首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat brain hexokinase (ATP:D-hexose-6-phosphotransferase; EC 2.7.1.1) was derivatized with sulfosuccinimidyl-2-(m-azido-o-nitrobenzamido)ethyl-1,3'-dithiopro pionate (SAND), a photosensitive and cleavable crosslinking agent. The catalytic activity and mitochondrial binding properties of the enzyme were only marginally affected by reaction with SAND. When the derivatized enzyme was bound to liver mitochondria, photolysis resulted in extensive formation of a single crosslinked species with estimated molecular mass 460 kDa. This was determined to contain only hexokinase and thus represents a tetramer of the 116 kDa (apparent molecular mass in gel system used) monomeric enzyme. Although small amounts of tetramer were detected after photolysis of relatively high concentrations of derivatized enzyme in free solution, tetramer formation was greatly enhanced when the enzyme was bound to mitochondria. No evidence of dimeric or trimeric structures was seen even when only a small fraction of the available binding sites on the mitochondrial membrane were occupied. It is thus concluded that tetramer formation is closely linked with binding of the enzyme to the outer mitochondrial membrane and, more specifically, to the pore structure through which metabolites traverse this membrane. It is speculated that a tetrameric structure surrounding the mitochondrial pores may facilitate interactions between the hexokinase reaction and oxidative phosphorylation, mediated by the adenine nucleotides which are common intermediates in these reactions.  相似文献   

2.
The effects of seven monoclonal antibodies on various functions of rat brain hexokinase (ATP:D-hexose-6-phosphotransferase, EC 2.7.1.1) have been assessed. Specifically, effects on catalytic properties (Km values for substrates, glucose and ATP X Mg2+; Ki for inhibition by glucose 6-phosphate), binding to the outer mitochondrial membrane, and glucose 6-phosphate-induced solubilization of mitochondrially bound hexokinase were examined. Epitope mapping studies with the native enzyme provided information about the relative spatial distribution of the epitopes on the surface of the native molecule. Binding of nucleotides (ATP or ATP X Mg2+) was shown to perturb the epitopes recognized by two of these antibodies. Neither nucleotides nor other ligands (glucose, glucose 6-phosphate, Pi) had detectable effect on epitopes recognized by the other five antibodies. Peptide mapping techniques in conjunction with immunoblotting permitted assignment of the epitopes recognized by several of the antibodies to specific segments within the overall primary structure. These results, together with previous work relating to the organization of structural domains within the molecule, permitted development of a three-dimensional model which provides a useful representation of major structural and immunological features of the enzyme, and depicts the association of those features with specific functions.  相似文献   

3.
Interactions between intramitochondrial ATP-generating, ADP-requiring processes and ATP-requiring, ADP-generating phosphorylation of glucose by mitochondrially bound hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) have been investigated using well-coupled mitochondria isolated from rat brain. ADP generated by mitochondrially bound hexokinase was more effective at stimulating respiration than was ADP generated by hexokinase dissociated from the mitochondria, and pyruvate kinase was less effective as a scavenger of ADP generated by the mitochondrially bound hexokinase than was the case with ADP generated by the dissociated enzyme. These results indicate that ADP generated by the mitochondrially bound enzyme is at least partially sequestered and directed toward the mitochondrial oxidative phosphorylation apparatus. Under the conditions of these experiments, the maximum rate of ATP production by oxidative phosphorylation was approximately 10-fold greater than the maximum rate of ATP generation by the adenylate kinase reaction. Moreover, during periods of active oxidative phosphorylation, adenylate kinase made no detectable contribution to ATP production. Thus, adenylate kinase does not represent a major source of ATP for hexokinase bound to actively phosphorylating brain mitochondria. With adenylate kinase as the sole source of ATP, a steady state was attained in which ATP formation was balanced by utilization in the hexokinase reaction. In contrast, when oxidative phosphorylation was the source of ATP, a steady state rate of Glc phosphorylation was attained, but it was equivalent to only about 40-50% of the rate of ATP production and thus there was a continued net increase in ATP concentration in the system. Rates of Glc phosphorylation with ATP generated by oxidative phosphorylation exceeded those seen with equivalent levels of exogenously added ATP. Moreover, at total ATP concentrations greater than approximately 0.2 mM, hexokinase bound to actively phosphorylating mitochondria was unresponsive to continued slow increases in ATP levels; acute increase in ATP (by addition of exogenous nucleotide) did, however, result in increased hexokinase activity. The relative insensitivity of mitochondrially bound hexokinase to extramitochondrial ATP suggested dependence on an intramitochondrial pool (or pools) of ATP during active oxidative phosphorylation. Two intramitochondrial compartments of ATP were identified based on their selective release by inhibitors of electron transport or oxidative phosphorylation. These compartments were distinguished by their sensitivity to inhibitors and the kinetics with which they were filled with ATP generated by oxidative phosphorylation. Exogenous glycerol kinase competed effectively with mitochondrially bound hexokinase for extramitochondrial ATP, with relatively low levels of glycerol kinase completely inhibiting phosphorylation of Glc.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The effect of insulin on the intracellular localization of rat skeletal muscle hexokinase isozyme II (hexokinase II) was studied in vivo. It was found that after injection of the hormone the glucose concentration in the muscle gradually increases in parallel with the hexokinase II redistribution between the cytosol and the mitochondrial fraction in the direction of the bound form of the enzyme. This effect of insulin is due to glucose, an indispensable participant of the complex formation between the enzyme and the mitochondrial membrane. It was shown that the effect of glucose as a hexokinase II adsorbing reagent is a highly specific one. The hexokinase II binding to mitochondria in the presence of glucose is accompanied by changes in some kinetic properties of the enzyme. A kinetic analysis of catalytic efficiency of the free and bound hexokinase II forms revealed that the catalytic efficiency of hexokinase II within the composition of the enzyme-membrane complex exceeds by two orders of magnitude that of the free enzyme. The data obtained are discussed in the framework of an adsorption mechanism of hexokinase activity regulation in the cell.  相似文献   

5.
Previous studies from this laboratory have shown that mitochondrial bound hexokinase is markedly elevated in highly glycolytic hepatoma cells (Parry, D. M., and Pedersen, P.L. (1983) J. Biol. Chem. 258, 10904-10912). A pore-forming protein, porin, within the outer membrane appears to comprise at least part of the receptor site (Nakashima, R.A., Mangan, P.S., Colombini, M., and Pedersen, P.L. (1986). Biochemistry 25, 1015-1021). In studies reported here experiments were carried out to assess the functional significance of mitochondrial bound tumor hexokinase. Two approaches were used to determine whether the bound enzyme has preferred access to mitochondrially generated ATP relative to cytosolic ATP. The first approach compared the time course of glucose 6-phosphate formation by AS-30D hepatoma mitochondria under conditions where ATP was regenerated endogenously via oxidative phosphorylation or exogenously by added pyruvate kinase and phosphoenolpyruvate. The second approach involved the measurement of the specific radioactivity of glucose 6-phosphate formed following the addition of [gamma-32P]ATP to either phosphorylating or nonphosphorylating AS-30D mitochondria. Both approaches provided results which show that the source of ATP for bound hexokinase is derived preferentially from the ATP synthase residing within the inner mitochondrial membrane compartment rather than from the medium (i.e. from the cytosolic compartment). These results provide the first direct demonstration that the exceptionally high level of hexokinase bound to mitochondria of highly glycolytic tumor cells has preferred access to mitochondrially generated ATP, a finding that may have rather profound metabolic significance for such tumors.  相似文献   

6.
It has been proposed that hexokinase bound to mitochondria occupies a preferred site to which ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740-749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or any combination of these, suggesting a source of ATP in addition to oxidative phosPhorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentrations, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher initial rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

7.
The function of mitochondria-bound hexokinase, the enzymatic form peculiar to the brain, in utilization of ATP generated inside the organelles, was examined by incubating rat brain mitochondrial fraction with [14C]glucose under various conditions. Addition of succinate and ADP to the incubation medium increased glucose 6-phosphate formation by the mitochondrial hexokinase and caused a smaller increase in ATP concentration in the mitochondria. The glucose phosphorylation was markedly inhibited by the addition of dinitrophenol, potassium cyanide, and oligomycin, and the ATP concentration was decreased. On the other hand, addition of atractyloside suppressed the glucose phosphorylation without affecting the mitochondrial hexokinase activity, whereas addition of antiserum against the mitochondrial hexokinase inhibited both glucose 6-phosphate formation and hexokinase activity. A part of both the glucose phosphorylation and hexokinase activities, however, remained even in the presence of the maximum dose of the anti-hexokinase serum and atractyloside. These results indicate the active utilization of intrinsically generated ATP by the mitochondria-bound hexokinase, a part of which may be located away from the surface of the mitochondrial membrane.  相似文献   

8.
Previous work led to the conclusion that, during oxidative phosphorylation, mitochondrially bound hexokinase (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from rat brain was dependent on intramitochondrially compartmented ATP as substrate. The present study demonstrated that, when oxidative phosphorylation was functioning concurrently, mitochondrial creatine kinase could also generate intramitochondrial ATP serving as substrate for hexokinase. In the absence of concurrent oxidative phosphorylation, the kinetics of glucose phosphorylation with ATP generated by creatine kinase were not consistent with the supply of ATP from a saturable intramitochondrial compartment as formed during oxidative phosphorylation. Evidence for intramitochondrially compartmented ATP, generated by creatine kinase, was obtained; this was distinct from compartmented ATP generated by oxidative phosphorylation in terms of kinetics of generation of the compartment and its capacity, sensitivity to release by carboxyatractyloside, and sensitivity to disruption by digitonin. That oxidative phosphorylation did induce a dependence on intramitochondrial ATP as a substrate was further indicated by the observation that, although the initial rate of glucose phosphorylation by mitochondrial hexokinase depended on the extramitochondrial concentration of ATP present at the time oxidative phosphorylation was initiated, a final steady state rate of glucose phosphorylation was attained that was independent of extramitochondrial ATP levels. These and previous results emphasize the probable importance of nucleotide compartmentation in regulation of cerebral glycolytic and oxidative metabolism.  相似文献   

9.
Previously characterized monoclonal antibodies (Mabs) were used in a study of Type I hexokinase from rat brain. Based on the relative reactivity of these Mabs with soluble and mitochondrially bound forms, binding to mitochondria was shown to affect specific epitopic regions in both N- and C-terminal halves of the enzyme and to modulate conformational changes induced by binding of the ligands, Glc or ATP. Reactivities with Mabs recognizing epitopes in two defined regions of the N-terminal half and one defined region of the C-terminal half of the mitochondrially bound enzyme were selectively affected by mitochondrial membrane potential, or by addition of oligomycin, carboxyatractyloside, or bongkrekic acid. The Glc-6-P analog, 1 ,5-anhydroglucitol-6-P, was much more effective as a competitive inhibitor against extramitochondrial ATP than against intramitochondrial ATP generated by oxidative phosphorylation. These results provide further insight into the role of hexokinase-mitochondrial interactions in regulation of cerebral glucose metabolism.  相似文献   

10.
The proportion of hexokinase that is bound to the outer mitochondrial membrane is tissue specific and metabolically regulated. This study examined the role of the N,N-dicyclohexylcarbodiimide-binding domain of mitochondrial porin in binding to hexokinase I. Selective proteolytic cleavage of porin protein was performed and peptides were assayed for their, effect on hexokinase I binding to isolated mitochondria. Specificity of DCCD-reactive domain binding to hexokinase I was demonstrated by competition of the peptides for porin binding sites on hexokinase as well as by blockage hexokinase binding by N,N-dicyclohexylcarbodiimide. One of the peptides, designated as 5 kDa (the smallest of the porin peptides, which contains a DCCD-reactive site), totally blocked binding of the enzyme to the mitochondrial membrane, and significantly enhanced the release of the mitochondrially bound enzyme. These experiments demonstrate that there exists a direct and specific interaction between the DCCD-reactive domain of VDAC and hexokinase I. The peptides were further characterized with respect to their effects on certain functional properties of hexokinase I. None had any detectable effect on catalytic properties, including inhibition by glucose 6-phosphate. To evaluate further the outer mitochondrial membranes role in the hexokinase binding, insertion of VDAC was examined using isolated rat mitochondria. Pre-incubation of mitochondria with purified porin strongly increases hexokinase I binding to rat liver mitochondria. Collectively, the results imply that the high hexokinase-binding capability of porin-enriched mitochondria was due to a quantitative difference in binding sites.  相似文献   

11.
It has proposed that hexokinase bound to mitochondria occupies a preferred site to wich ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740–749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) ot any combination of these, suggesting a source of ATP in addition to oxidative phosphorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentraions, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

12.
The functional properties of mitochondria bound hexokinase are compared in two subpopulations of the HT29 human colon cancer cell-line: (1) the HT29 Glc+ cells, cultured in the presence of glucose, which are poorly differentiated and highly glycolytic and (2) the HT29 Glc- cells, adapted to grow in a glucose-free medium, which are 'enterocyte-like' differentiated and less glycolytic when given glucose (Zweibaum et al. (1985) J. Cell Physiol. 122, 21-28). The activities of hexokinase, phosphofructokinase-1 and pyruvate kinase are found to be twice as high in Glc+ cells when compared to Glc- cells. Besides, the respiration rate is decreased in Glc+ cells compared to Glc- cells. These results correlate with the higher glycolytic rate in Glc+ cells. In many tissues, it has been shown that the binding of hexokinase to the mitochondrial outer membrane allows a preferential utilization of the ATP generated by oxidative phosphorylation which, in turn, is activated by immediate restitution of ADP. In highly glycolytic cancer cells, although a large fraction of hexokinase is bound to the mitochondria, the existence of such a channeling of nucleotides is still poorly documented. The rates of glucose phosphorylation by bound hexokinase were investigated in mitochondria isolated from both Glc+ and Glc- cells either with exogenous ATP or with ATP generated by mitochondria supplied with ADP and succinate (endogenous ATP). Diadenosine pentaphosphate (Ado2P5), oligomycin and carboxyatractyloside (CAT) were used in combination or separately as metabolic inhibitors of adenylate kinase, ATP synthase and ATP/ADP translocator, respectively. Exogenous ATP appears to be 6.5-times more efficient than endogenous ATP in supporting hexokinase activity in the mitochondria from Glc+ cells and only 1.8-times cells. The rate of oxidative phosphorylation being higher in mitochondria from Glc- cells, hexokinase activity is higher in this model when ATP is generated by respiration. Furthermore, in Glc+ mitochondria, the adenylate kinase reaction appears to be an important source of endogenous ATP for bound hexokinase, while, in Glc- mitochondria, hexokinase activity is almost totally dependent on the ATP generated by oxidative phosphorylation. This result might be explained by our previous finding that mitochondria from Glc+ cells lack contact sites between outer and inner membrane, whereas numerous contacts were observed in mitochondria from Glc- cells (Denis-Pouxviel et al. (1987) Biochim. Biophys. Acta 902, 335-348).  相似文献   

13.
Isoenzyme 2 of hexokinase functions in sugar sensing and glucose repression in Saccharomyces cerevisiae. The degree of in vivo phosphorylation of hexokinase 2 at serine-14 is inversely related to the extracellular glucose concentration [Vojtek, A. B., and Fraenkel, D. G. (1990) Eur. J. Biochem. 190, 371-375]; however, a physiological role of the modification causing the dissociation of the dimeric enzyme in vitro [as effected by a serine-glutamate exchange at position 14; Behlke et al. (1998) Biochemistry 37, 11989-11995] is unclear. This paper describes a comparative stopped-flow kinetic and sedimentation equilibrium analysis performed with native unphosphorylated hexokinase 2 and a permanently pseudophosphorylated glutamate-14 mutant enzyme to determine the functional consequences of phosphorylation-induced enzyme dissociation. The use of a dye-linked hexokinase assay monitoring proton generation allowed the investigation of the kinetics of glucose phosphorylation over a wide range of enzyme concentrations. The kinetic data indicated that monomeric hexokinase represents the high-affinity form of isoenzyme 2 for both glycolytic substrates. Inhibition of glucose phosphorylation by ATP [Moreno et al. (1986) Eur. J. Biochem. 161, 565-569] was only observed at a low enzyme concentration, whereas no inhibition was detected at the high concentration of hexokinase 2 presumed to occur in the cell. Pseudophosphorylation by glutamate substitution for serine-14 increased substrate affinity at high enzyme concentration and stimulated the autophosphorylation of isoenzyme 2. The possible role of hexokinase 2 in vivo phosphorylation at serine-14 in glucose signaling is discussed.  相似文献   

14.
The N-terminal sequence of rat brain hexokinase (ATP: D-hexose-6-phosphotransferase, EC 2.7.1.1) has been determined to be X-NH-Met-Ile-(Ala, Gln)-Ala-Leu-Leu-Ala-Tyr-, where X is a blocking group on the N-terminal methionine, probably an N-acetyl group. Modification of this hydrophobic N-terminal segment by endogenous proteases in crude brain extracts resulted in loss of the ability to bind to mitochondria, but had no effect on catalytic activity, resulting in the appearance of nonbindable enzyme reported by several previous investigators to be present in purified hexokinase preparations. Similar results can be obtained by deliberate limited digestion with chymotrypsin (cleavage points marked by arrows in sequence above). Both bindable and nonbindable enzyme, the latter generated either by endogenous proteases or with chymotrypsin, have an identical C-terminal dipeptide sequence, Ile-Ala. The great susceptibility of the N-terminus to proteolysis plus the marked effect that its proteolytic modification has on binding of hexokinase to anion exchange or hydrophobic (phenyl-Sepharose) matrices suggest that this N-terminal segment is prominently displayed at the enzyme surface. Epitopes recognized by two monoclonal antibodies which block binding of hexokinase to mitochondria (but have no effect on catalytic activity) have been mapped to a 10K fragment cleaved from the N-terminus by limited tryptic digestion. Thus the binding of hexokinase to mitochondria appears to occur via a "binding domain" constituting the N-terminal region of the molecule, with maintenance of an intact hydrophobic sequence at the extreme N-terminus being critical to this interaction. A resulting specific orientation of the molecule on the mitochondrial surface is considered to be a prerequisite for the observed coupling of hexokinase activity and mitochondrial oxidative phosphorylation.  相似文献   

15.
Evidence is presented that mitochondrial ATPase has two types of sites that bind adenine nucleotides. The catalytic site, C, binds the substrates ATP, GTP, or ITP and the inhibitor guanylyl imidodiphosphate (GMP-PNP). A second type of site, R, binds ATP, ADP, adenylyl imidodiphosphate (AMP-PNP), and the chromium complexes of ATP or ADP. All of these substances binding to the R site inhibit the hydrolysis of ATP in a competitive manner; their inhibition of hydrolysis of ITP and GTP is noncompetitive. GMP-PNP inhibits oxidative phosphorylation in submitochondrial particles but AMP-PNP does not. The localization on mitochondrial membranes of sites for the binding of various antibiotics that inhibit oxidative phosphorylation is discussed.  相似文献   

16.
Hexokinase is released from Type A sites of brain mitochondria in the presence of glucose 6-phosphate (Glc-6-P); enzyme bound to Type B sites remains bound. Hexokinase of freshly isolated bovine brain mitochondria (Type A:Type B, approximately 40:60) selectively uses intramitochondrial ATP as substrate and is relatively insensitive to the competitive (vs ATP) inhibitor and Glc-6-P analog, 1,5-anhydroglucitol 6-phosphate (1,5-AnG-6-P). After removal of hexokinase bound at Type A sites, the remaining enzyme, bound at Type B sites, does not show selectivity for intramitochondrial ATP and has increased sensitivity to 1,5-AnG-6-P. Thus, the properties of the enzyme bound at Type B sites are modified by removal of hexokinase bound at Type A sites. It is suggested that mechanisms for regulation of mitochondrial hexokinase activity, and thereby cerebral glycolytic metabolism, may depend on the ratio of Type A:Type B sites, which varies in different species.  相似文献   

17.
Soluble hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) was purified from human heart. 1 kg of tissue provided 25 mg hexokinase with a specific activity of 58 units/mg, representing a 1700-fold purification and 47% yield. The purification involved six steps, including affinity chromatography with glucosamine attached to Sepharose. The material was homogeneous according to electrophoresis, gel-filtration and sedimentation in the ultracentrifuge, but gave two main components on electrophoresis in denaturing conditions. From determination of the sedimentation and diffusion coefficients, the relative molecular mass was calculated to be 105 000. The enzyme is monomeric, but glucose 6-phosphate promotes an association to dimers. This effect is reversible and is independent of the concentrations of glucose or inorganic phosphate. The results support the postulate that soluble and mitochondrion-bound hexokinases are identical.  相似文献   

18.
Rat brain mitochondrial hexokinase (ATP: D-hexose 6-phosphotransferase, EC 2.7.1.1) was solubilized by treatment of the mitochondria with glucose 6-phosphate and partly purified. The solubilized enzyme was compared with the cytosolic enzyme fraction. The solubilized and cytosolic enzymes were also compared with the enzyme bound to the mitochondrial membrane. The following observations were made. 1. There is no difference in electrophoretic mobility on cellulose-acetate between the cytosolic and the solubilized enzyme. Both fractions are hexokinase isoenzyme I. 2. There is no difference in kinetic parameters between the cytosolic or solubilized enzymes (P less than 0.001). For the cytosolic enzyme Km for glucose was 0.067 mM (S.E. = 0.024, n = 7); Km for MgATP2- was 0.42 mM (S.E. = 0.13, n = 7) and Ki,app for glucose 1,6-diphosphate was 0.084 mM (S.E. = 0.011, n = 5). For the solubilized enzyme Km for glucose was 0.071 mM (S.E. = 0.021, n = 6); Km for MgATP2- was 0.38 mM (S.E. = 0.11, n = 6) and Ki,app for glucose 1,6-diphosphate was 0.074 mM (S.E. = 0.010, n = 5). However when bound to the mitochondrial membrane, the enzyme has higher affinities for its substrates and a lower affinity for the inhibitor glucose 1,6-diphosphate. For the mitochondrial fraction Km for glucose was 0.045 mM (S.E. = 0.013, n = 7); Km for MgATP2- was 0.13 mM (S.E. = 0.02, n = 7) and Ki,app for glucose 1,6-diphosphate was 0.33 mM (S.E. = 0.03, n = 5). 3. The cytosolic and solubilized enzyme could be (re)-bound to depleted mitochondria to the same extent and with the same affinity. Limited proteolysis fully destroyed the enzyme's ability to bind to depleted mitochondria. 4. Our data support the hypothesis that soluble- and solubilizable enzyme from rat brain are one and the same enzyme, and that there is a simple equilibrium between the enzyme in these two pools.  相似文献   

19.
The subcellular distribution and isozyme pattern of hexokinase in rat lung were studied. Of the total hexokinase activity of lung, one-third was bound to mitochondria and one-third of the mitochondrial activity was in a latent form. The overt-bound mitochondrial hexokinase was specifically solubilized by physiological concentrations of glucose 6-phosphate and ATP. Inorganic phosphate partially prevented the solubilization by glucose 6-phosphate (Glc 6-P), whereas Mg2+ ions promoted rebinding of the solubilized enzyme to mitochondria. Thus, the distribution of hexokinase between soluble and particulate forms in vivo is expected to be controlled by the relative concentrations of Glc 6-P, ATP, Pi, and Mg2+. Study of the isozyme pattern showed that hexokinase types I, II, and III constitute the cell-sap enzyme of lung. The overt and latent hexokinase activities could be separately isolated by successive treatments of mitochondria with Glc 6-P and Triton X-100. The overt-bound activity consisted primarily of hexokinase type I, with a small proportion of type II isozyme. The latent activity, on the other hand, exclusively consisted of type I isozyme. Type I hexokinase, the predominant isozyme in lung, was strongly inhibited by intracellular concentration of Glc 6-P and this inhibition was counteracted by Pi. The bound form of hexokinase exhibited a significantly higher apparent Ki for Glc 6-P inhibition and a lower apparent Km for ATP as compared to the soluble form. Thus, the particulate form of hexokinase is expected to promote glycolysis and may provide a mechanism for the high rate of aerobic glycolysis in lung.  相似文献   

20.
Up to 80% of total cellular hexokinase (EC 2.1.7.4) activity in pea (Pisum sativum L.) leaves was found to be associated with particulate fractions. Fractionation on sucrose density gradients showed this particulate activity to be associated exclusively with mitochondria. In the presence of glucose and ATP, the bound mitochondrial hexokinase could support rates of O2 uptake of up to 30% of normal ADP-stimulated rates. This stimulation of O2 uptake by hexokinase was completely sensitive to oligomycin, indicating that it resulted from an increase in the supply of ADP for mitochondrial oxidative phosphorylation. Spectrophotometric measurements of the mitochondrial hexokinase activity showed that ADP could support rapid rates of activity provided oxidizable substrates were also present to support the conversion of ADP to ATP in oxidative phosphorylation. Carboxyatractyloside, an inhibitor of adenine-nucleotide uptake by mitochondria, inhibited this ADP-supported activity, but had no effect on hexokinase activity in the presence of added ATP, demonstrating that the hexokinase enzyme was located external to the inner mitochondrial membrane. Oligomycin also inhibited ADP-supported activity but had no effect on ATP-supported hexokinase activity. Glucose (Km 53 μM) was the preferred substrate of pea-leaf mitochondrial hexokinase compared with fructose (Km 5.1 mM). Hexokinase was not solubilised in the presence of glucose-6-phosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号