首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arbuscular mycorrhizal (AM) fungus Gigaspora margarita harbors a resident population of endosymbiontic Burkholderia in its cytoplasm. Nothing is known about the acquisition of such bacteria and about the molecular bases which allow colonization of the fungus. We wondered whether the intracellular Burkholderia strain possesses genetic determinants involved in colonization of a eukaryotic cell. Using degenerated oligonucleotide primers for vacB, a gene involved in host cell colonization by pathogenic bacteria, an 842 bp DNA fragment was cloned, sequenced, and identified as a part of the vacB gene in Burkholderia sp. The insert was used as a probe to screen a fungal library that, because of the presence of intracellular Burkholderia cells, was also representative of the bacterial genome. The complete nucleotide sequence of vacB and flanking genes was determined. The bacterial origin of this genomic region was established by PCR, using specific vacB primers on DNA from Gigasporaceae that did or did not contain cytoplasmic Burkholderia, as well as on DNA from other bacteria, including free-living Burkholderia. We hypothesize that the vacB gene is part of a new genetic region acquired by a rhizospheric Burkholderia strain, which became able to establish a symbiotic interaction with the AM fungus G. margarita.  相似文献   

2.
A flow cell-grown model consortium consisting of two organisms, Burkholderia sp. LB400 and Pseudomonas sp. B13(FR1), was studied. These bacteria have the potential to interact metabolically because Pseudomonas sp. B13(FR1) can metabolize chlorobenzoate produced by Burkholderia sp. LB400 when grown on chlorobiphenyl. The expected metabolic interactions in the consortium were demonstrated by high performance liquid chromatography (HPLC) analysis. The spatial structure of the consortium was studied by fluorescent in situ rRNA hybridization and scanning confocal laser microscopy. When the consortium was fed with medium containing a low concentration of chlorobiphenyl, microcolonies consisting of associated Burkholderia sp. LB400 and Pseudomonas sp. B13(FR1) bacteria were formed, and separate Pseudomonas sp. B13(FR1) microcolonies were evidently not formed. When the consortium was fed citrate, which can be metabolized by both species, the two species formed separate microcolonies. The structure development in the consortium was studied online using a gfp -tagged Pseudomonas sp. B13(FR1) derivative. After a shift in carbon source from citrate to a low concentration of chlorobiphenyl, movement of the Pseudomonas sp. B13(FR1) bacteria led to a change in the spatial structure of the consortium from the unassociated form towards the associated form within a few days. Experiments involving a gfp -based Pseudomonas sp. B13(FR1) growth activity reporter strain indicated that chlorobenzoate supporting growth of Pseudomonas sp. B13(FR1) is located close to the Burkholderia sp. LB400 microcolonies in chlorobiphenyl-grown consortia.  相似文献   

3.
An extensive taxonomic analysis of the bacterial strain Burkholderia sp. DBT1, previously isolated from an oil refinery wastewater drainage, is discussed here. This strain is capable of transforming dibenzothiophene through the 'destructive' oxidative pathway referred to as the Kodama pathway. Burkholderia DBT1 has also been proved to use fluorene, naphthalene and phenanthrene as carbon and energy sources, although growth on the first two compounds requires a preinduction step. This evidence suggests that the strain DBT1 exerts a versatile metabolism towards polycyclic aromatic hydrocarbons other than condensed thiophenes. Phylogenetic characterization using a polyphasic approach was carried out to clarify the actual taxonomic position of this strain, potentially exploitable in bioremediation. In particular, investigations were focused on the possible exclusion of Burkholderia sp. DBT1 from the Burkholderia cepacia complex. Analysis of the sequences of 16S, recA and gyrB genes along with the DNA-DNA hybridization procedure indicated that the strain DBT1 belongs to the species Burkholderia fungorum, suggesting the proposal of the taxonomic denomination B. fungorum DBT1.  相似文献   

4.
Burkholderia species are ubiquitous in soil environments. Many Burkholderia species isolated from various environments have the potential to biodegrade man-made chemicals. Burkholderia sp. strain YI23 was isolated from a golf course soil and identified as a fenitrothion-degrading bacterium. In this study, we report the complete genome sequence of Burkholderia sp. strain YI23.  相似文献   

5.
Mycorrhization helper bacteria, Paenibacillus sp. EJP73 and Burkholderia sp. EJP67, were used to study the importance of bacterial inoculum dose and bacterial derived soluble and volatile metabolites localization for enhancing mycorrhiza formation in the Pinus sylvestris-Lactarius rufus symbiosis, using a laboratory based microcosm. EJP73 and EJP67 produced different responses in relation to the inoculum dose; EJP73 significantly enhanced mycorrhiza formation to the same degree at all doses tested (10(5), 10(7), 10(9) and 10(10) CFU mL(-1)), whereas, EJP67 only stimulated mycorrhiza formation within a narrow range of inoculum densities (10(7) and 10(9) CFU mL(-1)). The importance of soluble bacterial metabolites was assessed by applying spent broth derived from exponential and stationary phase bacterial cultures to microcosms. No spent broth enhanced mycorrhiza formation over the control. As EJP73 produced the helper effect over a wide range of inoculum doses, this bacterium was chosen for further study. Physical separation of EJP73 from the fungal and plant symbiosis partners was carried out, in order to determine the contribution of constitutively produced bacterial volatile metabolites to the mycorrhization helper bacteria effect. When EJP73 was physically separated from the symbiosis, it had a significant negative effect on mycorrhiza formation. These results suggest that close proximity, or indeed cell contact, is required for the helper effect. Therefore, fluorescent in situ hybridization in conjunction with cryosectioning was used to determine the localization of EJP73 in mycorrhizal tissue. The cells were found to occur as rows or clusters ( approximately 10 cells) within the mycorrhizal mantle, both at the root tip and along the length of the mycorrhizal short roots.  相似文献   

6.
Using the genes encoding the 2,4-dinitrotoluene degradation pathway enzymes, the nonpathogenic psychrotolerant rhizobacterium Pseudomonas fluorescens ATCC 17400 was genetically modified for degradation of this priority pollutant. First, a recombinant strain designated MP was constructed by conjugative transfer from Burkholderia sp. strain DNT of the pJS1 megaplasmid, which contains the dnt genes for 2,4-dinitrotoluene degradation. This strain was able to grow on 2,4-dinitrotoluene as the sole source of carbon, nitrogen, and energy at levels equivalent to those of Burkholderia sp. strain DNT. Nevertheless, loss of the 2,4-dinitrotoluene degradative phenotype was observed for strains carrying pJS1. The introduction of dnt genes into the P.fluorescens ATCC 17400 chromosome, using a suicide chromosomal integration Tn5-based delivery plasmid system, generated a degrading strain that was stable for a long time, which was designated RE. This strain was able to use 2,4-dinitrotoluene as a sole nitrogen source and to completely degrade this compound as a cosubstrate. Furthermore, P. fluorescens RE, but not Burkholderia sp. strain DNT, was capable of degrading 2,4-dinitrotoluene at temperatures as low as 10 degrees C. Finally, the presence of P. fluorescens RE in soils containing levels of 2,4-dinitrotoluene lethal to plants significantly decreased the toxic effects of this nitro compound on Arabidopsis thaliana growth. Using synthetic medium culture, P. fluorescens RE was found to be nontoxic for A.thaliana and Nicotiana tabacum, whereas under these conditions Burkholderia sp. strain DNT inhibited A.thaliana seed germination and was lethal to plants. These features reinforce the advantageous environmental robustness of P. fluorescens RE compared with Burkholderia sp. strain DNT.  相似文献   

7.
The taxonomic status of five root nodule isolates from tropical legumes was determined using a polyphasic taxonomic approach. Two isolates were identified as B. caribensis, an organism originally isolated from soil in Martinique (the French West Indies). One isolate was identified as Burkholderia cepacia genomovar VI, a B. cepacia complex genomovar thus far only isolated from sputum of cystic fibrosis patients. The remaining two isolates were identified as novel Burkholderia species for which we propose the names Burkholderia tuberum sp. nov. and Burkholderia phymatum sp. nov. The type strains are LMG 21444T and LMG 21445T, respectively.  相似文献   

8.
Aims:  To characterize biofilm formation of a chlorobenzoates (CBs) degrading bacterium, Burkholderia sp. NK8, with another bacterial species, and the biodegradation activity against CBs in the mixed-species biofilm.
Methods and Results:  Burkholderia sp. NK8 was solely or co-cultured with each of five other representative bacteria in microtitre dishes. Biofilm formation involving the strain NK8 was synergistically promoted by co-culturing with only Pseudomonas aeruginosa PAO1. Epifluorescent microscopy revealed that cells of the bacterial strain NK8 were viable and distributed randomly in the mixed-species biofilms. Enumeration of the attached cells on the surface of wells revealed that cells of the strain NK8 increased approx. 10-fold by the co-culture with the strain PAO1 compared to those by monoculture of the strain NK8, and the degradation activity of 3-chlorobenzoate by the dual-species biofilms was more promoted than that by the strain NK8-monocultured biofilms.
Conclusions:  Enhanced biofilm formation of Burkholderia sp. NK8 by the bacterial consortium occurred, but is determined by the partner bacterial species. The mixed-species biofilms have the advantage to degrade CBs on a solid surface.
Significance and Impact of the Study:  This study provides a significance of bacterial consortia on the biofilm formation and the degradation activity of Burkholderia sp. NK8, which contribute for complete degradation of chlorinated aromatics.  相似文献   

9.
Many bacterial species are known to thrive within plants. Among these bacteria, a group referred to as endophytes provide beneficial effects to the host plants by the promotion of plant growth and the suppression of plant pathogens. Among 44 putative endophytic isolates isolated from surface-sterilized rice roots, Burkholderia sp. KJ006 was selected for further study because of a lack of pathogenicity to rice, a broad spectrum of antifungal properties, and the presence of the nifH gene, which is an indicator for nitrogen fixation. In an attempt to control Burkholderia glumae, a casual pathogen of seedling rot and grain rot of rice, an N-acyl-homoserine lactonase (aiiA) gene from Bacillus thuringiensis was introduced into Burkholderia sp. KJ006 given that the major virulence factor of Burkholderia glumae is controlled in a population-dependent manner (quorum sensing). The engineered strain KJ006 (pKPE-aiiA) inhibited production of quorum-sensing signals by Burkholderia glumae in vitro and reduced the disease incidence of rice seedling rot caused by Burkholderia glumae in situ. Our results indicate the possibility that a bacterial endophyte transformed with the aiiA gene can be used as a novel biological control agent against pathogenic Burkholderia glumae that are known to occupy the same ecological niche.  相似文献   

10.
Arora PK  Jain RK 《PloS one》2012,7(6):e38676
A 2-chloro-4-nitrophenol (2C4NP) degrading bacterial strain designated as RKJ 800 was isolated from a pesticide contaminated site of India by enrichment method and utilized 2C4NP as sole source of carbon and energy. The stoichiometric amounts of nitrite and chloride ions were detected during the degradation of 2C4NP. On the basis of thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry, chlorohydroquinone (CHQ) and hydroquinone (HQ) were identified as major metabolites of the degradation pathway of 2C4NP. Manganese dependent HQ dioxygenase activity was observed in the crude extract of 2C4NP induced cells of the strain RKJ 800 that suggested the cleavage of the HQ to γ-hydroxymuconic semialdehyde. On the basis of the 16S rRNA gene sequencing, strain RKJ 800 was identified as a member of genus Burkholderia. Our studies clearly showed that Burkholderia sp. RKJ 800 degraded 2-chloro-4-nitrophenol via hydroquinone pathway. The pathway identified in a gram negative bacterium, Burkholderia sp. strain RKJ 800 was differed from previously reported 2C4NP degradation pathway in another gram-negative Burkholderia sp. SJ98. This is the first report of the formation of CHQ and HQ in the degradation of 2C4NP by any gram-negative bacteria. Laboratory-scale soil microcosm studies showed that strain RKJ 800 is a suitable candidate for bioremediation of 2C4NP contaminated sites.  相似文献   

11.
Bacterial isolations were carried out on Pinus sylvestris--Suillus bovinus mycorrhizospheres obtained directly from boreal pine forest. When samples were taken during dry weather, the numbers of bacterial colony-forming units were significantly higher in uncolonized short roots and external mycelia than in mycorrhizal roots and soil outside the mycorrhizosphere. In contrast, the colony-forming unit counts were similar in all hypogeous samples after rainy weather. Culturable bacteria were absent from most Suillus bovinus sporocarps. The bacteria isolated from all types of mycorr hizo sphere samples, i.e. short roots, mycorrhizal roots, and external mycelia, consisted primarily of Burkholderia spp., whereas most isolates from soil outside the mycorrhizosphere were identified as Paenibacillus spp. This study shows that mycorrhizal external mycelia can expand the habitat favourable for common rhizosphere bacteria into the soil far from the immediate rhizosphere. Some of these bacteria may help the trees with nitrogen acquisition, since potentially diazotrophic bacteria harbouring nitrogenase reductase (nifH) genes were isolated from mycorrhizal root tips.  相似文献   

12.
13.
The utilization of 1,2,4,5-tetrachloro-, 1,2,4-trichloro-, the three isomeric dichlorobenzenes and fructose as the sole carbon and energy sources at nanomolar concentrations was studied in batch experiments with Burkholderia sp. strain PS14. In liquid culture, all chlorobenzenes were metabolized within 1 h from their initial concentration of 500 nM to below their detection limits of 0.5 nM for 1,2,4,5-tetrachloro- and 1,2,4-trichlorobenzene and 7.5 nM for the three dichlorobenzene isomers, with 63% mineralization of the tetra- and trichloroisomers. Fructose at the same initial concentration was, in contrast, metabolized over a 4-h incubation period down to a residual concentration of approximately 125 nM with 38% mineralization during this time. In soil microcosms, Burkholderia sp. strain PS14 metabolized tetrachlorobenzene present at 64.8 ppb and trichlorobenzene present at 54.4 ppb over a 72-h incubation period to below the detection limits of 0.108 and 0.09 ppb, respectively, with approximately 80% mineralization. A high sorptive capacity of Burkholderia sp. strain PS14 for 1,2,4, 5-tetrachlorobenzene was found at very low cell density. The results demonstrate that Burkholderia sp. strain PS14 exhibits a very high affinity for chlorobenzenes at nanomolar concentrations.  相似文献   

14.
Burkholderia species are bacterial soil inhabitants that are capable of interacting with a variety of eukaryotes, in some cases occupying intracellular habitats. Pathogenic and nonpathogenic Burkholderia spp., including B. vietnamiensis, B. cepacia, and B. pseudomallei, were grown on germinating spores of the arbuscular mycorrhizal fungus Gigaspora decipiens. Spore lysis assays revealed that all Burkholderia spp. tested were able to colonize the interior of G. decipiens spores. Amplification of specific DNA sequences and transmission electron microscopy confirmed the intracellular presence of B. vietnamiensis. Twelve percent of all spores were invaded by B. vietnamiensis, with an average of 1.5 x 10(6) CFU recovered from individual infected spores. Of those spores inoculated with B. pseudomallei, 7% were invaded, with an average of 5.5 x 10(5) CFU recovered from individual infected spores. Scanning electron and fluorescence microscopy provided insights into the morphology of surfaces of spores and hyphae of G. decipiens and the attachment of bacteria. Burkholderia spp. colonized both hyphae and spores, attaching to surfaces in either an end-on or side-on fashion. Adherence of Burkholderia spp. to eukaryotic surfaces also involved the formation of numerous fibrillar structures.  相似文献   

15.
Nineteen Burkholderia cepacia-like isolates of human and environmental origin could not be assigned to one of the seven currently established genomovars using recently developed molecular diagnostic tools for B. cepacia complex bacteria. Various genotypic and phenotypic characteristics were examined. The results of this polyphasic study allowed classification of the 19 isolates as an eighth B. cepacia complex genomovar (Burkholderia anthina sp. nov.) and to design tools for its identification in the diagnostic laboratory. In addition, new and published data for Burkholderia pyrrocinia indicated that this soil bacterium is also a member of the B. cepacia complex. This highlights another potential source for diagnostic problems with B. cepacia-like bacteria.  相似文献   

16.
We examined the diversity of transconjugants that acquired the catabolic plasmids pJP4 or pEMT1, which encode degradation of 2,4-dichlorophenoxyacetic acid (2,4-D), in microcosms with agricultural soil inoculated with a donor strain (Dejonghe, W., Goris, J., El Fantroussi, S., H?fte, M., De Vos, P., Verstraete, W., and Top, E. M. Appl. Environ. Microbiol. 2000, p. 3297-3304). Using repetitive element PCR fingerprinting, eight different rep-clusters and six separate isolates could be discriminated among 95 transconjugants tested. Representative isolates were identified using 16S rDNA sequencing, cellular fatty acid analysis, whole-cell protein analysis and/or DNA-DNA hybridisations. Plasmids pJP4 and pEMT1 appeared to have a similar transfer and expression range, and were preferably acquired and expressed in soil by indigenous representatives of Ralstonia and Burkholderia. Two rep-clusters were shown to represent novel Burkholderia species, for which the names Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. are proposed. When easily degradable carbon sources were added together with the plasmid-bearing donor strain, also a significant proportion of Stenotrophomonas maltophilia isolates were found. The transconjugant collections isolated from A- (0-30 cm depth) and B-horizon (30-60 cm depth) soil were similar, except for B. terricola transconjugants, which were only isolated from the B-horizon.  相似文献   

17.
Arbuscular-mycorrhizal fungi are obligate endosymbionts that colonize the roots of almost 80% of land plants. This paper describes the employment of a combined morphological and molecular approach to demonstrate that the cytoplasm of the arbuscular-mycorrhizal fungus Gigaspora margarita harbors a further bacterial endosymbiont. Intracytoplasmic bacterium-like organisms (BLOs) were detected ultrastructurally in its spores and germinating and symbiotic mycelia. Morphological observations with a fluorescent stain revealed about 250,000 live bacteria inside each spore. The sequence for the small-subunit rRNA gene obtained for the BLOs from the spores was compared with those for representatives of the eubacterial lineages. Molecular phylogenetic analysis unambiguously showed that the endosymbiont of G. margarita was an rRNA group II pseudomanad (genus Burkholderia). PCR assays with specifically designed oligonucleotides were used to check that the sequence came from the BLOs. Successful amplification was obtained when templates from both the spores and the symbiotic mycelia were used. A band of the expected length was also obtained from spores of a Scutellospora sp. No bands were given by the negative controls. These findings indicate that mycorrhizal systems can include plant, fungal, and bacterial cells.  相似文献   

18.
The degradation of toluene by Pseudomonas putida F1 and of chlorobenzenes by Burkholderia sp. strain PS12 is initiated by incorporation of dioxygen into the aromatic nucleus to form cis-dihydrodihydroxybenzenes. Toluene-grown cells of P. putida F1 and 3-chlorobenzoate-grown cells of Burkholderia sp. strain PS12 were found to monooxygenate the side chain of 2- and 3-chlorotoluene to the corresponding chlorobenzyl alcohols. Further metabolism of these products was slow, and the corresponding chlorobenzoates were usually observed as end products, whereas the 3-chlorobenzoate produced from 3-chlorotoluene in Burkholderia sp. strain PS12 was metabolized further. Escherichia coli cells containing the toluene dioxygenase genes from P. putida F1 oxidized 2- and 3-chlorotoluene to the corresponding chlorobenzyl alcohols as major products, demonstrating that this enzyme is responsible for the observed side chain monooxygenation. Two methyl- and chloro-substituted 1,2-dihydroxycyclohexadienes were formed as minor products from 2- and 3-chlorotoluene, whereas a chloro- and methyl-substituted cyclohexadiene was the only product formed from 4-chlorotoluene. The toluene dioxygenase of P. putida F1 and chlorobenzene dioxygenase from Burkholderia sp. strain PS12 are the first enzymes described that efficiently catalyze the oxidation of 2-chlorotoluene.  相似文献   

19.
A soil bacterium, Burkholderia sp. WS, grows on 2-chloroacrylate as the sole carbon source. To identify the enzymes metabolizing 2-chloroacrylate, we carried out comparative two-dimensional gel electrophoresis of the proteins from 2-chloroacrylate- and lactate-grown bacterial cells. As a result, we found that a protein named CAA43 was inducibly synthesized when the cells were grown on 2-chloroacrylate. The CAA43 gene was cloned and shown to encode a protein of 333 amino acid residues (M(r) 35,788) that shared a significant sequence similarity with NADPH-dependent quinone oxidoreductase from Escherichia coli (38.2% identity). CAA43 was overproduced in E. coli and purified to homogeneity. The purified protein catalyzed the NADPH-dependent reduction of the carbon-carbon double bond of 2-chloroacrylate to produce (S)-2-chloropropionate, which is probably further metabolized to (R)-lactate by (S)-2-haloacid dehalogenase in Burkholderia sp. WS. NADH did not serve as a reductant. Despite the sequence similarity to quinone oxidoreductases, CAA43 did not act on 1,4-benzoquinone and 1,4-naphthoquinone. 2-Chloroacrylate analogs, such as acrylate and methacrylate, were also inert as the substrates. In contrast, 2-bromoacrylate served as the substrate. Thus, we named this novel enzyme 2-haloacrylate reductase. This study revealed a new pathway for the degradation of unsaturated organohalogen compounds. It is also notable that the enzyme is useful for the production of (S)-2-chloropropionate, which is used for the industrial production of aryloxyphenoxypropionic acid herbicides.  相似文献   

20.
We report the effects of pine and oak litter on species composition and diversity of mycorrhizal fungi colonizing 2-year-old Pinus sylvestris L. seedlings grown in a bare-root nursery in Lithuania. A layer of pine or oak litter was placed on the surface of the nursery bed soil to mimic natural litter cover. Oak litter amendment appeared to be most favorable for seedling survival, with a 73% survival rate, in contrast to the untreated mineral bed soil (44%). The concentrations of total N, P, K, Ca, and Mg were higher in oak growth medium than in pine growth medium. Relative to the control (pH 6.1), the pH was lower in pine growth medium (5.8) and higher in oak growth medium (6.3). There were also twofold and threefold increases in the C content of growth medium with the addition of pine and oak litter, respectively. Among seven mycorrhizal morphotypes, eight different mycorrhizal taxa were identified: Suillus luteus, Suillus variegatus, Wilcoxina mikolae, a Tuber sp., a Tomentella sp., Cenococcum geophilum, Amphinema byssoides, and one unidentified ectomycorrhizal symbiont. Forest litter addition affected the relative abundance of mycorrhizal symbionts more than their overall representation. This was more pronounced for pine litter than for oak litter, with 40% and 25% increases in the abundance of suilloid mycorrhizae, respectively. Our findings provide preliminary evidence that changes in the supply of organic matter through litter manipulation may have far-reaching effects on the chemistry of soil, thus influencing the growth and survival of Scots pine seedlings and their mycorrhizal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号