首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
N-bromoacetyl-3,3',5-tri[3'-125I]iodo-L-thyronine was used to label intact heart mitochondria from eu, hypo- and hyperthyroid rats in order to identify proteins involved in T3-regulated mitochondrial processes. The results show strong labeling, competed for by T3 and other analogues, of two proteins with a molecular mass of 48,000 and 49,200 Da. No labeling is seen of the adenine nucleotide translocase, a likely target, neither at 0 degree C, at room temperature, nor after preincubation with the substrates or specific inhibitors. No difference in labeling intensity or distribution is seen in mitochondria from eu-, hypo- or hyperthyroid rats, and the abundance of the adenine nucleotide translocase is unchanged, but five other proteins show differential abundance.  相似文献   

3.
The adenine nucleotide translocase (ANT) mediates the exchange of ADP and ATP across the inner mitochondrial membrane. The human genome encodes multiple ANT isoforms that are expressed in a tissue-specific manner. Recently a novel germ cell-specific member of the ANT family, ANT4 (SLC25A31) was identified. Although it is known that targeted depletion of ANT4 in mice resulted in male infertility, the functional biochemical differences between ANT4 and other somatic ANT isoforms remain undetermined. To gain insight into ANT4, we expressed human ANT4 (hANT4) in yeast mitochondria. Unlike the somatic ANT proteins, expression of hANT4 failed to complement an AAC-deficient yeast strain for growth on media requiring mitochondrial respiration. Moreover, overexpression of hANT4 from a multi-copy plasmid interfered with optimal yeast growth. However, mutation of specific amino acids of hANT4 improved yeast mitochondrial expression and supported growth of the AAC-deficient yeast on non-fermentable carbon sources. The mutations affected amino acids predicted to interact with phospholipids, suggesting the importance of lipid interactions for function of this protein. Each mutant hANT4 and the somatic hANTs exhibited similar ADP/ATP exchange kinetics. These data define common and distinct biochemical characteristics of ANT4 in comparison to ANT1, 2 and 3 providing a basis for study of its unique adaptation to germ cells.  相似文献   

4.
ATP synthesis, ATP hydrolysis and ADP uptake by membrane vesicles of Methanobacterium thermoautotrophicum are inhibited by inhibitors of mitochondrial ADPATP translocases. Atractyloside binds to one of the membrane proteins. These data demonstrate the presence of an eucaryotic type of ADPATP translocase in a procaryotic microorganism and stress the unique position of methanogenic bacteria in evolution.  相似文献   

5.
We have developed a mathematical model of adenine nucleotide translocase (ANT) function on the basis of the structural and kinetic properties of the transporter. The model takes into account the effect of membrane potential, pH, and magnesium concentration on ATP and ADP exchange velocity. The parameters of the model have been estimated from experimental data. A satisfactory model should take into account the influence of the electric potential difference on both ternary complex formation and translocation processes. To describe the dependence of translocation constants on electric potential we have supposed that ANT molecules carry charged groups. These groups are shifted during the translocation. Using the model we have evaluated the translocator efficiency and predicted the behavior of ANT under physiological conditions.  相似文献   

6.
Investigations of developmental changes in energy metabolism in guinea pig liver mitochondria showed that mitochondria from the newborn were well coupled, with respiratory control ratios and membrane energy potentials similar to those obtained with mitochondria from the 1-day-old and the adult. In contrast, there was a 3-fold increase in the rate of mitochondrial respiration and a 2-fold increase in adenine nucleotide content during the first 24 h of extrauterine life. There was no significant change in the ATP/ADP ratio and only a 30% increase in the uncoupled rate of respiration during this same time period. Titrations of the adenine nucleotide translocase with the specific inhibitor, carboxyatractyloside, showed that the newborn had only 50% of the adenine nucleotide translocase activity of the adult. Furthermore, by applying flux control theory to these inhibitor titrations, it was possible to demonstrate that the adenine nucleotide translocase exerted greater control over respiration in the newborn than in the adult, and at maximal rates of coupled respiration the translocase had a control strength of 0.98. The consequences of this finding on cellular energy metabolism are discussed in relation to adaptation of the newborn to extrauterine life.  相似文献   

7.
The coupled reactions of electron transport and ATP synthesis for the first two sites of mitochondrial oxidative phosphorylation have been previously reported to be near equilibrium in isolated respiring pigeon heart (Erecińska, M., Veech, R. L., and Wilson, D. F. (1974) Arch. Biochem. Biophys. 160, 412-421) and rat liver mitochondria (Forman, N. G., and Wilson, D. F. (1982) J. Biol. Chem. 257, 12908-12915). Measurements are presented in this paper which demonstrate that the same relationship exists for both forward and reverse electron transport in rat heart mitochondria. This conclusion implies that adenine nucleotide translocation, a partial reaction of the system, is also near equilibrium, contrasting with proposals that the translocase is rate-limiting for oxidative phosphorylation. To resolve this controversy, the respiratory rates of suspensions of isolated rat liver and rat heart mitochondria were controlled by varying either the added [ATP]/[ADP][Pi] ratios ratios or [ADP] (by varying hexokinase in a regenerating system). Titrations with carboxyatractyloside, a high affinity inhibitor of the translocase which is noncompetitive with ADP, were carried out to assess the dependence of the respiratory rate on translocase activity. Plots of respiratory rate versus [carboxyatractyloside] were all strongly sigmoidal. In liver mitochondria, 40%-70% and in heart mitochondria 66% of the sites could be blocked with carboxyatractyloside before a 10% decrease in the respiratory rate was observed. Further analysis showed that liver and heart mitochondria have translocase/cytochrome a ratios of 1.52 and 3.20, respectively, and that at 23 degrees C the maximal turnover numbers for the translocases were 65 s-1 and 23 s-1. In all states of controlled respiration (no added inhibitor), a substantial excess of translocase activity was present, suggesting that the translocase was not normally rate-limiting in oxidative phosphorylation.  相似文献   

8.
9.
10.
11.
Human cells express four mitochondrial adenine nucleotide translocase (hANT) isoforms that are tissue-specific and developmentally regulated. hANT1 is mainly expressed in terminally differentiated muscle cells; hANT2 is growth-regulated and is upregulated in highly glycolytic and proliferative cells; and hANT3 is considered to be ubiquitous and non-specifically regulated. Here, we studied how the expression of hANT isoforms is regulated by proliferation and in response to metabolic stimuli, and examined the metabolic consequences of their silencing and overexpression. In HeLa and HepG2 cells, expression of hANT3 was upregulated by shifting metabolism towards oxidation or by slowed growth associated with contact inhibition or growth-factor deprivation, indicating that hANT3 expression is highly regulated. Under these conditions, changes in hANT2 mRNA expression were not observed in either HeLa or HepG2 cells, whereas in SGBS preadipocytes (which, unlike HeLa and HepG2 cells, are growth-arrest-sensitive cells), hANT2 mRNA levels decreased. Additionally, overexpression of hANT2 promoted cell growth and glycolysis, whereas silencing of hANT3 decreased cellular ATP levels, limited cell growth and induced a stress-like response. Thus, cancer cells require both hANT2 and hANT3, depending on their proliferation status: hANT2 when proliferation rates are high, and hANT3 when proliferation slows.  相似文献   

12.
13.
14.
15.
G C Ness  L C Pendleton 《FEBS letters》1991,288(1-2):21-22
Livers from hypophysectomized rats had low levels of glyceraldehyde 3-phosphate dehydrogenase mRNA. Administration of L-triiodothyronine increased these levels over 20-fold. The peak response was seen 72 h after hormone administration. A half-maximal response was obtained with 5 micrograms of T3 per 100 g of body weight. Thus the expression of hepatic glyceraldehyde 3-phosphate dehydrogenase appears to be regulated by thyroid hormone.  相似文献   

16.
17.
18.
In a rat model of acute myocardial infarction (MI) produced by coronary artery ligation, thyroid hormone metabolism was altered with significant reductions (54%) in serum triiodo-L-thyronine (T(3)), the cellular active hormone metabolite. T(3) has profound effects on the heart; therefore, rats were treated with T(3) after acute MI for 2 or 3 wk, at either replacement or elevated doses, to determine whether cardiac function and gene expression could be normalized. Acute MI resulted in a 50% (P < 0.001) decrease in percent ejection fraction (%EF) with a 32-35% increase (P < 0.01) in compensatory left ventricle (LV) hypertrophy. Treatment of the MI animals with either replacement or elevated doses of T(3) significantly increased %EF to 64 and 73% of control, respectively. Expression levels of several T(3)-responsive genes were altered in the hypertrophied LV after MI, including significant decreases in alpha-myosin heavy chain (MHC), sarcoplasmic reticulum calcium-activated ATPase (SERCA2), and Kv1.5 mRNA, whereas beta-MHC and phospholamban (PLB) mRNA were significantly increased. Normalization of serum T(3) did not restore expression of all T(3)-regulated genes, indicating altered T(3) responsiveness in the postinfarcted myocardium. Although beta-MHC and Kv1.5 mRNA content was returned to control levels, alpha-MHC and SERCA2 were unresponsive to T(3) at replacement doses, and only at higher doses of T(3) was alpha-MHC mRNA returned to control values. The present study showed that acute MI in the rat was associated with a fall in serum T(3) levels, LV dysfunction, and altered expression of T(3)-responsive genes and that T(3) treatment significantly improved cardiac function, with normalization of some, but not all, of the changes in gene expression.  相似文献   

19.
The adenine nucleotide translocase, the transport protein for ADP and ATP, located in the inner mitochondrial membrane is an important site for the regulation of cell metabolism. Inhibition of the adenine nucleotide translocase by long chain fatty acyl CoA esters demonstrated invitro may also occur invivo when the complete oxidation of fatty acids by the myocardium has been compromised during ischemia. Reversal of this biochemical lesion may be of benefit in the preservation of the ischemic myocardium.  相似文献   

20.
Under conditions of inhibiting oxidative phosphorylation of oligomycin palmitoyl-CoA (p-CoA) decreases the rate of energy dependent reduction of acetoacetate and Ca2+-capacity of mitochondria in a phosphate medium. Energy independent osmotic swelling of mitochondria in NH4NO3, which depends on H+ permeability of the inner mitochondrial membrane is inhibited by ADP and acclereated by p-CoA. Carnitin and competitive ADP abolish all the effects of p-CoA. It is concluded that decreased energization induced by p-CoA is related to an increase in the inner mitochondrial membrane permeability b- H+ as a result of the inhibitor bindings with adenine nucleotide translocase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号