiple proteins including hypoxia-inducible factor (HIF)-1α, β2-adrenergic receptor, and tumor necrosis factor receptor associated factor 6 etc. It contains four structural domains, including an N-terminal zinc-finger ubiquitin binding domain (ZnF-UBP) that potentially helps USP20 to recruit its ubiquitin substrates. Here we report the 1H, 13C and 15N backbone and side-chain resonance assignments of the ZnF-UBP domain of USP20/VDU2. The BMRB accession number is 26901. The secondary structural elements predicted from the NMR data reveal a global fold consisting of three α-helices and four β-strands. The complete assignments can be used to explore the protein dynamics of the USP20 ZnF-UBP and its interactions with monoubiquitin and ubiquitin chains.  相似文献   

8.
D Roston  CM Cheatum  A Kohen 《Biochemistry》2012,51(34):6860-6870
Kinetic isotope effects (KIEs) and their temperature dependence can probe the structural and dynamic nature of enzyme-catalyzed proton or hydride transfers. The molecular interpretation of their temperature dependence requires expensive and specialized quantum mechanics/molecular mechanics (QM/MM) calculations to provide a quantitative molecular understanding. Currently available phenomenological models use a nonadiabatic assumption that is not appropriate for most hydride and proton-transfer reactions, while others require more parameters than the experimental data justify. Here we propose a phenomenological interpretation of KIEs based on a simple method to quantitatively link the size and temperature dependence of KIEs to a conformational distribution of the catalyzed reaction. This model assumes adiabatic hydrogen tunneling, and by fitting experimental KIE data, the model yields a population distribution for fluctuations of the distance between donor and acceptor atoms. Fits to data from a variety of proton and hydride transfers catalyzed by enzymes and their mutants, as well as nonenzymatic reactions, reveal that steeply temperature-dependent KIEs indicate the presence of at least two distinct conformational populations, each with different kinetic behaviors. We present the results of these calculations for several published cases and discuss how the predictions of the calculations might be experimentally tested. This analysis does not replace molecular QM/MM investigations, but it provides a fast and accessible way to quantitatively interpret KIEs in the context of a Marcus-like model.  相似文献   

9.
The reaction mechanism of acetylcholine hydrolysis by acetylcholinesterase, including both acylation and deacylation stages from the enzyme-substrate (ES) to the enzyme-product (EP) molecular complexes, is examined by using an ab initio type quantum mechanical – molecular mechanical (QM/MM) approach. The density functional theory PBE0/aug-6–31+G* method for a fairly large quantum part trapped inside the native protein environment, and the AMBER force field parameters in the molecular mechanical part are employed in computations. All reaction steps, including the formation of the first tetrahedral intermediate (TI1), the acylenzyme (EA) complex, the second tetrahedral intermediate (TI2), and the EP complex, are modeled at the same theoretical level. In agreement with the experimental rate constants, the estimated activation energy barrier of the deacylation stage is slightly higher than that for the acylation phase. The critical role of the non-triad Glu202 amino acid residue in orienting lytic water molecule and in stabilizing the second tetrahedral intermediate at the deacylation stage of the enzymatic process is demonstrated. Figure The computed energy diagram for the reaction path from the enzyme – substrate complex (ES) to the enzyme-product complex (EP).  相似文献   

10.
There are few data reported on radionuclide contamination in Antarctica. The aim of this paper is to report 137Cs, 90Sr and 238,239+240Pu and 40K activity concentrations measured in biological samples collected from King George Island (Southern Shetlands, Antarctica), mostly during 2001–2002. The samples included: bones, eggshells and feathers of penguin Pygoscelis papua, bones and feathers of petrel Daption capense, bones and fur of seal Mirounga leonina, algae Himantothallus grandifolius, Desmarestia anceps and Cystosphaera jacquinotii, fish Notothenia corriceps, sea invertebrates Amphipoda, shells of limpet Nacella concina, lichen Usnea aurantiaco-atra, vascular plants Deschampsia antarctica and Colobanthus quitensis, fungi Omphalina pyxidata, moss Sanionia uncinata and soil. The results show a large variation in some activity concentrations. Samples from the marine environment had lower contamination levels than those from terrestrial ecosystems. The highest activity concentrations for all radionuclides were found in lichen and, to a lesser extent, in mosses, probably because lichens take up atmospheric pollutants and retain them. The only significant correlation (except for that expected between 238Pu and 239+240Pu) was noted for moss and lichen samples between plutonium and 90Sr. A tendency to a slow decrease with time seems to be occurring. Analyses of the activity ratios show varying fractionation between various radionuclides in different organisms. Algae were relatively more highly contaminated with plutonium and radiostrontium, and depleted with radiocesium. Feathers had the lowest plutonium concentrations. Radiostrontium and, to a lesser extent, Pu accumulated in bones. The present low intensity of fallout in Antarctic has a lower 238Pu/239+240Pu activity ratio than that expected for global fallout.  相似文献   

11.
Zhan CG  Gao D 《Biophysical journal》2005,89(6):3863-3872
The geometries of the transition states, intermediates, and prereactive enzyme-substrate complex and the corresponding energy barriers have been determined by performing hybrid quantum mechanical/molecular mechanical (QM/MM) calculations on butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)- and (+)-cocaine. The energy barriers were evaluated by performing QM/MM calculations with the QM method at the MP2/6-31+G* level and the MM method using the AMBER force field. These calculations allow us to account for the protein environmental effects on the transition states and energy barriers of these enzymatic reactions, showing remarkable effects of the protein environment on intermolecular hydrogen bonding (with an oxyanion hole), which is crucial for the transition state stabilization and, therefore, on the energy barriers. The calculated energy barriers are consistent with available experimental kinetic data. The highest barrier calculated for BChE-catalyzed hydrolysis of (-)- and (+)-cocaine is associated with the third reaction step, but the energy barrier calculated for the first step is close to the highest and is so sensitive to the protein environment that the first reaction step can be rate determining for (-)-cocaine hydrolysis catalyzed by a BChE mutant. The computational results provide valuable insights into future design of BChE mutants with a higher catalytic activity for (-)-cocaine.  相似文献   

12.
The eukaryotic translational initiation factor 4G (eIF4G) interacts with the cap-binding protein eIF4E through a consensus binding motif, Y(X)4LΦ (where X is any amino acid and Φ is a hydrophobic residue). 4E binding proteins (4E-BPs), which also contain a Y(X)4LΦ motif, regulate the eIF4E/eIF4G interaction. The non- or minimally-phosphorylated form of 4E-BP1 binds eIF4E, preventing eIF4E from interacting with eIF4G, thus inhibiting translation initiation. 4EGI-1, a small molecule inhibitor of the eIF4E/eIF4G interaction that is under investigation as a novel anti-cancer drug, has a dual activity; it disrupts the eIF4E/eIF4G interaction and stabilizes the binding of 4E-BP1 to eIF4E. Here, we report the complete backbone NMR resonance assignment of an unliganded 4E-BP1 fragment (4E-BP144–87). We also report the near complete backbone assignment of the same fragment in complex to eIF4E/m7GTP (excluding the assignment of the last C-terminus residue, D87). The chemical shift data constitute a prerequisite to understanding the mechanism of action of translation initiation inhibitors, including 4EGI-1, that modulate the eIF4E/4E-BP1 interaction.  相似文献   

13.
A method was devised for the quantitative determination of guanine ribonucleotides (GTP, GDP, and GMP) in extracts of biological materlals. The technique is based upon selective enzymatic hydrolysis of UTP and ATP contained within the cell extracts, followed by a quantitative determination of GTP. GTP is measured using a nucleoside diphosphate kinase-firefly luciferase coupled bioluminescent reaction, during which the GTP is enzymatically coupled to ATP production, resulting in ATP-dependent light emission. The methods are simple and reproducible and extremely sensitive (≤ 10?9m GTP), and require no preparatory chromatographic separation procedures. Methods are also presented for the enzymatic conversions of GDP and GMP to GTP in addition to the determination of GTP.  相似文献   

14.
The simulation of enzymatic reactions, using computer models, is becoming a powerful tool in the most fundamental challenge in biochemistry: to relate the catalytic activity of enzymes to their structure. In the present study, various computed parameters were correlated with the natural logarithm of experimental rate constants for the hydroxylation of various substrate derivatives catalysed by wild-type para-hydroxybenzoate hydroxylase (PHBH) as well as for the hydroxylation of the native substrate (p-hydroxybenzoate) by PHBH reconstituted with a series of 8-substituted flavins. The following relative parameters have been calculated and tested: (a) energy barriers from combined quantum mechanical/molecular mechanical (QM/MM) (AM1/CHARMM) reaction pathway calculations, (b) gas-phase reaction enthalpies (AM1) and (c) differences between the HOMO and LUMO energies of the isolated substrate and cofactor molecules (AM1 and B3LYP/6-31+G(d)). The gas-phase approaches yielded good correlations, as long as similarly charged species are involved. The QM/MM approach resulted in a good correlation, even including differently charged species. This indicates that the QM/MM model accounts quite well for the solvation effects of the active site surroundings, which vary for differently charged species. The correlations obtained demonstrate quantitative structure activity relationships for an enzyme-catalysed reaction including, for the first time, substitutions on both substrate and cofactor.  相似文献   

15.
Pseudomonas aeruginosa phosphorylcholine phosphatase (PchP) catalyzes the hydrolysis of phosphorylcholine, which is produced by the action of hemolytic phospholipase C on phosphatidylcholine or sphyngomielin, to generate choline and inorganic phosphate. Among divalent cations, its activity is dependent on Mg2+ or Zn2+. Mg2+ produced identical activation at pH 5.0 and 7.4, but Zn2+ was an activator at pH 5.0 and became an inhibitor at pH 7.4. At this higher pH, very low concentrations of Zn2+ inhibited enzymatic activity even in the presence of saturating Mg2+ concentrations. Considering experimental and theoretical physicochemical calculations performed by different authors, we conclude that at pH 5.0, Mg2+ and Zn2+ are hexacoordinated in an octahedral arrangement in the PchP active site. At pH 7.4, Mg2+ conserves the octahedral coordination maintaining enzymatic activity. The inhibition produced by Zn2+ at 7.4 is interpreted as a change from octahedral to tetrahedral coordination geometry which is produced by hydrolysis of the [ \textZn 2+ \textL 2 - 1 \textL 20 ( \textH 2 \textO ) 2 ] \left[ {{\text{Zn}}^{ 2+ } {\text{L}}_{ 2}^{ - 1} {\text{L}}_{ 2}^{0} \left( {{\text{H}}_{ 2} {\text{O}}} \right)_{ 2} } \right] complex.  相似文献   

16.

Background  

E-NTPase/E-NTPDase is activated by millimolar concentrations of Ca2+ or Mg2+ with a pH optimum of 7.5 for the hydrolysis of extracellular NTP and NDP. It has been generally accepted that E-NTPase/E-NTPDase plays regulatory role in purinergic signalling, but other functions may yet be discovered.  相似文献   

17.
Ribosomal protein S1 of Mycobacterium tuberculosis (MtRpsA) binds to ribosome and mRNA, and plays significant role in the regulation of translation initiation, conventional protein synthesis and transfer-messenger RNA (tmRNA) mediated trans-translation. It has been identified as the target of pyrazinoic acid (POA), a bactericidal moiety from hydrolysis of pyrazinamide, which is a mainstay of combination therapy for tuberculosis. POA prevented the interactions between the C-terminal S1 domain of MtRpsA (residues 280–368, MtRpsACTD_S1) and tmRNA; so that POA can inhibit the trans-translation, which is a key component of multiple quality control pathways in bacteria. However, the details of molecular mechanism and dynamic characteristics for MtRpsACTD_S1 interactions with POA, tmRNA or mRNA are still unclear. Here we present the 1H, 15N, 13C resonance assignments of MtRpsACTD_S1 as well as the secondary structure information based on backbone chemical shifts, which lay foundation for further solution structure determination, dynamic properties characterization and interactions investigation between MtRpsACTD_S1 and tmRNA, RNA or POA.  相似文献   

18.
The objective of the present work is to apply the plasma clearance parameters to strontium, previously determined in our laboratory, to improve the biokinetic and dosimetric models of strontium-90 (90Sr) used in radiological protection; and also to apply this data for the estimation of the radiation doses from strontium-89 (89Sr) after administration to patients for the treatment of the painful bone metastases. Plasma clearance and urinary excretion of stable strontium tracers of strontium-84 (84Sr) and strontium-86 (86Sr) were measured in GSF-National Research Center for Environment and Health (GSF) in 13 healthy German adult subjects after intravenous injection and oral administration. The biological half-life of strontium in plasma was evaluated from 49 plasma concentration data sets following intravenous injections. This value was used to determine the transfer rates from plasma to other organs and tissues. At the same time, the long-term retention of strontium in soft tissue and whole body was constrained to be consistent with measured values available. A physiological urinary path was integrated into the biokinetic model of strontium. Parameters were estimated using our own measured urinary excretion values. Retention and excretion of strontium were modeled using compartmental transfer rates published by the International Commission on Radiological Protection (ICRP), the SENES Oak Ridge Inc. (SENES), and the Urals Research Center for Radiation Medicine (TBM). The results were compared with values calculated by applying our GSF parameters (GSF). For the dose estimation of 89Sr, a bone metastases model (GSF-M) was developed by adding a compartment, representing the metastases, into the strontium biokinetic model. The related parameters were evaluated based on measured data available in the literature. A set of biokinetic parameters was optimized to represent not only the early plasma kinetics of strontium but also the long-term retention measured in soft tissue and whole body. The ingestion dose coefficients of 90Sr were computed and compared with different biokinetic model parameters. The ingestion dose coefficients were calculated as 2.8 × 10−8, 2.1 × 10−8, 2.5 × 10−8 and 3.8 × 10−8 Sv Bq−1 for ICRP, SENES, TBM and GSF model parameters, respectively. Moreover, organ absorbed dose for the radiopharmaceutical of 89Sr in bone metastases therapy was estimated based on the GSF and ICRP biokinetic model parameters. The effective doses were 3.3, 1.8 and 1.2 mSv MBq−1 by GSF, GSF-M, and ICRP Publication 67 model parameters, respectively, compared to the value of 3.1 mSv MBq−1 reported by ICRP Publication 80. The absorbed doses of red bone marrow and bone surface, 17 and 21 mGy MBq−1 calculated by GSF parameters, and 7.1 and 8.8 mGy MBq−1 by GSF-M parameters, are comparable to the clinical results of 3–19 mGy MBq−1 for bone marrow and 16 mGy MBq−1 for bone surface. Based on the GSF-M model, the absorbed dose of 89Sr to metastases was estimated to be 434 mGy MBq−1. The strontium clearance half-life of 0.25 h from the plasma obtained in the present study is obviously faster than the value of 1.1 h recommended by ICRP. There are no significant changes for ingestion dose coefficients of 90Sr using different model parameters. A model including the metastases was particularly developed for dose estimation of 89Sr treatment for the pain of bone metastases.  相似文献   

19.
This study reports the sequence specific chemical shifts assignments for 76 residues of the 94 residues containing monomeric unit of the photosynthetic light-harvesting 2 transmembrane protein complex from Rhodopseudomonas acidophila strain 10050, using Magic Angle Spinning (MAS) NMR in combination with extensive and selective biosynthetic isotope labeling methods. The sequence specific chemical shifts assignment is an essential step for structure determination by MAS NMR. Assignments have been performed on the basis of 2-dimensional proton-driven spin diffusion 13C–13C correlation experiments with mixing times of 20 and 500 ms and band selective 13C–15N correlation spectroscopy on a series of site-specific biosynthetically labeled samples. The decreased line width and the reduced number of correlation signals of the selectively labeled samples with respect to the uniformly labeled samples enable to resolve the narrowly distributed correlation signals of the backbone carbons and nitrogens involved in the long -helical transmembrane segments. Inter-space correlations between nearby residues and between residues and the labeled BChl a cofactors, provided by the 13C–13C correlation experiments using a 500 ms spin diffusion period, are used to arrive at sequence specific chemical shift assignments for many residues in the protein complex. In this way it is demonstrated that MAS NMR methods combined with site-specific biosynthetic isotope labeling can be used for sequence specific assignment of the NMR response of transmembrane proteins.  相似文献   

20.
Soluble epoxide hydrolase (sEH) is an enzyme involved in drug metabolism that catalyzes the hydrolysis of epoxides to form their corresponding diols. sEH has a broad substrate range and shows high regio- and enantioselectivity for nucleophilic ring opening by Asp333. Epoxide hydrolases therefore have potential synthetic applications. We have used combined quantum mechanics/molecular mechanics (QM/MM) umbrella sampling molecular dynamics (MD) simulations (at the AM1/CHARMM22 level) and high-level ab initio (SCS-MP2) QM/MM calculations to analyze the reactions, and determinants of selectivity, for two substrates: trans-stilbene oxide (t-SO) and trans-diphenylpropene oxide (t-DPPO). The calculated free energy barriers from the QM/MM (AM1/CHARMM22) umbrella sampling MD simulations show a lower barrier for phenyl attack in t-DPPO, compared with that for benzylic attack, in agreement with experiment. Activation barriers in agreement with experimental rate constants are obtained only with the highest level of QM theory (SCS-MP2) used. Our results show that the selectivity of the ring-opening reaction is influenced by several factors, including proximity to the nucleophile, electronic stabilization of the transition state, and hydrogen bonding to two active site tyrosine residues. The protonation state of His523 during nucleophilic attack has also been investigated, and our results show that the protonated form is most consistent with experimental findings. The work presented here illustrates how determinants of selectivity can be identified from QM/MM simulations. These insights may also provide useful information for the design of novel catalysts for use in the synthesis of enantiopure compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号