首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribophorins I and II, two transmembrane glycoproteins characteristic of the rough endoplasmic reticulum (ER) are thought to be part of the translocation apparatus for proteins made on membrane bound polysomes. To study the stoichiometry between ribophorins and membrane-bound ribosomes we have determined the RNA and ribophorin content in rat liver microsomes or in microsomal subfractions of different density (i.e., ribosome content). The specificity of antibodies against the ribophorins was demonstrated by Western blot analysis of rat liver rough microsomes separated by 2-dimensional gel electrophoresis. The ribophorin content of microsomal subfractions was determined by indirect immunoprecipitation and for ribophorin I by a radioimmune assay. In the latter assay a molar ratio of ribophorin I/ribosomes approaching one was calculated for total microsomes as well as in the gradient subfractions. We therefore suggest that ribophorins mediate the binding of ribosomes to endoplasmic reticulum membranes or play a role in co-translational process which depend on this binding, such as the insertion of nascent polypeptides into the membrane or their transfer into the cisternal lumen.  相似文献   

2.
Rat liver rough endoplasmic reticulum membranes (ER) contain two characteristic transmembrane glycoproteins which have been designated ribophorins I and II and are absent from smooth ER membranes. These proteins (MW 65,000 and 63,000 respectively) are related to the binding sites for ribosomes, as suggested by the following findings: (i) The ribophorin content of the rough ER membranes corresponds stoichiometrically to the number of bound ribosomes; (ii) ribophorins are quantitatively recovered with the bound polysomes after most other ER membrane proteins are dissolved with the nonionic detegent Kyro EOB; (iii) in intact rough microsomes ribophorins can be crosslinked chemically to the ribosomes and therefore are in close proximity to them. Treatment of rough microsomes with a low Triton X-100 concentration leads to the lateral displacement of ribosomes on the microsomal surface and to the formation of aggregates of bound ribosomes in areas of membranes which frequently invaginate into the microsomal lumen. Subfractionation of Triton-treated microsomes containing invaginations led to the recovery of smooth and “rough-inverted” vesicles. Ribophorins were present only in the latter fraction, indicating that both proteins are displaced together with the ribosome-binding capacity of rough and smooth microsomal membranes reconstituted after solubilization with detergents sugest that ribophorins are necessary for in vitro ribosome binding. Ribophorin-like proteins were found in rough microsomes obtained from secretory tissues of several animal species. The two proteins present in rat lacrimal gland microsomes have the same mobility as hepatocyte ribophorins and cross-react with antisera against them.  相似文献   

3.
The interactions of various preparations of endoplasmic reticulum membranes and polysomes have been studied by means of a sandwich sucrose gradient that clearly isolates free ribosomes, smooth endoplasmic reticulum (S.E.R.) and rough endoplasmic reticulum (R.E.R.) from the microsomal fraction of rat liver homogenates. Reconstructed rough membranes separate well from the native R.E.R. but occupy the same position along the gradient as the S.E.R. and the rough membranes, stripped of their ribosomes by means of LiCl. Native R.E.R. and S.E.R. do not bind any added labeled polysomes at 0 degree C; previous treatment with LiCl does not modify the behavior of S.E.R. The presence of cell sap during the binding reaction does not increase polysome fixation by stripped-rough membranes but protects in some way the polysomes and preserves all their original functional capacity of amino acid incorporation into protein.  相似文献   

4.
The lateral mobility of ribosomes bound to rough endoplasmic reticulum (RER) membranes was demonstrated under experimental conditions. High- salt-washed rough microsomes were treated with pancreatic ribonuclease (RNase) to cleave the mRNA of bound polyribosomes and allow the movement of individual bound ribosomesmfreeze-etch and thin-section electron microscopy demonstrated that, when rough microsomes were treated with RNase at 4 degrees C and then maintained at this temperature until fixation, the bound ribosomes retained their homogeneous distribution on the microsomal surface. However, when RNase- treated rough microsomes were brought to 24 degrees C, a temperature above the thermotropic phase transition of the microsomal phospholipids, bound ribosomes were no longer distributed homogeneously but, instead, formed large, tightly packed aggregates on the microsomal surface. Bound polyribosomes could also be aggregated by treating rough microsomes with antibodies raised against large ribosomal subunit proteins. In these experiments, extensive cross-linking of ribosomes from adjacent microsomes also occurred, and large ribosome-free membrane areas were produced. Sedimentation analysis in sucrose density gradients demonstrated that the RNase treatment did not release bound ribosomes from the membranes; however, the aggregated ribosomes remain capable of peptide bond synthesis and were released by puromycin. It is proposed that the formation of ribosomal aggregates on the microsomal surface results from the lateral displacement of ribosomes along with their attached binding sites, nascent polypeptide chains, and other associated membrane proteins; The inhibition of ribosome mobility after maintaining rough microsomes at 4 degrees C after RNase, or antibody, treatment suggests that the ribosome binding sites are integral membrane proteins and that their mobility is controlled by the fluidity of the RER membrane. Examination of the hydrophobic interior of microsomal membranes by the freeze-fracture technique revealed the presence of homogeneously distributed 105-A intramembrane particles in control rough microsomes. However, aggregation of ribosomes by RNase, or their removal by treatment with puromycin, led to a redistribution of the particles into large aggregates on the cytoplasmic fracture face, leaving large particle-free regions.  相似文献   

5.
Rat liver microsomes were subfractionated by isopycnic centrifugation in sucrose gradient. The subfractions were assayed for translocation and proteolytic processing of nascent polypeptides in a rabbit reticulocyte lysate programmed with total RNA from human term placenta. The distribution of the translocation and processing of prelactogen through the gradient correlated with that of the microsomal RNA (ribosomes). Microsomes became inactive upon incubation with elastase, but the proteolyzed membranes recovered their activity by recombination with the soluble and active fragment of the docking protein (SRP-receptor) from dog pancreas. When this fragment was combined with the gradient subfractions, or with the subfractions inactivated by incubation with elastase, the density profile of the translocation activity remained similar to that of RNA. Thus, its distribution cannot be accounted for merely by that of the docking protein; another membrane constituent, still unidentified, is both necessary for translocation of polypeptides and restricted to the rough portions of the endosplamic reticulum. Signal peptidase was assayed in the absence of protein synthesis, by use of preformed prelactogen and detergent-disrupted microsomes. Its density distribution was also similar to that of RNA. Several components of the endosplamic reticulum now appear to be segregated within restricted areas on either side of the membrane, and to make up a biochemically distinct domain. We propose to call it the ribosomal domain in consideration of its contribution to protein biosynthesis by bound ribosomes. This domain probably accounts for a greater part of the membrane area at the cytoplasmic than at the luminal surface, as postulated earlier to explain how enzymes of the cytoplasmic surface are relatively less abundant in the rough microsomes than those of the luminal surface [Amar-Costesec A. & Beaufay H. (1981) J. Theor. Biol. 89, 217-230].  相似文献   

6.
Rat liver microsomes and microsomal subfractions isolated by density equilibration were submitted to a quantitative morphological and biochemical analysis. The total area of the endoplasmic reticulum was estimated at 7.3 m2 per g of liver. The microsome fraction contained 2.8 mg of phospholipids and 6.7 mg of proteins per m2 of membrane area. After correction for ribosomal and intracisternal proteins, the latter value was lowered to 4.7 mg of membrane protein per m2. More than half of the microsomal vesicles carried ribosomes. After density equilibration of the microsomes, the distribution pattern of ribosomes followed closely that of RNA. The ribosome load of the microsomal vesicles increased steadily along the density gradient, indicating the existence of a continuous spectrum of microsomal entities ranging from entirely ribosome-free vesicles to vesicles heavily coated with ribosomes.  相似文献   

7.
The distribution of cytochrome b5 in rat liver microsomes, and in two microsomal subfractions isolated by density equilibration in a linear sucrose gradient, was studied under the electron microscope by means of a ferritin-labeled hybrid anti-cytochrome b5/anti-ferritin antibody. Results of this study show that cytochrome b5 is present in essentially all microsomal vesicles derived from endoplasmic reticulum (ER), whether rough or smooth. Thus, the dissociation of ER constituents into two groups (b and c), achieved by subfractionating microsomes by isopycnic centrifugation (Beaufay, H., A. Amar-Costesec, D. Thines- Sempoux, M. Wibo, M. Robbi, and J. Berthet. 1974. J. Cell Biol. 61:213- 231), does not reflect the association of each group with distinct microsomal particles but reflects rather an enzymatic heterogeneity of the ER: the ratio of group c to group b enzymes increasing with the density and ribosome load of the particles.  相似文献   

8.
Summary The interactions of various preparations of endoplasmic reticulum membranes and polysomes have been studied by means of a sandwich sucrose gradient that clearly isolates free ribosomes, smooth endoplasmic reticulum (S.E.R.) and rough endoplasmic reticulum (R.E.R.) from the microsomal fraction of rat liver homogenates. Reconstructed rough membranes separate well from the native R.E.R. but occupy the same position along the gradients as the S.E.R. and the rough membranes, stripped of their ribosomes by means of LiCl. Native R.E.R. and S.E.R. do not bind any added labeled polysomes at 0°C; previous treatment with LiCl does not modify the behavior of S.E>R. The presence of cell sap during the binding reaction does not increase polysome fixation by stripped-rough membranes but protects in some way the polysomes and preserves all their original functional capacity of amino acid incorporation into protein.  相似文献   

9.
Rough microsomes were incubated in an in vitro amino acid-incorporating system for labeling the nascent polypeptide chains on the membrane-bound ribosomes. Sucrose density gradient analysis showed that ribosomes did not detach from the membranes during incorporation in vitro. Trypsin and chymotrypsin treatment of microsomes at 0° led to the detachment of ribosomes from the membranes; furthermore, trypsin produced the dissociation of released, messenger RNA-free ribosomes into subunits. Electron microscopic observations indicated that the membranes remained as closed vesicles. In contrast to the situation with free polysomes, nascent chains contained in rough microsomes were extensively protected from proteolytic attach. By separating the microsomal membranes from the released subunits after proteolysis, it was found that nascent chains are split into two size classes of fragments when the ribosomes are detached. These were shown by column chromatography on Sephadex G-50 to be: (a) small (39 amino acid residues) ribosome-associated fragments and (b) a mixture of larger membrane-associated fragments excluded from the column. The small fragments correspond to the carboxy-terminal segments which are protected by the large subunits of free polysomes. The larger fragments associated with the microsomal membranes depend for their protection on membrane integrity. These fragments are completely digested if the microsomes are subjected to proteolysis in the presence of detergents. These results indicate that when the nascent polypeptides growing in the large subunits of membrane-bound ribosomes emerge from the ribosomes they enter directly into a close association with the microsomal membrane.  相似文献   

10.
Several procedures were used to disassemble rat liver rough microsomes (RM) into ribosomal subunits, mRNA, and ribosome-stripped membrane vesicles in order to examine the nature of the association between the mRNA of bound polysomes and the microsomal membranes. The fate of the mRNA molecules after ribosome release was determined by measuring the amount of pulse-labeled microsomal RNA in each fraction which was retained by oligo-dT cellulose or by measuring the poly A content by hybridization to radioactive poly U. It was found that ribosomal subunits and mRNA were simultaneously released from the microsomal membranes when the ribosomes were detached by: (a) treatment with puromycin in a high salt medium containing Mg++, (b) resuspension in a high salt medium lacking Mg++, and (c) chelation of Mg++ by EDTA or pyrophosphate. Poly A-containing mRNA fragments were extensively released from RM subjected to a mild treatment with pancreatic RNase in a medium of low ionic strength. This indicates that the 3' end of the mRNA is exposed on the outer microsomal surface and is not directly bound to the membranes. Poly A segments of bound mRNA were also accessible to [(3)H] poly U for in situ hybridization in glutaraldehyde-fixed RM. Rats were treated with drugs which inhibit translation after formation of the first peptide bonds or interfere with the initiation of protein synthesis. After these treatments inactive monomeric ribosomes, as well as ribosomes bearing mRNA, remained associated with their binding sites in microsomes prepared in media of low ionic strength. However, because there were no linkages provided by nascent chains, ribosomes, and mRNA, molecules were released from the microsomal membranes without the need of puromycin, by treatment with a high salt buffer containing Mg++. Thus, both in vivo and in vitro observations are consistent with a model in which mRNA does not contribute significantly to the maintenance of the interaction between bound polysomes and endoplasmic reticulum membranes in rat liver hepatocytes.  相似文献   

11.
Summary The endoplasmic reticulum (ER) of MPC-11 cells released as vesicles upon cell disruption by nitrogen cavitation was separated from the bulk of mitochondria, lysosomes and plasma membranes by a low speed centrifugation. The ER membranes were fractionated on discontinuous sucrose gradients into heavy rough (HR), light rough (LR) and smooth (S) membranes. The morphology of subcellular fractions was studied by electron microscopy and the ER membranes were shown to be virtually free of contaminating organelles. The S fraction was easily distinguishable because of the lack of ribosomes but there were no apparent morphological differences between the HR and LR fractions. Of total activity in the microsomal subfractions, 70% of the UDPase and 67% of the 5′-nucleotidase activity was associated with the S fraction. Polysomes were present in the HR, LR and nuclear-associated ER fractions but not in the S fraction. The HR and LR fractions did not appear to be contaminated to any great extent with free polysomes. RNA/protein and RNA/phospholipid ratios of the HR fraction were higher than those of the LR fraction, indicating a greater density of ribosomes in the former fraction. These ratios were much lower in the S fraction reflecting the low ribosome content.  相似文献   

12.
A simple reaction system was developed to examine the binding of polysomes to membranes of the endoplasmic reticulum and to investigate the fate of ribosomes and nascent chains during protein synthesis in vitro. The system conssited of Sephadex G-25 treated post-mitochondrial fraction prepared from rat liver (Sephadex-PM) as a source of membranes, and radioactive free polysomes prepared from another rat liver. The following results were obtained. 1. Nascent chains on free polysomes labeled in vivo were transferred to membranes in vitro. The process required protein synthesis. 2. This reaction occurred in two steps: a) Binding of the free polysomes to membranes in the absence of protein synthesis. b) Release of ribosomes, leaving nascent chains on the membranes, requiring protein syntehsis. 3. A portion of the ribosomes found on membranes in vivi (membrane-bound ribosomes) was also released from the membranes during incubation in vitro, leaving their nascent chains on the membranes. The significance of the transfer of nascent chains from free polysomes to membranes in vitro is discussed in the light of known polysome-membrane interaction in vivo.  相似文献   

13.
Rat liver rough microsomes treated with a series of desoxycholate (DOC) concentrations from 0.003 to 0.4% were analyzed by isopycnic sucrose density gradient centrifugation in media containing high or low salt concentrations. Tritium-labeled precursors administered in vivo were used as markers for ribosomes (orotic acid, 40 h), phospholipids (choline, 4 h), membrane proteins (leucine, 3 days), and completed secretory proteins of the vesicular cavity (leucine, 30 min). Within a narrow range of DOC concentrations (0.025–0.05%), the vesicular polypeptides were selectively released from the microsomes, while ribosomes, nascent polypeptides, and microsomal enzymes of the electron transport systems were unaffected. The detergent concentration which led to leakage of content was a function of the ionic strength and of the microsome concentration. At the lowest effective DOC concentration the microsomal membranes became reversibly permeable to macromoles as shown by changes in the density of the vesicles in Dextran gradients and by the extent of proteolysis by added proteases. Incubation of rough microsomes with proteases in the presence of 0.025% DOC also led to digestion of proteins from both faces of the microsomal membranes and to a lighter isopycnic density of the membrane vesicles.  相似文献   

14.
The direction of discharge of the nascent peptides of NADPH-cytochrome c reductase and cytochrome b5 from bound polyribosomes of rough microsomes was investigated in order to elucidate the mechanism of separation of these membrane proteins from secretory proteins, which are also synthesized by the same class of ribosomes of rough endoplasmic reticulum. The nascent peptides of NADPH-cytochrome c reductase and cytochrome b5 in intact rough microsomes were accessible to externally added 125I-Fab's against these proteins, and were susceptible to trypsin digestion, whereas the nascent peptides of serum albumin were not. The nascent peptides of these two microsomal proteins were released into the cytoplasm by puromycin treatment of intact rough microsomes, while the nascent peptides of serum albumin were retained in the microsomal lumen. These observations suggest that the nascent peptides of microsomal proteins, which are present on the cytoplasmic surface of the endoplasmic reticulum membrane, are exposed on the surface of microsomal vesicles, while those of secretory proteins are enclosed inside the vesicles. Therefore, the topographical separation of microsomal membrane proteins from secretory proteins is accomplished at the step of their synthesis by the bound polyribosomes of rough endoplasmic reticulum.  相似文献   

15.
《The Journal of cell biology》1986,103(6):2253-2261
The requirement for ribonucleotides and ribonucleotide hydrolysis was examined at several distinct points during translocation of a secretory protein across the endoplasmic reticulum. We monitored binding of in vitro-assembled polysomes to microsomal membranes after removal of ATP and GTP. Ribonucleotides were not required for the initial low salt- insensitive attachment of the ribosome to the membrane. However, without ribonucleotides the nascent secretory chains were sensitive to protease digestion and were readily extracted from the membrane with either EDTA or 0.5 M KOAc. In contrast, nascent chains resisted extraction with either EDTA or 0.5 M KOAc and were insensitive to protease digestion after addition of GTP or nonhydrolyzable GTP analogues. Translocation of the nascent secretory polypeptide was detected only when ribosome binding was conducted in the presence of GTP. Thus, translocation-competent binding of the ribosome to the membrane requires the participation of a novel GTP-binding protein in addition to the signal recognition particle and the signal recognition particle receptor. The second event we examined was translocation and processing of a truncated secretory polypeptide. Membrane-bound polysomes bearing an 86-residue nascent chain were generated by translation of a truncated preprolactin mRNA. Ribonucleotide- independent translocation of the polypeptide was detected by cleavage of the 30-residue signal sequence after puromycin termination. Nascent chain transport, per se, is apparently dependent upon neither ribonucleotide hydrolysis nor continued elongation of the polypeptide once a functional ribosome-membrane junction has been established.  相似文献   

16.
Translocation-competent microsomal membrane vesicles of dog pancreas were shown to selectively bind nascent, in vitro assembled polysomes synthesizing secretory protein (bovine prolactin) but not those synthesizing cytoplasmic protein (alpha and beta chain of rabbit globin). This selective polysome binding capacity was abolished when the microsomal vesicles were salt-extracted but was restored by an 11S protein (SRP, Signal Recognition Protein) previously purified from the salt-extract of microsomal vesicles (Walter and Blobel, 1980. Proc. Natl. Acad. Sci. U. S. A. 77:7112-7116). SRP-dependent polysome recognition and binding to the microsomal membrane was shown to be a prerequisite for chain translocation. Modification of SRP by N-ethyl maleimide abolished its ability to mediate nascent polysome binding to the microsomal vesicles. Likewise, polysome binding to the microsomal membrane was largely abolished when beta-hydroxy leucine, a Leu analogue, was incorporated into nascent secretory polypeptides. The data in this and the preceding paper provide conclusive experimental evidence that chain translocation across the endoplasmic reticulum membrane is a receptor-mediated event and thus rule out proposals that chain translocation occurs spontaneously and without the mediation by proteins. Moreover, our data here demonstrate conclusively that the initial events that lead to translocation and provide for its specificity are protein-protein (signal sequence plus ribosome with SRP) and not protein-lipid (signal sequence with lipid bilayer) interactions.  相似文献   

17.
Summary Several problems regarding the protein acceptor of the oligosaccharide from GEA (glucosylated endogenous acceptor) were investigated in the present work using rat liver microsomal subfractions. It was found that the acceptor molecule is present in rough and smooth liver microsomes. Furthermore both fractions have closely similar specific activities. The problem of whether nascent peptides must be ribosome bound for glycosylation to occur was studied. The results suggests that binding of peptides to ribosomes is not a necessary condition for the transfer of GEA oligosaccharide to protein. The increase in specific activity found after partial release of the microsomal vesicular content suggests that the acceptor protein for GEA is membrane bound. Evidence obtained in attempting to elucidate whether nascent or completed chains are glycosylated favours the later possibility.Dedicated to ProfessorLuis F. Leloir on the occasion of his 70th birthday.  相似文献   

18.
The Sec61p complex forms the core element of the protein translocation complex (translocon) in the rough endoplasmic reticulum (rough ER) membrane. Translating or nontranslating ribosomes bind with high affinity to ER membranes that have been stripped of ribosomes or to liposomes containing purified Sec61p. Here we present evidence that the beta subunit of the complex (Sec61beta) makes contact with nontranslating ribosomes. A fusion protein containing the Sec61beta cytoplasmic domain (Sec61beta(c)) prevents the binding of ribosomes to stripped ER-derived membranes and also binds to ribosomes directly with an affinity close to the affinity of ribosomes for stripped ER-derived membranes. The ribosome binding activity of Sec61beta(c), like that of native ER membranes, is sensitive to high salt concentrations and is not based on an unspecific charge-dependent interaction of the relatively basic Sec61beta(c) domain with ribosomal RNA. Like stripped ER membranes, the Sec61beta(c) sequence binds to large ribosomal subunits in preference over small subunits. Previous studies have shown that Sec61beta is inessential for ribosome binding and protein translocation, but translocation is impaired by the absence of Sec61beta, and it has been proposed that Sec61beta assists in the insertion of nascent proteins into the translocation pore. Our results suggest a physical interaction of the ribosome itself with Sec61beta; this may normally occur alongside interactions between the ribosome and other elements of Sec61p, or it may represent one stage in a temporal sequence of binding.  相似文献   

19.
Rough microsomes, derived from rough endoplasmic reticulum of rat liver, were studied by electron microscopy after negative staining, to seek further information about the orientation of ribosomal small and large subunits in bound polysomes. Rough microsomal vesicles were fixed with 2% formaldehyde, centrifuged onto electron-microscopic grid membranes, and were then negatively-stained with 2% phosphotungstic acid. In these preparations, viewed with the electron microscope, flattened rough microsomal vesicles with bound polysomes were sometimes discernible, and the individual ribosomes in the polysomes occasionally showed small and large subunits. The small subunits were uniformly oriented toward the inside of the polysomal curve. The large and small subunits appeared to be alongside one another on the membrane, consistent with the orientation that has been described by Unwin and his co-workers. The boundary between the small and large subunits occurred at approximately the same level in the ribosome where inter-ribosomal strands have been described previously in surface views of bound polysomes in positively-stained electron-microscopic tissue sections. This further confirms the identity of the strands as messenger RNA.This work has appeared in abstract form: Christensen AK (1990)  相似文献   

20.
Rat liver rough microsomal membranes were stripped of bound ribosomes by treatment with puromycin and high concentrations of monovalent ions. Ribosomal subunits labeled in the RNA were detached from rough microsomes by the same procedure, recombined into monomers, and then incubated with stripped membranes in a medium of low ionic strength (25 mm-KCl, 50 mm-Tris-HCl, 5 mm-MgCl2). These ribosomes readily attached to the stripped membranes, as determined by isopycnic flotation of the reconstituted microsomes. The binding reaction was complete after incubation for five minutes at 37 °C, but also proceeded at 0 °C, at a lower rate. Scatchard plots showed a binding constant of ~8 × 107m?1 and ~5 × 10?8 mol binding sites per gram of membrane protein. Native rough microsomes showed a much lower binding capacity at 0 °C than stripped rough microsomes, but showed considerable uptake of ribosomes at 37 °C. Smooth microsomes, treated for stripping and incubated at 0 °C, accepted less than half as many ribosomes as stripped rough microsomes. Erythrocyte ghosts were incapable of binding ribosomes. Microsomal binding sites were heat sensitive, were destroyed by a brief incubation with a mixture of trypsin and chymotrypsin in the cold, and were unaffected by incubation with phospholipase C.Ribosome binding was decreased by increasing the concentration of monovalent ions and was strongly inhibited by 10?4m-aurintricarboxylic acid. Experiments with purified ribosomal subunits revealed that at concentrations of monovalent ions close to physiological concentrations (100 to 150 mm-KCl), microsomal binding sites had a greater affinity for 60 S than for 40 S subunits.Stripped rough microsomes were also capable of accepting polysomes obtained from rough microsomes by detergent treatment. Although this binding presumably involves the correct membrane binding sites, polypeptides discharged from re-bound polymers were not transferred to the vesicular cavities, as in native microsomes. The released polypeptides remained firmly associated with the outer microsomal face, as shown by their accessibility to proteases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号