首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A variety of heavy metal chelating agents is known to prolong the fertilizing capacity and motility of sea urchin sperm. We report here that these agents maintain fertilizing capacity by preventing acrosome reactions which occur spontaneously after dilution of sperm into seawater. These chelating agents also inhibit acrosome reactions induced by high pH or egg jelly. Since induction of the acrosome reaction leads to steps that abolish motility, specifically a massive Ca2+ uptake and concomitant acidification of the cytoplasm, motility is prolonged by these chelators. These observations also suggest that heavy metals play a role in controlling the acrosome reaction in sea urchin sperm.  相似文献   

2.
Extracts of the jelly coat of eggs of several marine invertebrates are known to induce in homologous sperm morphological changes known as the acrosome reaction. When sperm of the sea urchin Strongylocentrotus purpuratus are treated with low concentrations (0.2 μg fucose/ml) of egg jelly coat or 30 mM CaCl2 in artificial seawater the acrosome reaction does not occur. However, either of these treatments causes the exposure of an acrosin-like enzyme to exogenous substrate and inhibitors. Subsequent addition of jelly coat to 3.7 μg fucose/ml to sperm in this “initial stage” induces the acrosome reaction (as judged by the appearance of an acrosomal filament). This concentration is also effective for untreated sperm. If inhibitors of the enzyme (diisopropylphosphofluoridate or phenylmethanesulfonyl fluoride) are added to sperm in the initial stage, no acrosomal filaments are observed when the high concentration of jelly coat is added. Whether other morphological changes occur in these sperm has not been examined. If phenylmethanesulfonyl fluoride is added 4 sec after the jelly coat, the acrosomal filaments are observed, but the sperm still fail to fertilize eggs. These results suggest a dual role for the acrosin-like enzyme(s), first in the mechanism of the acrosomal filament formation and then in a subsequent event in the fertilization process.  相似文献   

3.
4.
5.
An essential initial step in fertilization in the sea urchin Strongylocentrotus purpuratus is an intracellular membrane fusion event in the sperm known as the acrosome reaction. This Ca2+-dependent, exocytotic process involves fusion of the membrane of the acrosomal vesicle and the plasma membrane. Recently, metalloendoproteases requiring divalent metals have been implicated in several Ca2+-dependent membrane fusion events in other biological systems. In view of the suggested involvement of Zn2+ in the sea urchin sperm acrosome reaction (Clapper, D.L., Davis, J.A., Lamothe, P.J., Patton, C., and Epel, D. (1985) J. Cell Biol. 100, 1817-1824) and the fact that Zn2+ is a metal cofactor for metalloendoproteases, we investigated the potential role of this protease in the acrosome reaction. A soluble metalloendoprotease was demonstrated and characterized in sperm homogenates using the fluorogenic protease substrate succinyl-alanine-alanine-phenylalanine-4-aminomethylcoumarin. The protease was inhibited by the metal chelators EDTA and 1,10-phenanthroline, and activity of the inactive apoenzyme could be reconstituted with Zn2+. The metalloendoprotease substrate and inhibitors blocked the acrosome reaction induced either by egg jelly coat or by ionophore, but had no effect on the influx of Ca2+. These observations suggest that inhibition occurs at a step independent of Ca2+ entry. Overall, the results of this study provide strong indirect evidence that the acrosome reaction requires the action of metalloendoprotease.  相似文献   

6.
When the surface of sea urchin (Strongylocentrotus purpuratus) sperm is radioiodinated, 75% of the protein-incorporated radioactivity is associated with two glycoproteins of Mr 84,000 (84K) 64,000 (64K) (Lopo and Vacquier 1980). Antibodies were prepared against these two components by separating a Triton X-100 extract of sperm on SDS-polyacrylamide gels, cutting out the band containing the glycoprotein and injecting the homogenized gel into rabbits. Both anti-84K and anti-64K sera agglutinate sperm. Light and EM immunoperoxidase localization show both antigens are distributed over the entire sperm surface. By the immunoperoxidase technique there is some degree of cross-reactivity of both antisera with sperm of other Strongylocentrotus species, but not with those of other genera. Living sperm incubated with anti-84K Fab fragments are completely inhibited from undergoing the egg jelly-induced acrosome reaction and fertilizing eggs. Anti-64K Fab fragments have no effect on the ability of the sperm to undergo the acrosome reaction or fertilize eggs. Sperm incubated in anti-84K or anti-64K Fab fragments undergo the acrosome reaction in response to the Ca2+ ionophore A23187, or when the extracellular pH is increased to 9.2 with NH4OH, indicating that the inhibition of the egg jelly-induced acrosome reaction results from the binding of the anti-84K Fab to an external molecule involved in the initiation or propagation of the acrosome reaction. The 84K glycoprotein is the first sperm surface component identified that might have a role in the induction of the acrosome reaction.  相似文献   

7.
Macromolecules surrounding eggs induce the acrosome reaction (AR) of spermatozoa. In sea urchins, three egg jelly (EJ) molecules: a fucose sulfate polymer (FSP), a sialoglycan (SG), and speract mediate ionic fluxes triggering the AR. SG and speract are noninductive without FSP. Speract's role in AR induction is controversial. Here we show that speract potentiates the FSP-induced AR at pH 7.0, approximately 1 pH unit lower than natural seawater. At pH 7.0, a mixture of FSP, SG, and speract produces the intracellular pH increase necessary for maximum AR induction. Each EJ component may mediate a distinct intracellular pH control mechanism, and all three may function synergistically to increase the intracellular pH permitting AR induction. Speract peptides are an ancient family. Although important for activating cyclic nucleotide-mediated pathways in today's seawater of pH approximately 8, speract may have been more important in AR induction in the paleo-ocean of pH approximately 7.  相似文献   

8.
A monoclonal antibody, J18/29, induces the acrosome reaction (AR) in spermatozoa of the sea urchin Strongylocentrotus purpuratus. J18/29 induces increases in both intracellular Ca2+ and intracellular pH similar to those occurring upon induction of the AR by the natural inducer, the fucose sulfate-rich glycoconjugate of egg jelly. Lowering the Ca2+ concentration or the pH of the seawater inhibits the J18/29-induced AR, as does treatment with Co2+, an inhibitor of Ca2+ channels. The J18/29-induced AR is also inhibited by verapamil, tetraethylammonium chloride, and elevated K+. All these treatments cause similar inhibition of the egg jelly-induced AR. J18/29 reacts with a group of membrane proteins ranging in molecular mass from 340 to 25 kD, as shown by immunoprecipitation of lysates of 125I-labeled sperm and Western blots. The most prominent reacting proteins are of molecular masses of 320, 240, 170, and 58 kD. The basis of the multiple reactivity appears to reside in the polypeptide chains of these proteins, as J18/29 binding is sensitive to protease digestion but resistant to periodate oxidation. There are approximately 570,000 sites per cell for J18/29 binding. J18/29 is the only reagent of known binding specificity that induces the AR; it identifies a subset of sperm membrane proteins whose individual characterization may lead to the isolation of the receptors involved in the triggering of the AR at fertilization.  相似文献   

9.
Sea urchin egg jelly (EJ) triggers sperm acrosome reaction (AR), an exocytotic event required for membrane fusion of the gametes. Purified fucose sulfate polymer (FSP) in EJ is one inducer of the AR. Binding of FSP to its receptor regulates opening of two distinct calcium channels and also elevates intracellular pH (pH(i)). EJ also contains sialic acid-rich glycans (sialoglycans (SG)) that were isolated by beta-elimination followed by DEAE chromatography. In the presence of limiting amounts of FSP, the SG fraction markedly potentiates the AR; however, by itself SG has no activity. The SG fraction increases the pH(i) of sperm without increasing intracellular Ca(2+). The SG-induced increase in pH(i) is not blocked by nifedipine or high K(+), whereas the FSP-induced pH(i) increase is sensitive to both these agents. Treatment of the SG fraction with neuraminidase or mild metaperiodate that specifically cleaves the glycerol side chain of sialic acid abolishes the AR potentiation and ability of SG to elevate pH(i). These data are the first to show that there are at least two pathways to induce sperm pH(i) increase and that egg surface sialic acid plays a role in triggering the sperm AR.  相似文献   

10.
The egg jelly-induced acrosome reaction of sea urchin sperm requires the presence of Ca2+ and Na+ in seawater at its normal pH 8. Sperm suspended in seawater at pH 9 undergo the acrosome reaction in the absence of jelly. We have attempted to understand the role of external Na+ in this reaction. Sperm were suspended in Na+-free seawater and the percentage of acrosome reaction and the amount of Ca2+ uptake were determined as a function of external pH. High pH (9.0) in Na+-free medium without jelly triggered a high percentage (above 65%) of sperm acrosome reactions and a two to fourfold increase in Ca2+ uptake. Both the percentage of acrosome reactions and the amount of Ca2+ uptake were similar to those induced by either jelly or pH 9 in Na+-containing seawater. On the other hand, the absence of Na+ in seawater inhibits jelly from inducing Ca2+ uptake and acrosome reactions at pH 8.0 and even at pH 8.5. These results indicate that the Na+ requirement for the acrosome reaction induced by jelly is lost when triggering is by high pH. In contrast, Ca2+ was strictly required since sperm did not react in Ca2+-free seawater at pH 9. We also found that like the jelly-induced acrosome reaction the high-pH-induced acrosome reaction and Ca2+ uptake in complete and Na+-free seawater were inhibited by D600. This finding suggests that the same transport system for Ca2+ uptake associated with the acrosome reaction operates at both triggering conditions, i.e., jelly or pH 9. Although D600 is not now considered a specific blocker, its effect has suggested the involvement of Ca2+ channels in the acrosome reaction. This proposal is supported by our results with nisoldipine, a highly specific inhibitor of calcium channels. The drug inhibited both the sperm acrosome reaction and Ca2+ uptake induced by jelly or pH 9 in complete seawater.  相似文献   

11.
12.
The sperm acrosome reaction (AR) involves ion channel activation. In sea urchin sperm, the AR requires Ca2+ and Na+ influx and K+ and H+ efflux. During the AR, the plasma membrane fuses with the acrosomal vesicle membrane forming hybrid membrane vesicles that are released from sperm into the medium. This paper reports the isolation and preliminary characterization of these acrosome reaction vesicles (ARVs), using synaptosome-associated protein of 25 kDa (SNAP-25) as a marker. Isolated ARVs have a unique protein composition. The exocytosis regulatory proteins vesicle-associated membrane protein and SNAP-25 are inside ARVs, as judged by protease protection experiments, and membrane associated based on Triton X-114 partitioning. ARVs fused with planar bilayers display three main types of single channel activity. The most frequently recorded channel is cationic, weakly voltage dependent and has a low open probability that increases with negative potentials. This channel is activated by cAMP, blocked by Ba2+, and has a PK+/PNa+ selectivity of 4.5. ARVs represent a novel membrane preparation suitable to deepen our understanding of ion channel activity in the AR and during fertilization.  相似文献   

13.
Ohmuro J  Mogami Y  Baba SA 《Zoological science》2004,21(11):1099-1108
Transition from immotile to motile flagella may involve a series of states, in which some of regulatory mechanisms underlying normal flagellar movement are working with others being still suppressed. To address ourselves to the study of starting transients of flagella, we analyzed flagellar movement of sea urchin sperm whose motility initiation had been retarded in an experimental solution, so that we could capture the instance at which individual spermatozoa began their flagellar beating. Initially straight and immotile flagella began to shiver at low amplitude, then propagated exclusively the principal bend (P bend), and finally started stable flagellar beating. The site of generation of the P bend in the P-bend propagating stage varied in position in the basal region up to 10 microm from the base, indicating that the ability of autonomous bend generation is not exclusively possessed by the very basal region but can be unmasked throughout a wider region when the reverse bend (R bend) is suppressed. The rate of change in the shear angle, the curvature of the R bend and the frequency and regularity of beating substantially increased upon transition from P-bend propagating to full-beating, while the propagation velocity of bends remained unchanged. These findings indicate that artificially delayed motility initiation may accompany sequential modification of the motile system and that mechanisms underlying flagellar motility can be analyzed separately under experimentally retarded conditions.  相似文献   

14.
Delta-9-tetrahydrocannabinol ((?)δ9 THC), the primary psychoactive cannabinoid in marihuana, reduces the fertilizing capacity of sea urchin sperm by blocking the acrosome reaction that normally is stimulated by a specific ligand in the egg's jelly coat. The bicyclic synthetic cannabinoid [ H]CP-55,940 has been used as a ligand to demonstrate the presence of a cannabinoid receptor in mammalian brain. We now report that [ H]CP-55,940 binds to live sea urchin (Strongylocentrotus purpuratus) sperm in a concentration, sperm density, and time-dependent manner. Specific binding of [ H]CP-55,940 to sperm, defined as total binding displaced by (?)δ9 THC, was saturable: KD 5.16 ± 1.02 nM; Hill coefficient 0.98 ± 0.004. This suggests a single class of receptor sites and the absence of significant cooperative interactions. Sea urchin sperm contain 712 ± 122 cannabinoid receptors per cell. Binding of [ H]CP-55,940 to sperm was reduced in a dose-dependent manner by increasing concentrations of CP-55,940, (?)δ9 THC, and (+)δ9 THC. The rank order of potency to inhibit binding of [ H]CP-55,940 to sperm and to block the egg jelly stimulated acrosome reaction was: CP-55,940 > (?)δ9THC > (+)δ9THC. These findings show that sea urchin sperm contain a stereospecific cannabinoid receptor that may play a role in inhibition of the acrosome reaction. The radioligand binding data obtained with live sea urchin sperm are remarkably similar to those previously published by other investigators using [ H]CP-55,940 on mammalian brain and nonneural tissues. The cannabinoid binding properties of this receptor appear to have been highly conserved during evolution. We postulate that the cannabinoid receptor may modulate cellular responses to stimulation. © 1993 Wiley-Liss, Inc.  相似文献   

15.
During fertilization in Limulus, the spermatozoa first attach to the egg and then undergo an acrosomal reaction. In this reaction, the acrosomal vesicle exocytoses, and a long, preformed acrosomal filament is extruded (and subsequently penetrates the egg chorion). The egg surface component that triggers the acrosome reaction has not yet been solubilized; therefore, previous studies have examined either spontaneous acrosome reactions or acrosome reactions that were triggered by eggs (or insoluble egg fragments), elevated extracellular Ca2+, or Ca2+ ionophores. In this study, we report a new method for initiating acrosome reactions in Limulus sperm. When the Limulus sperm motility-initiating peptide (SMI) is added to sperm in K+-free sea water, greater than 90% acrosome reactions are initiated within 5 min. However, less than 5% acrosome reactions occur either in K+-free sea water lacking SMI or when SMI is added to sperm in either normal sea water or K+- and Ca2+-free sea water. Experiments with K+ ionophores (nigericin and valinomycin), a K+ channel blocking agent (tetraethyl ammonium), an Na+ ionophore (monensin), and reagents that increase the intracellular pH (monensin, nigericin, and NH4Cl) indicate that changes in intracellular K+, Na+, or H+ do not mediate SMI-initiated acrosome reactions. The K+/Ca2+ ratio determines whether or not SMI will initiate acrosome reactions, with greater than 50% acrosome reactions being initiated when this ratio is below 0.3. In that K+ movement does not appear to be the critical event, possibly the K+/Ca2+ ratio either determines the rate of Ca2+ entry or controls the conformation of sperm surface molecules to allow SMI to initiate acrosome reactions in low K+.  相似文献   

16.
The sulfated fucan (SF) of egg jelly induces the acrosome reaction (AR) of sea urchin sperm. Strongylocentrotus franciscanus (Sf) SF is sulfated only at the 2-position. Strongylocentrotus purpuratus (Sp) has two SF isotypes, each one being female specific. One is rich in sulfate at both the 2- and 4-positionS (SF-1), and the other is rich in sulfate at the 4-position, but not the 2-position (SF-2). Sf SF is poor at inducing the AR of Sp sperm, presumably due to lack of 4-sulfation. Sp SF-1 is better at inducing the AR of Sf sperm than Sp SF-2, hypothetically due to increased 2-sulfation. Chemical oversulfation of Sf SF increases the percentage of AR of Sp sperm, showing that 4-sulfation is important for recognition of SF by Sp sperm. Chemically oversulfated Sp SF-2 is better at inducing the Sf sperm AR, presumably because of increased 2-sulfation. The species, Strongylocentrotus drobachiensis (Sd), has an SF-2 that is exclusively 2-sulfated (like Sf), except the glycosidic linkage in Sd is alpha(1-->4), whereas in Sf it is alpha(1-->3). Sd SF-2 does not induce the AR of Sf sperm, showing the strict requirement for the alpha(1-->3) linkage in recognition between Sf sperm and SF. Egg jelly from Echinometra lucunter (El) contains sulfated galactan (SG) which differs from Sf SF only in that the monosaccharide is L-galactose, not L-fucose. This SG and Sf SF are equally potent in inducing the AR of Sf sperm, showing that modification at C6 of L-fucose is not important for proper recognition between SF and Sf sperm receptors. This system permits study of the structural basis for recognition between sulfated polysaccharide and receptors controlling signal transduction pathways in animal cells.  相似文献   

17.
18.
The motion of the sea urchin sperm flagellum was analyzed from high-speed cinemicrographs. At all locations on the flagellum the transversal motion and the curvature were found to vary sinusoidally in time. The curvatures of the flagella increase strongly near the proximal junction. Two sperm are described in transient from rest to normal motion. The full wave motion developed in both sperm within 40 ms.  相似文献   

19.
The egg jelly-induced acrosome reaction is inhibited by polyclonal antibodies raised against either of two S. purpuratus sperm-membrane proteins, of Mr 80 and 210 kD. Although the two antigens used have dissimilar CNBr peptide maps, antisera produced against each of them cross-react with both proteins. Inhibition of the egg jelly-induced acrosome reaction by the antisera is bypassed by a combination of the ionophores monensin and A23187. This result, along with data showing that the antisera inhibit egg jelly-induced uptake of 45Ca2+, suggests that the antisera may block both Ca2+ uptake and Na+/H+ exchange in the sperm. The acrosome reaction blockage appears to be caused by the same component of the polyclonal sera responsible for cross-reaction; consequently, these antisera cannot be used to determine whether one or both of the crossreacting proteins modulate a critical step in the acrosome reaction.  相似文献   

20.
Lead chloride affects sperm motility and acrosome reaction in mice   总被引:1,自引:0,他引:1  
Lead is highly toxic and persistent in the environment and, thus, a major concern for public health. In this study, the effects of lead chloride (PbCl2) on mouse epididymal sperm were evaluated. Male mice were subcutaneously injected with 74 and 100 mg PbCl2/kg body weight for four consecutive days. Sperm was collected from the epididymis and several parameters of sperm function, such as sperm density, motility, viability, mitochondrial function, acrosome integrity and morphology, were evaluated. Furthermore, DNA fragmentation was assessed by the terminal deoxylnucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end labelling (TUNEL) assay and chromatin integrity was evaluated by sperm chromatin structure assay (SCSA). In order to assess direct effects on existing sperm population, we sacrificed one group for each condition at day 5. The effects of lead upon one entire spermatogenic cycle were evaluated on day 35. Both lead concentrations used in this work affected sperm motility, although no significant differences were observed in sperm viability, mitochondrial function and DNA/chromatin integrity. However, a decrease in the percentage of intact acrosomes was also observed, mirroring a lead-induced premature acrosome reaction. Thus, the results obtained indicate that, together with impaired motility, the effect of lead toxicity on acrosome integrity, leading to premature reaction, may compromise the ability of sperm to fertilize the oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号